Well-posedness of a class of linear networks with ideal diodes
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Keywords: Well-posedness, networks with ideal networks. Remarkably enough, it seems that the well-
diodes, complementarity problems, hybrid systems. posedness of such models has not been rigorously es-
tablished before. Although general results from the
theory of ordinary differential equations may be used
to establish well-posedness of network models con-

ider electrical K ining I | taining elements with Lipschitzian characteristics (see
We consider electrical networks containing linear ele- ¢ instance [13]) or in special cases even for non-

ments, independent voltage/current sources and idegliqchitzian characteristics (see for instance [3, 8]),
diodes. As a test of model validity, we have shown such results do not cover the ideal diode character-

the well-posedness (in the sense of existence an(iistic since it cannot be reformulated as a current or

uniguness of solutions) of such network models undery 146 _controlled resistor. Neither does it seem pos-
a condition on the zero structure at infinity of the un-

o . : sible to derive general well-posedness results for net-
derlying linear system. It is also shown that this con- 1, models with ideal diodes from the theory of dif-
dition is implied by passivity. As an additional result, o renvia) equations with discontinuous righthand sides
the s.et of |r_1|t|als St,at?s for which t.he cor_re_spondmg [4], which in network terminology is concerned with
solutlion trajectory is impulse-free is explicitly char- models involving ideal relay elements. The theory
acterized. that we develop below will be based on the theory of

complementarity systentisat has been worked out in
1 Introduction a series of recent papers [5-7,10, 11]; see also [12].

It is easy to come up with examples of mathe-

The appropriateness of a proposed mathematicamatical models involving ideal diode characteristics
model for a given physical system can be tested in(which are equivalent to complementarity conditions)
various ways. A very basic test is the following: if that are not well-posed; see for instance [10]. There-
the physical system that is being modeled is deter-fore, some restrictions need to be imposed. In this pa-
ministic in the sense that it shows identical behavior per we consider network models that contain only lin-
under identical circumstances, then the mathematicakar elements besides the ideal diodes. We will study
model should have the same property. Model valid- this class of models in the more general setting of
ity would be put into serious doubt if it would turn complementarity conditions coupled to linear dynam-
out that the equations of the mathematical model al-ical systems with a special zero structure at infinity.
low multiple solutions for some initial data. With any Some might say that it is “intuitively clear” that such
model formulation for a deterministic physical system network models are well-posed; nevertheless, ideal
it is therefore important to establish well-posedness ofdiodes are only approximations to real diodes and so
the model, i. e., existence and unigueness of solutionghe fact that actual networks with diodes behave de-
for feasible initial conditions. terministically does not make it evident that the cor-

This paper considers the well-posedness of modelgesponding mathematical models with idealized ele-
for electrical networks with diodes. In the engineering ments have unique solutions. Rather, as argued above,
literature, mathematical models that make use of theone should consider well-posedness as a test of model
ideal diode characteristic are routinely used for suchvalidity.
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The paper is organized as follows. In Section 2 we can be described asliaear complementarity system
first of all develop a precise notion of solution for a of the form
network model with ideal diode elements. Some el-

ements of the theory of distributions will be used in i(t) = Az(t) + Bu(t) + Gu(t) (1a)
order to allow for possible jump solutions. Then in y(t) = Cx(t) + Du(t) (1b)
Section 3 we briefly discuss the linear complemen- 0 <u(t) Ly(t)>0. (1c)

tarity problem (LCP) of mathematical programming

that plays an important role in our development. The e denote the above system by LCSB,C, D, E).
main results follow in Section 4. We present a generalgqy the previous study on this class of systems, the
well-posedness result for linear passive lumped netyagder is refered to [5-7,10,11]. Frorhybrid system
works with ideal diodes. We also discuss the naturenoint of view, one can distinguis?™ modes(or cir-

of solutions; in particular we show that a jump may cyit topologiesas it is sometimes called in circuit the-
only occur at the initial time instant and we character- ory) depending on whether the diodes are conducting
ize the set of initial conditions that give rise to jumps. blocking. Every index sek” C 7 determines one
The paper will be closed by conclusions in Section 5 of these modes by imposing the constraipts = 0

and proofs in Section 6. andug. = 0. Associated to each modg, there are
Throughout the papefR denotes the set of real g jinear dynamics given by

numbers,R, nonnegative real number§, complex

numbersR(s) the field of real rational function in the i(t) = Az(t) + Bu(t) + Bw(t)
variables. All inequalities concerning ve_ctors Tust y(t) = Cx(t) + Du(t)

be understood componentwise. For any integefn

denotes the sdftl,2,...,m}. For an index sef{ C yx(t) =0, ure(t) =0

m, K¢ and|K| denote the sez \ K and the number
of elemnets ofi(, respectively. For anyl € R™™,
J C m, and K C m, Ajx denotes the submatrix _

