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Abstract

We consider electrical networks containing linear ele-
ments, independent voltage/current sources and ideal
diodes. As a test of model validity, we have shown
the well-posedness (in the sense of existence and
uniquness of solutions) of such network models under
a condition on the zero structure at infinity of the un-
derlying linear system. It is also shown that this con-
dition is implied by passivity. As an additional result,
the set of initials states for which the corresponding
solution trajectory is impulse-free is explicitly char-
acterized.

1 Introduction

The appropriateness of a proposed mathematical
model for a given physical system can be tested in
various ways. A very basic test is the following: if
the physical system that is being modeled is deter-
ministic in the sense that it shows identical behavior
under identical circumstances, then the mathematical
model should have the same property. Model valid-
ity would be put into serious doubt if it would turn
out that the equations of the mathematical model al-
low multiple solutions for some initial data. With any
model formulation for a deterministic physical system
it is therefore important to establish well-posedness of
the model, i. e., existence and uniqueness of solutions
for feasible initial conditions.

This paper considers the well-posedness of models
for electrical networks with diodes. In the engineering
literature, mathematical models that make use of the
ideal diode characteristic are routinely used for such

networks. Remarkably enough, it seems that the well-
posedness of such models has not been rigorously es-
tablished before. Although general results from the
theory of ordinary differential equations may be used
to establish well-posedness of network models con-
taining elements with Lipschitzian characteristics (see
for instance [13]) or in special cases even for non-
Lipschitzian characteristics (see for instance [3, 8]),
such results do not cover the ideal diode character-
istic since it cannot be reformulated as a current or
voltage-controlled resistor. Neither does it seem pos-
sible to derive general well-posedness results for net-
work models with ideal diodes from the theory of dif-
ferential equations with discontinuous righthand sides
[4], which in network terminology is concerned with
models involving ideal relay elements. The theory
that we develop below will be based on the theory of
complementarity systemsthat has been worked out in
a series of recent papers [5–7,10,11]; see also [12].

It is easy to come up with examples of mathe-
matical models involving ideal diode characteristics
(which are equivalent to complementarity conditions)
that are not well-posed; see for instance [10]. There-
fore, some restrictions need to be imposed. In this pa-
per we consider network models that contain only lin-
ear elements besides the ideal diodes. We will study
this class of models in the more general setting of
complementarity conditions coupled to linear dynam-
ical systems with a special zero structure at infinity.
Some might say that it is “intuitively clear” that such
network models are well-posed; nevertheless, ideal
diodes are only approximations to real diodes and so
the fact that actual networks with diodes behave de-
terministically does not make it evident that the cor-
responding mathematical models with idealized ele-
ments have unique solutions. Rather, as argued above,
one should consider well-posedness as a test of model
validity.
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The paper is organized as follows. In Section 2 we
first of all develop a precise notion of solution for a
network model with ideal diode elements. Some el-
ements of the theory of distributions will be used in
order to allow for possible jump solutions. Then in
Section 3 we briefly discuss the linear complemen-
tarity problem (LCP) of mathematical programming
that plays an important role in our development. The
main results follow in Section 4. We present a general
well-posedness result for linear passive lumped net-
works with ideal diodes. We also discuss the nature
of solutions; in particular we show that a jump may
only occur at the initial time instant and we character-
ize the set of initial conditions that give rise to jumps.
The paper will be closed by conclusions in Section 5
and proofs in Section 6.

Throughout the paper,R denotes the set of real
numbers,R+ nonnegative real numbers,C complex
numbers,R(s) the field of real rational function in the
variables. All inequalities concerning vectors must
be understood componentwise. For any integerm, m
denotes the set{1, 2, . . . ,m}. For an index setK ⊆
m, Kc and|K| denote the setm \K and the number
of elemnets ofK, respectively. For anyA ∈ Rnxm,
J ⊆ n, andK ⊆ m, AJK denotes the submatrix
{Aij}j∈J,k∈K . If J = n (K = m), we also write
A•K (AJ•). dim(U) denotes the dimension of the lin-
ear spaceU . The orthogonal space ofU ⊆ Rn is de-
noted byU⊥ := {v ∈ Rn | v>u = 0 for all u ∈ U}.
Given a mappingA : U → V , we denote the image of
A by imA := {v ∈ V | v = Au for someu ∈ U} and
the kernel ofA by ker A := {u ∈ U | Au = 0}. A|W
will denote the restriction ofA to W ⊆ U . For any
two real vectorsv andw, we writev ⊥ w if v>w = 0.

2 Linear Complementarity Systems

Throughout the paper, we consider linear networks
with ideal diodes at each port. A standing assumption
will be the following.

Assumption 2.1 The linear network admits a state
space representation of the form

ẋ(t) = Ax(t) + Bu(t) + Ew(t)

y(t) = Cx(t) + Du(t)

wherex(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rm, w(t) ∈
Rp, andA, B, C, D andE are matrices with appro-
priate sizes. Here each(uk, yk) pair belongs to the
set{(−vk, ik), (ik,−vk)} wherevk andik denote the
voltage and the current of the diode coupled tokth
port, andw represents the independent voltage and/or
current sources contained in the network.

