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Abstract

Technological innovation pushes towards the consideration of dynamical systems of a
mixed continuous and discrete nature, which are called “hybrid systems.” Hybrid sys-
tems arise, for instance, from the combination of an analog continuous-time process and
a digital time-asynchronous controller. Many consumer products (cars, micro-wave
units, washing machines and so on) are controlled by digital embedded software, ren-
dering the overall process a system with mixed dynamics. Also many physical systems
display hybrid behavior: the description of multi body dynamics depends crucially
on the presence or absence of a contact, models of friction phenomena distinguish
between slip and stick phases and electrical circuits contain switching elements like
diodes that can be blocking (open circuit) or conducting (short circuit).

From these examples it is obvious that a too general study of hybrid systems will
lack decisive power: it will not result in detailed information on individual elements in
the studied class. Therefore, one has to consider a subclass of hybrid systems carrying a
clear additional structure allowing analysis of its behavior (e.g. well-posedness, simu-
lation methods, stability) and facilitating systematic controller synthesis. However, the
chosen subclass must also contain many interesting examples from an application point
of view. The class of (linear) complementarity systems satisfies both requirements and
is the subject of the thesis. Complementarity systems are described by differential
equations, inequalities and logic expressions and form dynamical extensions of the
linear complementarity problem (LCP) of mathematical programming.

The study of the complementarity class is motivated by a broad range of physically
interesting systems that can be reformulated in terms of the complementarity formal-
ism. Examples include mechanical systems subject to unilateral constraints, Coulomb
friction or one-sided springs; electrical networks with diodes; control systems with sat-
uration or deadzones; piecewise linear and variable structure systems; relay systems;
hydraulic processes with one-way valves; and sets of equations resulting from optimal
control problems with state or control constraints. Moreover, in Chapter 6 it is shown
that the class of “projected dynamical systems” also fits into the complementarity
framework.

To obtain a well-founded theory, it is essential to define a physically relevant so-
lution concept and answer the classical questions of existence and uniqueness of solu-
tions. Because of the “jump-phenomena” in the system variables and the multimodal
behavior, formulating a solution concept for linear complementarity systems (LCS)
is non-trivial. The solution trajectories are defined by combining a hybrid point of
view and a distributional framework. After the formal introduction of the solution
concept, connections are established with the existing literature on mechanical sys-
tems and electrical circuits. It is shown that the proposed solution concept is not an
artificial one, but that it is in accordance with well-known rules specified for subclasses
of complementarity systems.
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It is surprising to see that studies of well-posedness in hybrid systems theory are
rare. One often simply assumes existence and uniqueness of solutions without giving
any verifiable conditions for these properties. In this thesis, we try to fill this gap for
linear complementarity systems by deriving necessary and sufficient conditions for
well-posedness. Although questions of well-posedness are of interest by themselves,
it must be emphasized that they provide basic insights that are important for solving
issues of controllability, stability and controller synthesis.

In Chapter 4, existence and uniqueness of “initial solutions” to linear complemen-
tarity systems is related to the existence and uniqueness of solutions to a family of static
linear complementarity problems (LCPs). This connection is based on the so-called
rational complementarity problem, a generalization of the LCP for rational functions,
as an intermediate tool. This result allows the exploitation of the extensive literature
on LCPs to obtain well-posedness results for linear complementarity systems. The
strength of these results is illustrated by applying them to unilaterally constrained me-
chanical systems, linear relay systems and linear passive electrical circuits with ideal
diodes. In Chapter 5 these results are extended to obtain “global existence” and to
derive additional properties of electrical circuits with diodes.

The existence of initial solutions does not guarantee the existence of a solution on an
interval of nontrivial support (called “local existence”) in general due to the possibility
of an infinite number of re-initializations at one time instant. In Chapter 3 sufficient
conditions for local existence of solutions are derived based on another extension
of the LCP, the so-called linear dynamic complementarity problem. The conditions
are given in terms of the principal minors of the leading row and column coefficient
matrices of the system. Based on these ideas new global existence results are given for
linear complementarity systems with low leading row coefficients and bimodal systems
(having only two modes).