{Aij}ieskerx. f J = n (K = m), we also write yre(t) 20, u(t) 20 (3a)
Aex (Ae). dim(U) denotes the dimension of the lin- - gtarting at a given mode, the system trajectories must
ear spacé{. The orthogonal space of C R" isde-  gpey the dynamics corresponding to this mode as long
noted byt/~ := {v € R" | v'u =0forallu € U}. 35 they belong to the invariant set, i.e., satisfy the in-
Given a mappingi : ¢/ — V), we denote the image of gqualities (3). Time instants at which the state vari-
AbyimA :={veV|v=Auforsomew e} and  gples tend to leave the invariant set are cadednt

the kernel ofd by ker A := {u € U | Au=0}. Alw  times Whenever an event occurs, another mode will
will denote the restriction ofl to W C U. Forany  pecome active depending on the state variables and

and a set callethvariantsgiven by

. T

two real vectors andw, we writev L wif v'w =0.  the values of the voltage/current sources at the event
time. Before giving a precise definition of the solu-

2 Linear Complementarity Systems tion concept, we illustrate the above features of the

systems under consideration in the following exam-
Throughout the paper, we consider linear networksple.
with ideal diodes at each port. A standing assumption
will be the following. Example 2.2 Consider the linear RLC circuit (with
) ) ) R = 10hm,L = 1Henry andC = 1 Farad) cou-
Assumption 2.1 The linear network admits a state pled to two ideal diodes as shown in Figure 1. By
space representation of the form choosing the voltage across the capacitor and the cur-
@(t) = Ax(t) + Bu(t) + Ew(t) rent through the inductor as the state variables and by
taking into account the ideal diode characteristic de-
y(t) = Ca(t) + Dut) picted in Figure 2, the governing equations of the net-
wherez(t) € R”, u(t) € R™, y(t) € R™, w(t) € work can be given by
RP, and A, B, C, D and E are matrices with appro-
priate sizes. Here eady,yx) pair belongs to the %vc =i — Uy + U2

set{(—wvg,ix), (ix, —vx) } Wherev, andi; denote the %iL — —vg — g — ug
voltage and the current of the diode coupledktb o - )

port, andw represents the independent voltage and/or Y1 ="ve, Y2 =votip ot
current sources contained in the network. O0<uly=>0

By taking into account the characteristics of the wherew, andy; denoteip, and—vp,, respectively
ideal diodes as shown in Figure 2, the overall systemfor £ = 1, 2.
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Figure 1: RLC circuit with ideal diodes
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Figure 2: Ideal diode characteristic

The phase diagram of the circuit is shown in Fig-
ure 3. We investigate the behaviour of the network for
two initial conditions, namely fovs(0),4.(0)) =
(—6, 1) and(UC(O)a 'LL<O)) = (17 1)'

e Case 1:(vc(0),i(0)) = (—e, 1)
The state trajectories can be computed for the ini-
tial state(ve(0),45,(0)) = (—e, 1) as follows.

—et= jfo<t<1
ve(t) = { F(t) if1<t<1+28x
0 if 1+ 2837 <t
1 ifo<t<l1
in(t) =4 glt if1<t<1+28x
TS if 14+ 285 <
where
1
ft) = —e 20 Vcos(L(t — 1))
— sin(L(t—1))]
1 e
g(t) = e 2 Vcos((t — 1))
+ sin(L3(t - 1))).

Case 2:(v¢(0),i(0)) = (1,1)
The solution complying with the circuit can be
given by
ve(t) =0, ip(t) =e ', ip,(t) =0 +e !,
UD, (t) = Oa Z.D2 (t) = Oa UD, (f) = €7t

whered denotes the Dirac impulse. The physi-
cal interpretation of the jump in the variable

phase diagram

-2

Figure 3: Phase diagram of the system given in Ex-
ample 2.2

Example 2.2 indicates that the trajectories of the
system are made of the concatenations of some tra-
jectories produced by some linear systems as already
expected due to the hybrid features of the system
and also that the trajectories must incorporate Dirac
impulses in order to capture theconsistentinitial
states. Next, we recall the notion afitial solu-
tion which will serve as the ‘atomic’ element of the
(global) solution concept. To do so, we need to in-
troduce so-calledBohl distributions A function v :