By taking into account the characteristics of the
ideal diodes as shown in Figure 2, the overall system

can be described as alinear complementarity system
of the form

ẋ(t) = Ax(t) + Bu(t) + Gw(t) (1a)

y(t) = Cx(t) + Du(t) (1b)

0 ≤ u(t) ⊥ y(t) ≥ 0. (1c)

We denote the above system by LCS(A,B,C, D,E).
For the previous study on this class of systems, the
reader is refered to [5–7,10,11]. From ahybrid system
point of view, one can distinguish2m modes(or cir-
cuit topologiesas it is sometimes called in circuit the-
ory) depending on whether the diodes are conducting
or blocking. Every index setK ⊆ m determines one
of these modes by imposing the constraintsyK = 0
anduKc = 0. Associated to each modeK, there are
a linear dynamics given by

ẋ(t) = Ax(t) + Bu(t) + Ew(t)

y(t) = Cx(t) + Du(t)

yK(t) = 0, uKc(t) = 0

and a set calledinvariantsgiven by

yKc(t) ≥ 0, uK(t) ≥ 0. (3a)

Starting at a given mode, the system trajectories must
obey the dynamics corresponding to this mode as long
as they belong to the invariant set, i.e., satisfy the in-
equalities (3). Time instants at which the state vari-
ables tend to leave the invariant set are calledevent
times. Whenever an event occurs, another mode will
become active depending on the state variables and
the values of the voltage/current sources at the event
time. Before giving a precise definition of the solu-
tion concept, we illustrate the above features of the
systems under consideration in the following exam-
ple.

Example 2.2 Consider the linear RLC circuit (with
R = 1 Ohm, L = 1 Henry andC = 1 Farad) cou-
pled to two ideal diodes as shown in Figure 1. By
choosing the voltage across the capacitor and the cur-
rent through the inductor as the state variables and by
taking into account the ideal diode characteristic de-
picted in Figure 2, the governing equations of the net-
work can be given by

d
dtvC = iL − u1 + u2

d
dt iL = −vC − iL − u2

y1 = −vC , y2 = vC + iL + u2

0 ≤ u ⊥ y ≥ 0

whereuk andyk denoteiDk and−vDk , respectively
for k = 1, 2.
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Figure 1: RLC circuit with ideal diodes
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Figure 2: Ideal diode characteristic

The phase diagram of the circuit is shown in Fig-
ure 3. We investigate the behaviour of the network for
two initial conditions, namely for(vC(0), iL(0)) =
(−e, 1) and(vC(0), iL(0)) = (1, 1).

• Case 1:(vC(0), iL(0)) = (−e, 1)
The state trajectories can be computed for the ini-
tial state(vC(0), iL(0)) = (−e, 1) as follows.

vc(t) =
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1 if 0 ≤ t ≤ 1
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• Case 2:(vC(0), iL(0)) = (1, 1)
The solution complying with the circuit can be
given by

vC(t) = 0, iL(t) = e−t, iD1(t) = δ + e−t,

vD1(t) = 0, iD2(t) = 0, vD2(t) = e−t

whereδ denotes the Dirac impulse. The physi-
cal interpretation of the jump in the variablevC

is that there is an instantaneous discharge of the
capacitor.
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Figure 3: Phase diagram of the system given in Ex-
ample 2.2

Example 2.2 indicates that the trajectories of the
system are made of the concatenations of some tra-
jectories produced by some linear systems as already
expected due to the hybrid features of the system
and also that the trajectories must incorporate Dirac
impulses in order to capture theinconsistentinitial
states. Next, we recall the notion ofinitial solu-
tion which will serve as the ‘atomic’ element of the
(global) solution concept. To do so, we need to in-
troduce so-calledBohl distributions. A function v :
R+ → R is said to be aBohl functionif it has a ratio-
nal Laplace transform. The set of all such functions
is denoted byB. In a similar fashion, a distribution
v is said to be aBohl distributionif it is of the form
v = vimp + vreg where theimpulsivepartvimp = v0δ
for somev0 ∈ R and theregular partvreg belongs to
B. The set of all such distributions is denoted byBD.
BD can be viewed as the direct sum of the spacesδR
andB. We say thatv ∈ BD is initially nonnegative
if its Laplace transform̂v(s) satisfieŝv(σ) ≥ 0 for all
sufficiently largeσ ∈ R. It is known (see [5]) that
v = v0δ + vreg is initially nonnegative if and only if
(v0 > 0) or (v0 = 0 and there existsε > 0 such that
vreg(t) ≥ 0 for t ∈ [0, ε)) .