Besides the solution concept and well-posedness issues, attention is paid to nu-
merical methods for simulation of linear complementarity systems. One category of
possible hybrid simulation techniques consists of the so-called “event-driven methods”
that consider the simulation interval as a union of disjoint subintervals on which the
mode (the set of active constraints) does not change. On a subinterval one must deal
with differential and algebraic equations that can be solved by standard integration rou-
tines (DAE-simulation). As integration proceeds, one has to monitor certain indicators
to determine when the subinterval ends (event-detection). Next, a new mode has to be
determined (mode selection) and a possible reset of the continuous state variable must
be computed (re-initialization). As the proposed solution concept is closely related
to the event-driven method, the mathematical analysis of well-posedness has immedi-
ate consequences for this method. In particular, contributions are made to solve the
re-initialization and mode selection problems.

As an alternative to event-driven methods, one can use time-stepping techniques
that replace the system’s equations directly by a “discretized” equivalent. Numerical
integration formulas are applied to approximate derivatives and all algebraic condi-
tions are enforced to hold at each time-step. For linear complementarity systems, the
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method based on the well-known backward Euler formula results in solving an LCP
for every time-step. In Chapter 7 an example is presented, for which the approximating
functions do not converge when the step size tends to zero. This indicates that one
cannot indiscriminately apply the backward Euler time-stepping method to arbitrary
linear complementarity systems. Justification of this particular time-stepping method
is thus required. Therefore, we show the consistency of this time-stepping method
applied to the class of electrical networks with diodes. Here, “consistency” means the
convergence of the approximations to the true solution of the original system in spite
of the presence of impulses and switching dynamics, and the fact that the method does
not try to trace the event times exactly.

During the achievement of the aforementioned goals and in the overview of ap-
plications in Chapter 2, relations between the various subclasses of complementarity
systems are revealed. The advantage of finding a common structure of these inter-
esting application fields, is that results obtained in one domain can be transformed
or extended to another. Moreover, as a common meeting ground of several mature
research areas, complementarity systems have the potential to play a major role in
developing systematic methods to overcome analysis and synthesis problems in a wide
range of applications. The work in this thesis forms a step in this direction, as it solves
various fundamental problems, needed for setting up a general system and control
theory for complementarity systems.
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Introduction
1.1 Hybrid Systems 1.4 Goals
1.2 Complementarity systems 1.5 Outline
1.3 Common meeting ground of

disciplines

The objectives of this chapter are to motivate this study, to discuss the connections to
the existing literature, to formulate the goals of the thesis and to indicate the difficulties
in achieving these goals.

1.1 Hybrid Systems

Technological innovation pushes towards the consideration of systems of a mixed
continuous and discrete nature, which are sometimes called “hybrid systetysrid
systems arise, for instance, from the combination of an analog continuous-time process
and a digital time asynchronous controller. Many consumer products (cars, micro-wave
units, washing machines and so on) are controlled by embedded software, rendering
the overall process a system with mixed dynamics. Hybrid systems abound in our
homes, probably more than we realize.

As an illustrative example of a hybrid system consider the regulation of the tem-
perature in a house. In a simplified description, the heating element is assumed to
work either at its maximum power or is completely turned off. In these two modes
(“on” and “off") the temperature is governed by different dynamical regimes. The
switching between the operating modes is controlled by a logical device (the embed-
ded controller) called the thermostat. The mode is changed from “on” to “off,” when
(a function depending on) the temperature crosses a certain upper value (determined
by the desired temperature). Vice versa, if the temperature drops below a minimum
value, the heating is switched “on.”