R, — R is said to be &ohl functionif it has a ratio-
nal Laplace transform. The set of all such functions
is denoted by3. In a similar fashion, a distribution
v is said to be @ohl distributionif it is of the form
U = VUimp + Ureg Where thémpulsivepartviy,, = vod
for somevy € R and theregular partv,., belongs to
B. The set of all such distributions is denoted85p.
BD can be viewed as the direct sum of the spaides
andB. We say thaty € BD is initially nonnegative
if its Laplace transformi(s) satisfiesi(o) > 0 for all
sufficiently largesc € R. It is known (see [5]) that
v = Vo0 + Vreg IS initially nonnegative if and only if
(vp > 0) or (vp = 0 and there exists > 0 such that
Ureg(t) > 0fort € [0,¢€)) .

Definition 2.3 The triple (u,z,y) € BD™ "™ is

aninitial solution of LCS(A, B, C, D, E) for the in-

putw € B and the initial state if there exists an
index setK’ C m such that

= Az + Bu + Fw + x¢0
y=Czx+ Du

yKZO) uK“:O

is that there is an instantaneous discharge of the

capacitor.

hold in the distributional sense, andandy are ini-



tially nonnegative. They can be rewritten in the form of a linear comple-

mentarity system
To define the global solution concept, we need to

introduce the space gfiecewise Bohl distributions T=u, y==u (4a)
which are the solution candidates for linear comple- 0<uly>0 (4b)
mentarity systems. The notatier, denotes the re-

striction of the functionv to the setQ2. A function with the definitionsu = i4, * = —v,, andy = —uv,.
v:R, — R is said to be piecewise Bohl functioif For the initial stater, = —1, the triple (u, z,y) =
foreacht € R, thereexistam > 0andaw € Bsuch  (ad,a — 1,a — 1) with ¢ > 1 satisfies the last two
thatv|(; ;1) = wljp,)- The set of all such functions  items of the Definition 2.4. Howevefad, a—1,a—1)

is denoted byP5. The setPBB consists of allP3- is only a solution for initial statey = —1, if a = 1,
functions bounded on every compact set. In a similarsince this is the only solution complying with the cir-
fashion to Bohl distributions, a distributionis said  cuit from a physical point of view. Its interpretation
to be apiecewise Bohl distributioif it is of the form s that there is an instantaneous discharge of the ca-
U = Vimp + Ureg Where thempulsivepartvi,,, = vod  pacitor. Note thatu, z,y) = (6,0,0) is indeed the
for somev, € R and theregular partv,.; belongs to  unique initial solution and hence due to item 1 of Def-
PB. The set of all such distributions is denoted by inition 2.4, the only allowed global solution.

PBD.

Definition 2.4 The triple(u, z,y) € PBD™ "™ is
a(global) solutionof LCS(A, B, C, D, E) for the in- DA
putw € PBBP and the initial state;, if the following
conditions hold.

|1
I
Q

1. There exists an initial solutiofu, Z, ij) such that ~ Figure 4: Circuit illustrating the need for Definition

24item1
(Uimps Timp, Yimp) = (Uimp Timp, Yimp)-
2. The equations 3 Linear Complementarity Problem
(LCP)
T = Ax + Bu + Fw + 26
y=Cx + Du We briefly recall the linear complementarity problem
of mathematical programming. For an extensive sur-
hold in the distributional sense. vey on the problem, the reader is referred to [2].
3. Forallt e Ry, Problem 3.1 (LCP(q, M)) Giveng € R™ and M ¢

R™™ find z € R™ such that
0 < Ureg(t) L Yreg(t) > 0.
0<zlg+Mz>0 (5)
We say that the solutior{u,z,y) is impulse-free

wheneven,, = 0, i.e., there is no impulsive part. We say that solved CP(q, M) if z satisfies (5). The

set of all solutions of LCR;, M) will be denoted by
SOL(q, M). In general, SOlg, M) may be empty
set. K(M) denotes the sdiy | SOL(q, M) # 0}. It
is easy to see th&'" C K(M) forall M € R™*™,

Next, we define some matrix clases used in the se-

quel.

The first item in the Definition 2.4 imposes a re-
lation between the impulsive part and the rest of the
solution. In the following example, we illustrate the
necessity of such a connection.

Example 2.5 [1] Consider the simple circuit shown Definition 3.2 A matrix M € R™™ is called
in Figure 4. By denoting the voltage across the capac-
itor and the diode by. andv,, respectively and the e nondegeneratéf all its principal matrices are
current through the diode bi;, one can obtain the nonsingular.
circuit equations as follows:
e aP-matrixif all its principal minors are positive.