Definition 2.3 The triple (u, x, y) ∈ BDm+n+m is
an initial solution of LCS(A, B,C, D, E) for the in-
put w ∈ B and the initial statex0 if there exists an
index setK ⊆ m such that

ẋ = Ax + Bu + Ew + x0δ

y = Cx + Du

yK = 0, uKc = 0

hold in the distributional sense, andu andy are ini-



tially nonnegative.

To define the global solution concept, we need to
introduce the space ofpiecewise Bohl distributions
which are the solution candidates for linear comple-
mentarity systems. The notationv|Ω denotes the re-
striction of the functionv to the setΩ. A function
v : R+ → R is said to be apiecewise Bohl functionif
for eacht ∈ R+ there exist anε > 0 and aw ∈ B such
thatv|[t,t+ε) = w|[0,ε). The set of all such functions
is denoted byPB. The setPBB consists of allPB-
functions bounded on every compact set. In a similar
fashion to Bohl distributions, a distributionv is said
to be apiecewise Bohl distributionif it is of the form
v = vimp + vreg where theimpulsivepartvimp = v0δ
for somev0 ∈ R and theregular partvreg belongs to
PB. The set of all such distributions is denoted by
PBD.

Definition 2.4 The triple(u, x, y) ∈ PBDm+n+m is
a (global) solutionof LCS(A,B, C,D, E) for the in-
putw ∈ PBBp and the initial statex0 if the following
conditions hold.

1. There exists an initial solution(ū, x̄, ȳ) such that

(uimp, ximp, yimp) = (ūimp, x̄imp, ȳimp).

2. The equations

ẋ = Ax + Bu + Ew + x0δ

y = Cx + Du

hold in the distributional sense.

3. For allt ∈ R+,

0 ≤ ureg(t) ⊥ yreg(t) ≥ 0.

We say that the solution(u, x, y) is impulse-free
wheneveruimp = 0, i.e., there is no impulsive part.

The first item in the Definition 2.4 imposes a re-
lation between the impulsive part and the rest of the
solution. In the following example, we illustrate the
necessity of such a connection.

Example 2.5 [1] Consider the simple circuit shown
in Figure 4. By denoting the voltage across the capac-
itor and the diode byvc andvd, respectively and the
current through the diode byid, one can obtain the
circuit equations as follows:

v̇c = −id, vd = vc

0 ≥ vd ⊥ id ≥ 0.

They can be rewritten in the form of a linear comple-
mentarity system

ẋ = u, y = x (4a)

0 ≤ u ⊥ y ≥ 0 (4b)

with the definitionsu = id, x = −vc, andy = −vd.
For the initial statex0 = −1, the triple(u, x, y) =
(aδ, a − 1, a − 1) with a ≥ 1 satisfies the last two
items of the Definition 2.4. However,(aδ, a−1, a−1)
is only a solution for initial statex0 = −1, if a = 1,
since this is the only solution complying with the cir-
cuit from a physical point of view. Its interpretation
is that there is an instantaneous discharge of the ca-
pacitor. Note that(u, x, y) = (δ, 0, 0) is indeed the
unique initial solution and hence due to item 1 of Def-
inition 2.4, the only allowed global solution.

D C

Figure 4: Circuit illustrating the need for Definition
2.4 item 1

3 Linear Complementarity Problem
(LCP)

We briefly recall the linear complementarity problem
of mathematical programming. For an extensive sur-
vey on the problem, the reader is referred to [2].

Problem 3.1 (LCP(q, M)) Givenq ∈ Rm andM ∈
Rmxm, find z ∈ Rm such that

0 ≤ z ⊥ q + Mz ≥ 0 (5)

We say thatz solvesLCP(q,M) if z satisfies (5). The
set of all solutions of LCP(q, M) will be denoted by
SOL(q, M). In general, SOL(q, M) may be empty
set. K(M) denotes the set{q | SOL(q,M) 6= ∅}. It
is easy to see thatRm

+ ⊆ K(M) for all M ∈ Rmxm.
Next, we define some matrix clases used in the se-

quel.

Definition 3.2 A matrix M ∈ Rmxm is called

• nondegenerateif all its principal matrices are
nonsingular.

• aP-matrix if all its principal minors are positive.

• positive (nonnegative) definiteif x>Mx > 0 (≥
0) for all 0 6= x ∈ Rm.



• copositiveif x>Mx ≥ 0 for all x ≥ 0.

• copositive-plusif it is copositive and the follow-
ing implication holds:

x>Mx = 0 andx ≥ 0 ⇒ (M + M>)x = 0.

For a given nonempty setS, we say that the set
{v | v>w ≥ 0 for all w ∈ S} is thedual coneof S. It
is denoted byS∗. The next lemma states some of the
standard results on the above defined matrix classes.

Lemma 3.3 LetM ∈ Rmxm be given. The following
statements hold.

1. LCP(q,M) has a unique solution for allq ∈ Rm

if and only ifM is a P-matrix.

2. If M is copositive-plus then K(M) =
(SOL(0,M))∗.

The proofs of items 1 and 2 can be found in [2,
Theorem 3.7.7 and Corollary 3.8.10].