In large industrial processes, hierarchical control methods are being utilized more
and more. As an example consider a plant (such as arefinery or a distillation column) in
the process industry [126, p. 7]. At the top layer, the whole plant, consisting of several
process units is monitored and the best economic operating conditions (quality of final

ITerm used in this context for the first time by Witsenhausen in 1966 [208].
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product, production quantity, use of resources, etc.) are determined for the separate
process units. These conditions are passed as targets to multivariable controllers (e.g. a
model predictive controller) for the process units. In turn, the MPC controller brings
the process unit towards these targets and tries to keep it there. On the lowest level,
local single-input single-output controllers (e.g. PID) are implemented for maintaining
the level of the fluid in a tank between certain bounds determined by the setpoints of
the MPC controller. Embedded controllers take care of the different control layers
ranging from the implementation of local digital controllers, to exception handling,
safety, alarm detection, switching between operating modes, and starting and stop-
ping procedures (the supervisory layer). The overall system consisting of the physical
plant and the embedded controller will form a complex hybrid system. Similar exam-
ples include automated highways [73], coordinated submarine systems and air-traffic
management [198].

The hybrid nature is not necessarily caused by human intervention in smooth sys-
tems. Although many examples originate from adding digital controllers to physical
processes, the switching between dynamical regimes is naturally present in a variety of
systems. For instance in mechanics, one encounters friction models that make a clear
distinction between stick and slip phases. Other examples include models describing
the evolution of rigid bodies. In this case the governing equations depend crucially on
the fact whether a contact is active or not. The dynamics of arobot arm moving freely in
space is completely different from the situation in which it is striking the surface of an
object. Backlash in gears and deadzones in cog wheels also result in a multimodal de-
scriptions. Itis not difficult to come up with interesting applications in the mechanical
area: control of robotic manipulators driving nails or breaking objects [32], vibration
control in suspension bridges [98], reduction of rattling in gear boxes of cars, drilling
machines [160], simulation of crash-tests, regulating landing maneuvers of aircraft,
design of juggling robots [33] and so on.

Examples are not only found in the mechanical domain. Nowadays switches like
thyristors and diodes are used in electrical networks for a great variety of applicationsin
both power engineering and signal processing. Examples include switched-capacitor
filters, modulators, analog-to-digital converters, switching power converters, duty-ratio
control, choppers, etc. In the ideal case, diodes are considered as elements with two
(discrete) modes: the blocking mode and the conducting mode. Mode transitions for
diodes are governed by state events (sometimes also called “internally induced events”),
i.e. certain system variables (current or voltage) changing sign. In duty-ratio control
the duration of a switch being open and closed (or the ratio between them in a fixed
time interval) is determined by a control system and hence, the transitions are triggered
by time events (“externally induced events”).

Other sources of multimodal behavior are saturation, hysteresis, sensor and actuator
failures. Actuator saturation truncates implemented control values outside the actuator
range. Sensors provide reliable and accurate measurements only within a specific re-
gion, while outside the region the only available information is whether the measured
signal is above the maximum or below the minimum of the sensor range. The mal-



1.1. Hybrid Systems 5

functioning of sensors or actuators have the effect that control signals or measurements
are not available and as a consequence, the input-output description changes abruptly.
Control design must take switching and impact phenomena into account such that a

desirable behavior of the closed loop system is realized.

How dependent our lives are on computer technology is illustrated by the efforts
taken to solve the millennium bug. The number of computer-controlled products in
our homes will grow even further in the coming years. To support this evolution,
new methodologies for the analysis and synthesis of hybrid systems are needed. To
guarantee the safety and proper functionality, we have to improve our understanding
of the interaction between physical processes, digital controllers and software, as all
three parts influence the dynamic behavior of the overall process.