Ve = 7y V4 = Ve e positive (nonnegative) definitez ™ Mz > 0 (>

02vqLiqg20. 0) forall 0 # z € R™.



e copositiveif =" Mx > 0 for all 2 > 0. Corollary 4.3 Consider a linear network such that
Assumption 2.1 holds. Lé#, B, C, D, E) be a state-
space representation of the network as(i). Sup-
pose that(A4, B,C) is minimal, B is of full col-
umn rank, and A, B, C, D) is passive (in the sense
of [14]). Then, for eachry, € R™ and for each
w € PBBP, there exists a unique global solution of
LCS A, B,C, D, E) for the inputw and the initial
statexy. Moreover, the solution with initial state,

is impulse-free if and only €'z, € (SOL(0, D))*.

e copositive-plusf it is copositive and the follow-
ing implication holds:

z'Mz=0andz >0= (M+M")z=0.

For a given nonempty sef, we say that the set
{v]vTw > 0forallw € S} is thedual coneof S. It
is denoted by5*. The next lemma states some of the
standard results on the above defined matrix classes.
Consider the network shown in Example 2.2. It can

Lemma 3.3 Let M € R™*™ be given. The following b ; :
e easily seenthatd, B,C, D, E) given b
statements hold. y 4 )9 y

1. LCHg, M) has a unique solution for aff € R™ A= {0 11] , B= [_01 1 } ,C = {_1 0} 7

if and only if M is a P-matrix. -1 -1 11
. " 0 0 0 0
2. If M is copositive-plus then @) = D= 01 , B = 0 ol
(SO0, M))*.

The proofs of items 1 and 2 can be found in [2 is a state-space representation as in Assumption 2.1.

Theorem 3.7.7 and Corollary 3.8.10]. It can be easily verified thdtA, B, () is minimal and_
B is of full column rank. Obviously, the network is

. passive. Hence, Corollary 4.3 implies the existence

4 Main Results and uniqueness of solutions of the network. Note that
) ) ) ) SOL0,D) = {z | 21 > 0Oandz; = 0}. Then,
We will often use the following low index assumption. (SOL(0, D))* = {2 | z > 0}. It follows that the so-
lution with (v (0),41,(0)) is impulse-free if and only

Assumption 4.1 The matrix triple (B,C,D) C if v(0) < 0 as already depicted in Figure 3.

R™™ x R™X7 x R™*™ js such thatD + ¢~ 'CB
is a P-matrix for all sufficiently larger € R and for
each index sel Cm 5 Conclusions
im Drcxec & CrcoBagc (ker Dicc) =R (6) In this paper we showed that a class of models for
electrical networks with diodes passes the validity test
of well-posedness. The used network models consist
of linear passive elements (e.g. resistors, inductors,
capacitors, etc.), independent voltage/current sources
and ideal diodes. As a consequence, the model de-
scriptions fall within the realm of linear complemen-
tarity systems with external inputs, which form a sub-
class of discontinuous dynamical systems with both
discrete and continuous characteristics. Using this
framework, we were able to prove the existence and
uniqueness of solution trajectories under a condition
on the zero structure of the underlying state space de-
scription. Since this condition is implied by passivity,
the well-posedness of the network models was estab-
for the inputw and the initial stater,. Moreover, the lished. A_S an additional regult we gave an explicit
solution with initial stater, is impulse-free if and only charactenzapon of the_ consistent states for the net-
if Czo € K(D). work model, ie., the |.n|t|al stgtgs for which the corre-
sponding solution trajectory is impulse-free.

As a consequence of the above theorem, we have This line of work is currently continued by inves-
the following result on linear passive networks with tigating possible relaxations of the conditions used
ideal diodes. Note that Assumption 4.1 is obviously here. Moreover, we are interested in the numerical
weaker than passivity property since it does not de-simulation of electrical networks by so-called time-
pend onA. stepping methods. For instance, in [1] we proved the

In the paper, we will show that for eadd C m
s Y (Dxxg + s 1CkeBer )~ ' is proper under the
above assumption. It can be also shown that if
Dr i + s 'CreBex is invertible as a rational ma-
trix ands™ ! (Dxx + s 1CkeBex) ! is proper then
(6) holds.

The main result of the present paper is as follows.