4 Main Results

We will often use the following low index assumption.

Assumption 4.1 The matrix triple (B,C, D) ⊂
Rnxm × Rmxn × Rmxm is such thatD + σ−1CB
is aP -matrix for all sufficiently largeσ ∈ R and for
each index setK ⊆ m

im DKK ⊕ CK•B•K (ker DKK) = R|K|. (6)

In the paper, we will show that for eachK ⊆ m
s−1(DKK + s−1CK•B•K)−1 is proper under the
above assumption. It can be also shown that if
DKK + s−1CK•B•K is invertible as a rational ma-
trix ands−1(DKK + s−1CK•B•K)−1 is proper then
(6) holds.

The main result of the present paper is as follows.

Theorem 4.2 Consider a linear network such that
Assumption 2.1 holds. Let(A,B, C, D,E) be a state-
space representation of the network as in(1). Sup-
pose that(B, C, D) satisfies Assumption 4.1. Then,
for eachx0 ∈ Rn and for eachw ∈ PBBp, there ex-
ists a unique global solution of LCS(A,B, C,D, E)
for the inputw and the initial statex0. Moreover, the
solution with initial statex0 is impulse-free if and only
if Cx0 ∈ K(D).

As a consequence of the above theorem, we have
the following result on linear passive networks with
ideal diodes. Note that Assumption 4.1 is obviously
weaker than passivity property since it does not de-
pend onA.

Corollary 4.3 Consider a linear network such that
Assumption 2.1 holds. Let(A,B, C, D, E) be a state-
space representation of the network as in(1). Sup-
pose that(A, B,C) is minimal, B is of full col-
umn rank, and(A,B, C,D) is passive (in the sense
of [14]). Then, for eachx0 ∈ Rn and for each
w ∈ PBBp, there exists a unique global solution of
LCS(A,B, C,D, E) for the inputw and the initial
statex0. Moreover, the solution with initial statex0

is impulse-free if and only ifCx0 ∈ (SOL(0, D))∗.

Consider the network shown in Example 2.2. It can
be easily seen that(A,B, C,D, E) given by

A =
[

0 1
−1 −1

]

, B =
[

−1 1
0 −1

]

, C =
[

−1 0
1 1

]

,

D =
[

0 0
0 1

]

, E =
[

0 0
0 0

]

.

is a state-space representation as in Assumption 2.1.
It can be easily verified that(A,B,C) is minimal and
B is of full column rank. Obviously, the network is
passive. Hence, Corollary 4.3 implies the existence
and uniqueness of solutions of the network. Note that
SOL(0, D) = {z | z1 ≥ 0 andz2 = 0}. Then,
(SOL(0, D))∗ = {z | z1 ≥ 0}. It follows that the so-
lution with (vC(0), iL(0)) is impulse-free if and only
if vC(0) ≤ 0 as already depicted in Figure 3.

5 Conclusions

In this paper we showed that a class of models for
electrical networks with diodes passes the validity test
of well-posedness. The used network models consist
of linear passive elements (e.g. resistors, inductors,
capacitors, etc.), independent voltage/current sources
and ideal diodes. As a consequence, the model de-
scriptions fall within the realm of linear complemen-
tarity systems with external inputs, which form a sub-
class of discontinuous dynamical systems with both
discrete and continuous characteristics. Using this
framework, we were able to prove the existence and
uniqueness of solution trajectories under a condition
on the zero structure of the underlying state space de-
scription. Since this condition is implied by passivity,
the well-posedness of the network models was estab-
lished. As an additional result we gave an explicit
characterization of the consistent states for the net-
work model, i.e., the initial states for which the corre-
sponding solution trajectory is impulse-free.

This line of work is currently continued by inves-
tigating possible relaxations of the conditions used
here. Moreover, we are interested in the numerical
simulation of electrical networks by so-called time-
stepping methods. For instance, in [1] we proved the



consistency – in the sense of convergence of the ap-
proximations to the real transient solution – of a time-
stepping method based on the backward Euler integra-
tion routine, when applied to linear passive electrical
circuits with ideal diodes.

6 Proofs

Towards the proof of the main results, we begin with
several technical lemmas on LCP. In the sequel, for
a given nondegenerate matrixM ∈ Rnxn, d(M) is
defined as follows:

d(M) = 2n(max
J⊆n

‖M−1
JJ ‖).

Lemma 6.1 Assume thatM ∈ Rnxn is a P -matrix.
Let zi be the unique solution of LCP(qi,M) for i =
1, 2. Then, we have

‖z1 − z2‖ ≤ d(M)‖q1 − q2‖.

Proof It is known that the mappingq 7→ z wherez
is the unique solution of LCP(q, M) is a piecewise
function on some finite number of convex polyhedral
conesPJ for J ⊆ n as given in [2, Proposition
1.4.6]. Besides,q ∈ PJ implies that the solutionz
of the LCP(q, M) is of the formzJ = −M−1

JJ qJ and
zJc = 0. Since the line segment[q1, q2] lies in only a
finite number of these cones (at most2n), we get the
desired inequality.�

The following two lemmas will play quite an im-
portant role in the proof of the main results.

