714 research outputs found

    On switched Hamiltonian systems

    Get PDF
    In this paper we study the well-posedness and stability of a class of switched linear passive systems. Instrumental in our approach is the result, also of interest in its own right, that any linear passive input-state-output system with strictly positive storage function can be written as a port-Hamiltonian system

    Stability of hybrid model predictive control

    Get PDF
    In this paper we investigate the stability of hybrid systems in closed-loop with Model Predictive Controllers (MPC) and we derive a priori sufficient conditions for Lyapunov asymptotic stability and exponential stability. A general theory is presented which proves that Lyapunov stability is achieved for both terminal cost and constraint set and terminal equality constraint hybrid MPC, even though the considered Lyapunov function and the system dynamics may be discontinuous. For particular choices of MPC criteria and constrained Piecewise Affine (PWA) systems as the prediction models we develop novel algorithms for computing the terminal cost and the terminal constraint set. For a quadratic MPC cost, the stabilization conditions translate into a linear matrix inequality while, for an 1-norm based MPC cost, they are obtained as 1-norm inequalities. It is shown that by using 1-norms, the terminal constraint set is automatically obtained as a polyhedron or a finite union of polyhedra by taking a sublevel set of the calculated terminal cost function. New algorithms are developed for calculating polyhedral or piecewise polyhedral positively invariant sets for PWA systems. In this manner, the on-line optimization problem leads to a mixed integer quadratic programming problem or to a mixed integer linear programming problem, which can be solved by standard optimization tools. Several examples illustrate the effectiveness of the developed methodology

    Switched networks and complementarity

    Get PDF
    A modeling framework is proposed for circuits that are subject both to externally induced switches (time events) and to state events. The framework applies to switched networks with linear and piecewise-linear elements, including diodes. We show that the linear complementarity formulation, which already has proved effective for piecewise-linear networks, can be extended in a natural way to also cover switching circuits. To achieve this, we use a generalization of the linear complementarity problem known as the cone-complementarity problem. We show that the proposed framework is sound in the sense that existence and uniqueness of solutions is guaranteed under a passivity assumption. We prove that only first-order impulses occur and characterize all situations that give rise to a state jump; moreover, we provide rules that determine the jump. Finally, we show that within our framework, energy cannot increase as a result of a jump, and we derive a stability result from this

    Linear complementarity systems : a study in hybrid dynamics

    Get PDF

    Non-smooth model predictive control: stability and applications to hybrid systems

    Get PDF
    In this report we investigate the stability of hybrid systems in closed-loop with Model Predictive Controllers (MPC) and we derive a priori sufficient conditions for Lyapunov asymptotic stability and exponential stability. A general theory is presented which proves that Lyapunov stability is achieved for both terminal cost and constraint set and terminal equality constraint hybrid MPC, even though the considered Lyapunov function and the system dynamics may be discontinuous. For particular choices of MPC criteria and constrained Piecewise Affine (PWA) systems as the prediction models we develop novel algorithms for computing the terminal cost and the terminal constraint set. For a quadratic MPC cost, the stabilization conditions translate into a linear matrix inequality while, for an ∞-norm based MPC cost, they are obtained as ∞-norm inequalities. It is shown that by using ∞-norms, the terminal constraint set is automatically obtained as a polyhedron or a finite union of polyhedra by taking a sublevel set of the calculated terminal cost function. New algorithms are developed for calculating polyhedral or piecewise polyhedral positively invariant sets for PWA systems. In this manner, the on-line optimization problem leads to a mixed integer quadratic programming problem or to a mixed integer linear programming problem, which can be solved by standard optimization tools. Several examples illustrate the effectiveness of the developed methodology
    corecore