Theorem 4.2 Consider a linear network such that
Assumption 2.1 holds. Lé#, B, C, D, F) be a state-
space representation of the network as(1). Sup-
pose that(B, C, D) satisfies Assumption 4.1. Then,
for eachzy € R™ and for eachw € PBBP?, there ex-
ists a unique global solution of LG8, B,C, D, E)



consistency — in the sense of convergence of the apwe get

proximations to the real transient solution — of a time- im NP @ im MQ = R".
stepping method based on the backward Euler integra
tion routine, when applied to linear passive electrical
circuits with ideal diodes.

Consequently[NP  MQ] is nonsingular. On the
other hand, we have

(N+s'M)[P Q] =[NP+s'MP s 'MQ)]

6 Proofs _ I 0

=([NP MQ]+s'[MP 0]) {0 511}'
Towards the proof of the main results, we begin with
several technical lemmas on LCP. In the sequel, forSince [NP MQ)] is nonsingular, the first term of

a given nondegenerate matt{ € R™", d(M) is the left hand side is biproper, i. e., it is proper, invert-

defined as follows: ible as a rational matrix and its inverse is also proper.
. It follows that (N + s~! M) is invertible as a rational
d(M) = 2" (max [| M [])- matrix ands (N + s~ M) is proper.

2: Let Q € R™™ be such thatm Q7 = ker N7
Lemma 6.1 Assume thaf\/ € R™™ is a P-matrix. andker Q" = {0}. Clearly,

Let z' be the unique solution of LGF, M) for i = . TNl TNL
1,2. Then, we have ker @ = (im Q@ )™ = (ker N'')™ = im N.

! = 2% < d(M)|q" — | Take anyP € R("~9*" such that[g} is nonsingular.
Proof It is known that the mapping — 2z wherez Suppose that
. i . . : . PN
is the unique solution of LCR, M) is a piecewise x=0
. . QM
function on some finite number of convex polyhedral .
conesP; for J C m as given in [2, Proposition for somer € R". This means that
1.4.6]. Besidesq € P; implies that the solution PNz — 7
of the LCR¢, M) is of the formz; = — J‘quJ and z=0 @)
zze = 0. Since the line segment', ¢°] lies in only a QMz = 0. (8)
finite number of these cones (at ma@sy), we get the , .
desired inequalityl Sinceker Q = im N, we have
. . . . P
The following two lemmas will play quite an im- Q Nz = 0.
portant role in the proof of the main results.
from (7). This implies thatNz = 0, i. e.,z € ker N.
Lemma 6.2 Let M, N € R™" be given. Suppose Hence,Mz € M (ker N). On the other hand, (8)
that yields Mx € ker @ = im N. Therefore, we conclude
im N @ M(ker N) = R". from the hypothesis that/xz = 0. SinceNz is also
zero,(N + s~ M)z = 0 for all s € C. However, this
can happen only it = 0 due to item 1. Hence,

1. N 4+ s~ M isinvertible as a rational matrix and {

Then, the following statements hold.
. PN
-1 -1 -1
sTHN + s 'M)~!is proper. QM]
2. There exist matriced® € RP*™ and Q €
R(»=P)x sych that

P PN Lemma6.3LetG(s) = D + C(sI — A)7'B €
[Q} and {QM] R™™ (s) be given. Assume th&B, C, D) satisfies

Assumption 4.1. Then, there existseap 0 such that
are both nonsingular an@ N = 0. d(G(0)) < ao for all sufficiently largeo.

is nonsingulail

Proof 1: Let Q@ € R™4 be such thatvQ = 0 and Proof Note that for eacly C m
ker @ = {0}. Take anyP ¢ R™("~4) such that )
[P Q] is nonsingular. Thenim P & im Q = R*.  Gus(5) = (D +5" CreBay)
This implies thatm N P = im N becauseV (imQ) = X[I+s2(Dy;+5 'CreBey) *CAB +...].
{0}. Since
Sinces2(Dyy + s 1CreBey)~ ! is strictly proper
im N @& M (ker N) =R", due to Lemma 6.2 item 1, the second term of the right



hand side is biproper. Then, it follows that for some Proof Evident from the proof of [6, Theorem 5.3

ay > 0anda/; >0
|GFH@) < asl|(Dys+ 0 CreBay) 7| < /o

for all sufficiently larges. Therefored(G(o)) < ao
for all sufficiently larges where

a= 2"(5113% o;).m

Next, we recall the so-calle@ational Complemen-
tarity Problem(see [5] for a detailed discussion).

Problem 6.4 (RCPo,w(s), A, B, C, D, E)) Given
xo € R, w(s), and(4, B,C, D, E) with A € R™",
B e R’I'LX?'VL, C E RWLXH, D E R’!HXTU andE E RTIX})
find @(s) € R™(s) such that

1. a(s) L g(s)forall s € C.