Lemma 6.2 Let M , N ∈ Rnxn be given. Suppose
that

im N ⊕M(ker N) = Rn.

Then, the following statements hold.

1. N + s−1M is invertible as a rational matrix and
s−1(N + s−1M)−1 is proper.

2. There exist matricesP ∈ Rpxn and Q ∈
R(n−p)xn such that

[

P
Q

]

and

[

PN
QM

]

are both nonsingular andQN = 0.

Proof 1: Let Q ∈ Rnxq be such thatNQ = 0 and
ker Q = {0}. Take anyP ∈ Rnx(n−q) such that
[

P Q
]

is nonsingular. Then,im P ⊕ im Q = Rn.
This implies thatimNP = imN becauseN(imQ) =
{0}. Since

im N ⊕M(ker N) = Rn,

we get
im NP ⊕ im MQ = Rn.

Consequently,
[

NP MQ
]

is nonsingular. On the
other hand, we have

(N + s−1M)
[

P Q
]

=
[

NP + s−1MP s−1MQ
]

=
([

NP MQ
]

+ s−1 [

MP 0
])

[

I 0
0 s−1I

]

.

Since
[

NP MQ
]

is nonsingular, the first term of
the left hand side is biproper, i. e., it is proper, invert-
ible as a rational matrix and its inverse is also proper.
It follows that(N + s−1M) is invertible as a rational
matrix ands−1(N + s−1M) is proper.

2: Let Q ∈ Rqxn be such thatim Q> = ker N>

andker Q> = {0}. Clearly,

ker Q = (im Q>)⊥ = (ker N>)⊥ = im N.

Take anyP ∈ R(n−q)xn such that

[

P
Q

]

is nonsingular.

Suppose that
[

PN
QM

]

x = 0

for somex ∈ Rn. This means that

PNx = 0 (7)

QMx = 0. (8)

Sinceker Q = im N , we have
[

P
Q

]

Nx = 0.

from (7). This implies that,Nx = 0, i. e.,x ∈ ker N .
Hence,Mx ∈ M(ker N). On the other hand, (8)
yieldsMx ∈ ker Q = im N . Therefore, we conclude
from the hypothesis thatMx = 0. SinceNx is also
zero,(N + s−1M)x = 0 for all s ∈ C. However, this
can happen only ifx = 0 due to item 1. Hence,

[

PN
QM

]

is nonsingular.�

Lemma 6.3 Let G(s) = D + C(sI − A)−1B ∈
Rmxm(s) be given. Assume that(B, C,D) satisfies
Assumption 4.1. Then, there exists anα > 0 such that
d(G(σ)) ≤ ασ for all sufficiently largeσ.

Proof Note that for eachJ ⊆ m

GJJ (s) = (DJJ + s−1CJ•B•J)

× [I + s−2(DJJ + s−1CJ•B•J)−1CAB + . . . ].

Sinces−2(DJJ + s−1CJ•B•J)−1 is strictly proper
due to Lemma 6.2 item 1, the second term of the right



hand side is biproper. Then, it follows that for some
αJ > 0 andα′J > 0

‖G−1
JJ (σ)‖ ≤ αJ‖(DJJ + σ−1CJ•B•J )−1‖ ≤ α′Jσ

for all sufficiently largeσ. Therefore,d(G(σ)) ≤ ασ
for all sufficiently largeσ where

α = 2n(max
J⊆m

α′J).�

Next, we recall the so-calledRational Complemen-
tarity Problem(see [5] for a detailed discussion).

Problem 6.4 (RCP(x0, ŵ(s), A,B,C, D,E)) Given
x0 ∈ Rn, ŵ(s), and(A, B,C, D, E) with A ∈ Rnxn,
B ∈ Rnxm, C ∈ Rmxn, D ∈ Rmxm andE ∈ Rnxp

find û(s) ∈ Rm(s) such that

1. û(s) ⊥ ŷ(s) for all s ∈ C.

2. û(σ) ≥ 0 andŷ(σ) ≥ 0 for all sufficiently large
σ ∈ R.

where

ŷ(s) = C(sI −A)−1x0 + C(sI −A)−1Eŵ(s)

+ [D + C(sI −A)−1B]û(s).

For brevity of notation, we denote
RCP(x0, ŵ(s), A, B,C, D, E) by RCP(x0, ŵ(s)).
There is one-to-one correspondence between the
proper solutions of RCP and initial solutions of LCS
as described in the following lemma.

Lemma 6.5 Consider a given matrix quintuple
(A,B,C, D,E). The following statements hold.

1. Let û(s) be a proper solution of RCP(x0, ŵ(s))
for somex0 and strictly properŵ(s). Define
x̂(s) and ŷ(s) as follows

x̂(s) = (sI −A)−1x0 + (sI −A)−1Bû(s)

+(sI −A)−1Eŵ(s),

ŷ(s) = Cx̂(s) + Dû(s).