2. 4(o) > 0 andg(o) > 0 for all sufficiently large
oeR.

where
G(s) = C(sI — A) " tag 4+ C(sI — A) " E(s)
+[D + C(sI — A)~* Bla(s).

notation, we denote
by RCRxzg,w(s)).

For  brevity  of
RCF{J"())UA)(S% Av Bv C7D7E)

There is one-to-one correspondence between the 9

proper solutions of RCP and initial solutions of LCS
as described in the following lemma.

Lemma 6.5 Consider a given matrix quintuple
(A, B,C, D, E). The following statements hold.

1. Letu(s) be a proper solution of RGR, w(s))
for somez, and strictly properw(s). Define
Z(s) andg(s) as follows

#(s) = (sI — A)"rag + (sI — A)"' Bi(s)
+(sI — A) "' Ew(s),
9(s) = Cz(s) + Du(s).

Then, the inverse Laplace transforta,x,y)

of (a(s),z(s),y(s)) is an initial solution of
LCS A, B,C, D, E) for the inputw and the ini-
tial state xy where w is the inverse Laplace
transform ofw(s).

2. Let (u,z,y) be an initial solution of
LCS A, B,C,D,E) for the inputw and the
initial statexo and leti(s) be the Laplace trans-
form of u. Then, a(s) solves RCPx, w(s))
wherew(s) is the Laplace transform af.

The following lemma will play the key role for the
proof of Theorem 4.2.

Lemma 6.6 Consider a given matrix quintuple
(A, B,C, D, E). Suppose thgtB, C, D) satisfies As-
sumption 4.1. Then the following statements hold.

1. RCRzg,w(s)) has a unique solution for all
zo € R™ and for allw(s) € RP(s).

2. The unique solution of RGPy, w(s)) is proper
for all zo and for all strictly properi(s). More-
over, it is strictly proper if and only iiCz, €
K(D).

3. Let 4a(s) be the unique solution of
RCRzo,w(s)) for some z, and strictly
proper w(s). Then, C(zo + Bug) € K(D)

whereuy = limg_, o 4(s).

Proof 1: SinceD+0~1C B is a P-matrix for all suffi-
ciently larges, D+ C(cI — A)~! B is aP-matrix for
all sufficiently larges. Then, the statement follows
from [5, Theorem 4.1] and Lemma 3.3 item 1.

2: Let 4(s) be the unique solution of
RCHzg,w(s)) for some xy and strictly proper
w(s). Then, d(o) solves LCRq(c),G(c)) for all
sufficiently larges where

(s) = C(sI — A)tag+ C(sI — A) "' Ei(s)
G(s)=D+C(sI — A)~'B.

Note that the unique solution of LQ® G(0)) is zero
for all sufficiently larges. Lemma 6.1, together with
Lemma 6.3, yields for some > 0

la(o)| < aallg(o)]l

for all sufficiently largeo. Sinceg(s) is strictly
proper, this implies that for somg> 0

la(o)ll < 6

for all sufficiently larges. It follows that @(s) is

proper. It remains to prove the second statement. For

the ‘only if’ part, suppose thai(s) is stricly proper.
Let the power series expansion around infinityif)
andw(s) be of the form

ulsfl + u2572 +...

wls_l + w23_2 + ...

(9a)
(9b)

Define

G(s) = C(sI — A) "o + C(sI — A) " Ea(s)
+[D + C(sI — A)~'Bla(s).



By substituting (9) into the above equation, we get
(s) =(Cxg + Dup)s™*
+ (CAJJO + CEwy + OBU1)372 + ...
It follows from the formulation of RCPxy, w(s)) that

u) (Cxo 4+ Duy) =0
up >0 andCxo + Duq > 0.

Consequently, LCRzq, D) is solvable. In other
words, Czy € K(D). To show the ‘if’ part,
suppose thatCz, € K(D). Let u be a solu-
tion of LCP(Cxzg, D). It is clear thato~'u solves
LCP(c~'Czo, D) for all o > 0. Then, it also
solves LCRo1Cxo— o~ 1C (ol — A)~ ' Bi, G(0)).

Lemma 6.1 together with Lemma 6.3 gives

la(o) — o | < ao||Cl(a] — A)~! — o™ g

+C(ol — A7 Ew(o) + o7 1C(cT — A)~' Ba|
(10)

for all sufficiently larges. Note that for somet > 0
the last term of the righthand side is less thm?
for all sufficiently larges. Therefore, (10) results in

la(o) — o~ all < afo™

for all sufficiently larges. This implies thati(s) is
strictly proper.

3: Let the power series expansion around infinity

of 4(s) andw(s) be of the form

0(s) = ug +urs ™t Fugs 4. .. (11a)
W(s) = wys P wesTE ... (11b)
Define

G(s) = O(sI — A)"'ag + O(sI — A) "' Eiy(s)
+[D + C(sI — A)~'Bla(s).
By substituting (11) into the above equation, we get
4(s) = Dug + (Czo + CBug + Duy)s ™ + ... .
It follows from the formulation of RCPx, @ (s)) that
(uo+ur0 ™) T [Dug+(Cao+CBug+Duy o~ = 0
for all o, and
ug + ula_l >0

Dug + (Cxg + CBug + Duy)o' > 0.

for all sufficiently largesc. Hence, we can conlude
thatug +u;0~! solves LCRCzq + C Buyg, D) for all
sufficiently larges. This means thaf'(zy + Bug) €
K(D). 1

Lemma 6.7 Consider a given matrix quintuple
(A, B,C, D, E). Suppose thgtB, C, D) satisfies As-
sumption 4.1. For allv € PBBP and for all initial
stateszy with Czy € K(D), there exist are > 0 and
atriple (u,z,y) € B™t"*™ such that the equations

&= Az + Bu + FEw + x¢0
y=Cx+ Du

hold in the distributional sense df, ¢), and for all
te0,¢)
< wu(t) Ly(t) >0.

0
Moreover,Cx(e) eK(D).

Proof Sincew € PBBP, there existe; > 0 and
v € BP such thatw|,y = vljp,). Letd(s)
be the Laplace transform af. Lemma 6.6 items
1 and 2 implies that RQRg,9(s)) has a unique
strictly proper solution, say(s). As a consequence
of item 1 of Lemma 6.5, we know that there exists
an initial solution (u,x,y) of LCS(A4, B,C, D, E)
for the inputv and the initial stater,. Note that
(u,m,y) € B™Tt™ sinced(s) andg(s) are strictly
proper. Then, there exists an> 0 such that(¢) and
y(t) are nonnegative for all € [0, ¢3) sinceu andy
are initially nonnegative. It is not difficult to see that
e = min(ep, e5) and(u, z,y) satisfies the desired re-
quirements. Note that— (u,z,y)(t + p) forms an
initial solution of LCS A, B,C, D, E) for the input
t — v(t+p) and the initial state:(p) forall p € [0, €).
Then, Lemma 6.6 item 2 implies that:(p) € K(D)
forall p € [0,¢). Since KD) is closed and: is con-
tinuous (even Bohl)C'z(¢) € K(D) as well.l

As a final ingredient of the proof of Theorem 4.2,
we need the following lemma.

Lemma 6.8 Consider a given matrix quintuple
(A,B,C, D, E). Suppose thatB, C, D) satisfies As-
sumption 4.1. For allKk C mm there exist matri-
cesFK, GX, HK and JX such that if(u,z,y) €
BD™ T satisfies

T = Az + Bu + Ew + x¢0

y=Cx+ Du
yx =0
’LLKCZO

in the distributional sense for some initial staig
then

Ltrcg = Fercg + GKwreg

Ureg = HK-Treg + JKwreg

Yreg = ereg + Dureg~

At this stage, we can state the following lemma
which concerns the local existence of solutions. Later The matricest’™, GX, HX and J¥ only depend on
on, it will be used to show global existence. K not on the patrticular choice of.



Proof Clearly, the regular pafti;cg, Zreg, Yreg) SaLtis-
fies

Treg = A%reg + Bureg + Ew (12a)
Yreg = Creg + Direg (12b)
0 = Cke®reg + Dr i (Ureg) K (12¢)
0 = (Ureg) Ke- (12d)

K(D). Now, for the inputw|[zf__ll «1,00) @nd initial

statezr* (e, _1) we can finde, > 0 and(u*, %, y*)

be such that the conditions given in Lemma 6.7 hold
for k = 2,3,... sinceCz*(ex_1) € K(D). For
k=1,2,...,define

(arega -i’rega greg)'[zf:’()l 5112?:0 61) = (uka xka yk.)'[O,ek)

From Lemma 6.2 item 1, we know that there exist ma- with the conventior, = 0. By construction(, , §)

trices P and@ such that

P PD
[Q} and [QCK.IKK}

are both nonsingular andD k r = 0 since Assump-
tion 4.1 holds for( B, C, D). By premultiplying (12c)
by the first matrix in the above equation, we get

PCKowreg + PDKK(Ureg)K =0
QCK.JZreg =0.