Then, the inverse Laplace transform(u, x, y)
of (û(s), x̂(s), ŷ(s)) is an initial solution of
LCS(A,B, C,D, E) for the inputw and the ini-
tial state x0 where w is the inverse Laplace
transform ofŵ(s).

2. Let (u, x, y) be an initial solution of
LCS(A, B,C, D,E) for the input w and the
initial statex0 and letû(s) be the Laplace trans-
form of u. Then, û(s) solves RCP(x0, ŵ(s))
whereŵ(s) is the Laplace transform ofw.

Proof Evident from the proof of [6, Theorem 5.3].�

The following lemma will play the key role for the
proof of Theorem 4.2.

Lemma 6.6 Consider a given matrix quintuple
(A,B, C,D, E). Suppose that(B, C,D) satisfies As-
sumption 4.1. Then the following statements hold.

1. RCP(x0, ŵ(s)) has a unique solution for all
x0 ∈ Rn and for all ŵ(s) ∈ Rp(s).

2. The unique solution of RCP(x0, ŵ(s)) is proper
for all x0 and for all strictly properŵ(s). More-
over, it is strictly proper if and only ifCx0 ∈
K(D).

3. Let û(s) be the unique solution of
RCP(x0, ŵ(s)) for some x0 and strictly
proper ŵ(s). Then, C(x0 + Bu0) ∈ K(D)
whereu0 = lims→∞ û(s).

Proof 1: SinceD+σ−1CB is aP -matrix for all suffi-
ciently largeσ, D+C(σI−A)−1B is aP -matrix for
all sufficiently largeσ. Then, the statement follows
from [5, Theorem 4.1] and Lemma 3.3 item 1.

2: Let û(s) be the unique solution of
RCP(x0, ŵ(s)) for some x0 and strictly proper
ŵ(s). Then, û(σ) solves LCP(q(σ), G(σ)) for all
sufficiently largeσ where

q(s) = C(sI −A)−1x0 + C(sI −A)−1Eŵ(s)

G(s) = D + C(sI −A)−1B.

Note that the unique solution of LCP(0, G(σ)) is zero
for all sufficiently largeσ. Lemma 6.1, together with
Lemma 6.3, yields for someα > 0

‖û(σ)‖ ≤ ασ‖q(σ)‖

for all sufficiently largeσ. Since q(s) is strictly
proper, this implies that for someβ > 0

‖û(σ)‖ ≤ β

for all sufficiently largeσ. It follows that û(s) is
proper. It remains to prove the second statement. For
the ‘only if’ part, suppose that̂u(s) is stricly proper.
Let the power series expansion around infinity ofû(s)
andŵ(s) be of the form

û(s) = u1s−1 + u2s−2 + . . . (9a)

ŵ(s) = w1s−1 + w2s−2 + . . . . (9b)

Define

ŷ(s) = C(sI −A)−1x0 + C(sI −A)−1Eŵ(s)

+ [D + C(sI −A)−1B]û(s).



By substituting (9) into the above equation, we get

ŷ(s) =(Cx0 + Du1)s−1

+ (CAx0 + CEw1 + CBu1)s−2 + . . . .

It follows from the formulation of RCP(x0, ŵ(s)) that

u>1 (Cx0 + Du1) = 0

u1 ≥ 0 andCx0 + Du1 ≥ 0.

Consequently, LCP(Cx0, D) is solvable. In other
words, Cx0 ∈ K(D). To show the ‘if’ part,
suppose thatCx0 ∈ K(D). Let ū be a solu-
tion of LCP(Cx0, D). It is clear thatσ−1ū solves
LCP(σ−1Cx0, D) for all σ > 0. Then, it also
solves LCP(σ−1Cx0−σ−1C(σI−A)−1Bū,G(σ)).
Lemma 6.1 together with Lemma 6.3 gives

‖û(σ)− σ−1ū‖ ≤ ασ‖C[(σI −A)−1 − σ−1I]x0

+ C(σI −A)−1Eŵ(σ) + σ−1C(σI −A)−1Bū‖
(10)

for all sufficiently largeσ. Note that for someβ > 0
the last term of the righthand side is less thanβσ−2

for all sufficiently largeσ. Therefore, (10) results in

‖û(σ)− σ−1ū‖ ≤ αβσ−1

for all sufficiently largeσ. This implies that̂u(s) is
strictly proper.

3: Let the power series expansion around infinity
of û(s) andŵ(s) be of the form

û(s) = u0 + u1s−1 + u2s−2 + . . . (11a)

ŵ(s) = w1s−1 + w2s−2 + . . . . (11b)

Define

ŷ(s) = C(sI −A)−1x0 + C(sI −A)−1Eŵ(s)

+ [D + C(sI −A)−1B]û(s).

By substituting (11) into the above equation, we get

ŷ(s) = Du0 + (Cx0 + CBu0 + Du1)s−1 + . . . .