(13)
(14)

Differentiating (14) with respect to time, one gets

QCKoAxreg + QCK-BOK(ureg)K + QCK.E’LU = 0.

(15)
By combining (13) and (15), one can obtain
PDKK _ PCKO
[QCKOBOK:| (ureg)K - |:QCK0A:| xreg
0
- [QCK.E] w. (16)

is a global solution candidate. The only possibil-
ity that obstructs it being a global solution can be
that Zf’:o € = 7 andlimy, Z,e(t) does not exist.
Next, we will show that this is not the case. For
brevity, we drop the subscript ‘reg’. On an interval
(p,t) C lei,€i41) for somei, (a,Z,y) is governed
by the dynamicst = FXz + G¥w according to
Lemma 6.8 for somés. Sincei andt — e’ tGL

for L C m is continuous|0,7) andw € PBBP,
they are all bounded of?, ), i.e., there exists an
M > 0 such that||z(t)|| < M forallt € [0,7)
and [|ef“tGLw(t)| < M forall t € [0,7) and for
all L C m. Then, we have the following estimation

1Z(t) — (p)|| < e =P (p) — & (p)l|
t FK(t_S)GKw(s)dsH
+
|| / e
(18)
< (1+ag)Mlt - gl

K
since the functiort — <—=I is bounded, say by

Since the first term of the lefthand side is nonsingu- @k . Hence, for(p, t) C [0, 7), we get from (18)

lar, the matrices?® and JX can be found by solv-

iNg (ureg) k from (16). F% andG*X can be given as

FK = A+ BHX andGX = E+BJX. ®

() — #(p)l| < Mlmax (1+ ax )]t~ pl.

After all these preparations, we can finally prove |t follows that # is Lipschitz continuous oro, )

Theorem 4.2.

and thus uniformly continuous. A standard result in
mathematical analysis [9, Exercise 4.13] implies that

Proof of Theorem 4.2: We show first the existence of limyy, Z(t) exists. Therefore(, #,7) is a global so-

a solution for given inputv € PBB? and initial state
xo. Sincew € PBBP, there existg: > 0 andv € BP

lution of LCS(A, B, C, D, E) for the inputw and the
initial statexzy. The uniquness of follows from [5,

such thatwljo ) = v|jo,,)- Lemma 6.6 items 1 and 2 Theorem 5.21].

imply that RCRz, 9(s)) has a proper solution. From

This section will end with the proof of Corol-

Item 1 of Lemma 6.5, we can find an initial solution lary 4.3.

(u,z,y) of LCS(A, B,C, D, E) for the inputv and
the initial stater,. Define

(ﬂimpy i‘impa gimp) = (uimp7 Timp yimp)~ (17)
Properness of the solution of RCH, 0(s)) reveals
that uimp = uod Whereuy = lim,_ u(s). Set
rg = o + Bug. It follows from Lemma 6.6 item
3thatCxd € K(D). For the inputw and initial state

zg, lete; > 0and(ut, 1, y') be such that the condi-

tions given in Lemma 6.7 hold. Note that:!(e;) €

Proof of Corollary 4.3 We shall only show that As-
sumption 4.1 holds under the hypotheses of Corol-
lary 4.3. The rest follows from Theorem 4.2 and
Lemma 3.3 item 2. Sinc® is of full column rank,
(A, B,C) is minimal and(A, B, C, D) is passive, it
can be shown by using [1, Lemma 6.11 items 1 and 2]
that D i is nonnegative definite and

w#0, w Dggw=0=w' CxeBexgw >0 (19)



for any K C m. Note that from the nonnegativity of
Dk i we have the following statement

w' Dggw =0 (Dgg + Dig)w=0. (20)
Suppose that
z €im Dgg N CreBek (ker D k),
i. e., there exist andw such that
z= Dggv (21)
2z =CkeBexw (22)
Dirw = 0. (23)
Then, (23) implies that
w' Dggw = 0. (24)
It follows from (20), (23) and (24) that
D} w = 0. (25)

Note that we have

T

W' CxeBexw =w'z=w'Dggv =0

from (21), (22) and (25). Consequently, (19) implies
thatw = 0. This means that = 0 due to (22). There-

fore,
im D NCreBek (ker DKK) = {0} (26)

It follows from (19) thatkerCx e Be i |ker Dy e = {0}-
Hence,dirn(CK.B.K(kerDKK)) = dim(kerDKK).
From, (26) and the fact that

dim(ker D) + dim(im D) = | K],
we get

im D g @ CxeBox (ker D i) = RIEI M
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