It follows from the formulation of RCP(x0, ŵ(s)) that

(u0+u1σ−1)>[Du0+(Cx0+CBu0+Du1)σ−1] = 0

for all σ, and

u0 + u1σ−1 ≥ 0

Du0 + (Cx0 + CBu0 + Du1)σ−1 ≥ 0.

for all sufficiently largeσ. Hence, we can conlude
thatu0 +u1σ−1 solves LCP(Cx0 +CBu0, D) for all
sufficiently largeσ. This means thatC(x0 + Bu0) ∈
K(D). �

At this stage, we can state the following lemma
which concerns the local existence of solutions. Later
on, it will be used to show global existence.

Lemma 6.7 Consider a given matrix quintuple
(A,B, C, D, E). Suppose that(B, C,D) satisfies As-
sumption 4.1. For allw ∈ PBBp and for all initial
statesx0 with Cx0 ∈ K(D), there exist anε > 0 and
a triple (u, x, y) ∈ Bm+n+m such that the equations

ẋ = Ax + Bu + Ew + x0δ

y = Cx + Du

hold in the distributional sense on[0, ε), and for all
t ∈ [0, ε)

0 ≤ u(t) ⊥ y(t) ≥ 0.

Moreover,Cx(ε) ∈K(D).

Proof Sincew ∈ PBBp, there existε1 > 0 and
v ∈ Bp such thatw|[0,ε1) = v|[0,ε1). Let v̂(s)
be the Laplace transform ofv. Lemma 6.6 items
1 and 2 implies that RCP(x0, v̂(s)) has a unique
strictly proper solution, saŷu(s). As a consequence
of item 1 of Lemma 6.5, we know that there exists
an initial solution (u, x, y) of LCS(A, B,C, D,E)
for the input v and the initial statex0. Note that
(u, x, y) ∈ Bm+n+m sinceû(s) andŷ(s) are strictly
proper. Then, there exists anε2 > 0 such thatu(t) and
y(t) are nonnegative for allt ∈ [0, ε2) sinceu andy
are initially nonnegative. It is not difficult to see that
ε = min(ε1, ε2) and(u, x, y) satisfies the desired re-
quirements. Note thatt 7→ (u, x, y)(t + ρ) forms an
initial solution of LCS(A,B,C, D,E) for the input
t 7→ v(t+ρ) and the initial statex(ρ) for all ρ ∈ [0, ε).
Then, Lemma 6.6 item 2 implies thatCx(ρ) ∈ K(D)
for all ρ ∈ [0, ε). Since K(D) is closed andx is con-
tinuous (even Bohl),Cx(ε) ∈ K(D) as well.�

As a final ingredient of the proof of Theorem 4.2,
we need the following lemma.

Lemma 6.8 Consider a given matrix quintuple
(A,B,C, D,E). Suppose that(B,C, D) satisfies As-
sumption 4.1. For allK ⊆ m there exist matri-
cesFK , GK , HK and JK such that if(u, x, y) ∈
BDm+n+m satisfies

ẋ = Ax + Bu + Ew + x0δ

y = Cx + Du

yK = 0

uKc = 0

in the distributional sense for some initial statex0
then

ẋreg = FKxreg + GKwreg

ureg = HKxreg + JKwreg

yreg = Cxreg + Dureg.

The matricesFK , GK , HK andJK only depend on
K not on the particular choice ofx0.



Proof Clearly, the regular part(ureg, xreg, yreg) satis-
fies

ẋreg = Axreg + Bureg + Ew (12a)

yreg = Cxreg + Dureg (12b)

0 = CK•xreg + DKK(ureg)K (12c)

0 = (ureg)Kc . (12d)

From Lemma 6.2 item 1, we know that there exist ma-
tricesP andQ such that

[

P
Q

]

and

[

PDKK

QCK•B•K

]

are both nonsingular andQDKK = 0 since Assump-
tion 4.1 holds for(B, C, D). By premultiplying (12c)
by the first matrix in the above equation, we get

PCK•xreg + PDKK(ureg)K = 0 (13)

QCK•xreg = 0. (14)

Differentiating (14) with respect to time, one gets

QCK•Axreg + QCK•B•K(ureg)K + QCK•Ew = 0.
(15)

By combining (13) and (15), one can obtain
[

PDKK
QCK•B•K

]

(ureg)K = −
[

PCK•
QCK•A

]

xreg

−
[

0
QCK•E

]

w. (16)

Since the first term of the lefthand side is nonsingu-
lar, the matricesHK andJK can be found by solv-
ing (ureg)K from (16). FK andGK can be given as
FK = A + BHK andGK = E + BJK . �

After all these preparations, we can finally prove
Theorem 4.2.

Proof of Theorem 4.2:We show first the existence of
a solution for given inputw ∈ PBBp and initial state
x0. Sincew ∈ PBBp, there existsµ > 0 andv ∈ Bp

such thatw|[0,µ) = v|[0,µ). Lemma 6.6 items 1 and 2
imply that RCP(x0, v̂(s)) has a proper solution. From
Item 1 of Lemma 6.5, we can find an initial solution
(u, x, y) of LCS(A,B, C, D, E) for the inputv and
the initial statex0. Define

(ũimp, x̃imp, ỹimp) := (uimp, ximp, yimp). (17)

Properness of the solution of RCP(x0, v̂(s)) reveals
that uimp = u0δ whereu0 = lims→∞ û(s). Set
x+

0 = x0 + Bu0. It follows from Lemma 6.6 item
3 thatCx+

0 ∈ K(D). For the inputw and initial state
x+

0 , let ε1 > 0 and(u1, x1, y1) be such that the condi-
tions given in Lemma 6.7 hold. Note thatCx1(ε1) ∈

K(D). Now, for the inputw|[Pk−1
l=1 εl,∞) and initial

statexk−1(εk−1) we can findεk > 0 and(uk, xk, yk)
be such that the conditions given in Lemma 6.7 hold
for k = 2, 3, . . . sinceCxk−1(εk−1) ∈ K(D). For
k = 1, 2, . . . , define

(ũreg, x̃reg, ỹreg)|[Pk−1
l=0 εl,

Pk
l=0 εl)

= (uk, xk, yk)|[0,εk)

with the conventionε0 = 0. By construction,(ũ, x̃, ỹ)
is a global solution candidate. The only possibil-
ity that obstructs it being a global solution can be
that

∑k
l=0 εl = τ and limt↑τ x̃reg(t) does not exist.

Next, we will show that this is not the case. For
brevity, we drop the subscript ‘reg’. On an interval
(ρ, t) ⊆ [εi, εi+1) for somei, (ũ, x̃, ỹ) is governed
by the dynamics˙̃x = FK x̃ + GKw according to
Lemma 6.8 for someK. Sincex̃ andt 7→ eF LtGL

for L ⊆ m is continuous[0, τ) and w ∈ PBBp,
they are all bounded on[0, τ), i.e., there exists an
M > 0 such that‖x(t)‖ ≤ M for all t ∈ [0, τ)
and‖eF LtGLw(t)‖ ≤ M for all t ∈ [0, τ) and for
all L ⊆ m. Then, we have the following estimation

‖x̃(t)− x̃(ρ)‖ ≤ ‖eF K(t−ρ)x̃(ρ)− x̃(ρ)‖

+ ‖
∫ t

ρ
eF K(t−s)GKw(s)ds‖

(18)

≤ (1 + αK)M |t− ρ|

since the functiont 7→ eF K t−I
t is bounded, say by

αK . Hence, for(ρ, t) ⊆ [0, τ), we get from (18)

‖x̃(t)− x̃(ρ)‖ ≤ M [max
K⊆m

(1 + αK)]|t− ρ|.

It follows that x̃ is Lipschitz continuous on[0, τ)
and thus uniformly continuous. A standard result in
mathematical analysis [9, Exercise 4.13] implies that
limt↑τ x̃(t) exists. Therefore,(ũ, x̃, ỹ) is a global so-
lution of LCS(A,B, C, D, E) for the inputw and the
initial statex0. The uniquness of follows from [5,
Theorem 5.21].

This section will end with the proof of Corol-
lary 4.3.

Proof of Corollary 4.3 We shall only show that As-
sumption 4.1 holds under the hypotheses of Corol-
lary 4.3. The rest follows from Theorem 4.2 and
Lemma 3.3 item 2. SinceB is of full column rank,
(A,B, C) is minimal and(A,B, C,D) is passive, it
can be shown by using [1, Lemma 6.11 items 1 and 2]
thatDKK is nonnegative definite and

w 6= 0, w>DKKw = 0 ⇒ w>CK•B•Kw > 0 (19)



for anyK ⊆ m. Note that from the nonnegativity of
DKK we have the following statement

w>DKKw = 0 ⇔ (DKK + D>
KK)w = 0. (20)

Suppose that

z ∈ im DKK ∩ CK•B•K (ker DKK),

i. e., there existv andw such that

z = DKKv (21)

z = CK•B•Kw (22)

DKKw = 0. (23)

Then, (23) implies that

w>DKKw = 0. (24)

It follows from (20), (23) and (24) that

D>
KKw = 0. (25)

Note that we have

w>CK•B•Kw = w>z = w>DKKv = 0

from (21), (22) and (25). Consequently, (19) implies
thatw = 0. This means thatz = 0 due to (22). There-
fore,

im DKK ∩ CK•B•K (ker DKK) = {0}. (26)

It follows from (19) thatkerCK•B•K |ker DKK = {0}.
Hence,dim(CK•B•K(kerDKK)) = dim(kerDKK).
From, (26) and the fact that

dim(ker DKK) + dim(im DKK) = |K|,

we get

im DKK ⊕ CK•B•K (ker DKK) = R|K|.�
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