Nowadays, the design of such combined systems is often performed by methods
either exclusively tailored for discrete event systems (DES) or time continuous systems.
As a result, the models neglect either the continuous or the discrete characteristics of
the system. As an example, consider the air-traffic management of an airport. In
describing the airport accurately, the model must contain the differential equations
determining the trajectories of the aircraft, as well as the human and/or organizational
processes realizing the communication and assignments between the aircraft and the
traffic control center. An air-traffic controller obtained from a model not incorporating
one of these aspects, may fail in practice or will at least show less performance than a
controller designed by techniques incorporating both the discrete and the continuous
behavior.

Another approach for the combined design consists of separating the analysis and
design of the continuous and discrete parts and merging them in the final stage. The
synthesis of a digital controller (P13, IMC, etc.) foraprocess in a certain operating
point is backed up by the vast literature on systems and control theory. Also the tools
for the design of a DES taking care of e.g. mode switching and exception handling are
available. However, a combined controller design of the system is currently impossible.
The merging of the complete embedded controller with the physical plant is performed
in a heuristic and ad hoc manner and requires often years of tuning, prototyping and
trouble-shooting, which are extremely expensive and time consuming. The time-to-
market and the necessary investments for new products can be decreased considerably,
if techniques are available that facilitate combined synthesis of both the discrete and
continuous parts.

A practical hybrid control problem encountered in the department of electrical engi-
neering of the Eindhoven University of Technology is concerned with the synchroniza-
tion of several tools within a mailing system based on low resolution encoders [85].
The company Buhrs-Zaandam B.V. in Zaandam (The Netherlands) builds machines
that automatically compose a mailing package consisting of various brochures. The
main component enters a conveyor belt and several supplements are added by sheet-
feeders. The motions of these devices have to be coordinated. Traditionally, this kind of
synchronization was realized by one mechanical axis driving all the tools. To increase
flexibility (“plug and play” concept) the feeders are all mounted with a motor and a
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controller with inputs the positions of both the conveyor belt and the motor. To keep the
overall costs of the system low, the sensors for the sheet-feeder motors are cheap low
resolution encoders having only one measurement pulse per revolution of the motor.
Hence, the measurements are equidistant in the angular position of the motor, but not
in time. The sensor has a state-event character: new pulses are triggered by a system
variable crossing a certain threshold. In principle, this asynchronous control problem
cannot be solved by standard control design methods, because these require (accurate)
measurements to be known after fixed time intervals and the control actions to be up-
dated synchronously in time. Neglecting the asynchronous measurement device and
simply applying time synchronous design techniques, leads to unsatisfactory results
(especially for low speeds) [85]. This problem has been solved by transforming the
asynchronous problem for a linear system in the time domain teyachronous prob-
lem for a nonlinear system in the (angular) position domain. In the position domain a
gain-scheduling approach is applied. The design resulted in a position-synchronous,
but time-asynchronous controller that is successfully implemented on the practical
set-up. The high performance that was required could not be achieved by standard
time-synchronous control techniques. However, the proposed “hybrid” control struc-
tureresulted in a cheap and satisfactory solution. This particular hybrid control problem
is frequently encountered in industrial environments, since these kinds of sensors are
often used (e.g. magnetic/optical disk drives, level sensors for the height of a fluid in
atank, transportation systems where the lateral position is only (exactly) known when
a marker has passed [34], and so on). The number of industrial requests for solutions
to such practical problems with inherent hybrid aspects will grow in the future.
Fortunately, it is widely recognized by the academic world that mixing different
devices and concepts will play an increasingly important role in industry. Starting
from their own backgrounds, control engineers [7, 145], computer scientists [162],
mathematicians and simulation experts work towards systematic methods to support
the development of new products. The increasing interest in this research area has
become apparent from a series of workshops on hybrid systems in recent years [2,5, 6,
76,99, 133]. For an introduction to the field of hybrid dynamical systems, the reader
is referred to [180].

1.1.1 Models for hybrid systems

As models are the ultimate tools for obtaining and dealing with knowledge, not only
in engineering, but also in philosophy, sociology and economics, a search has been
undertaken for appropriate mathematical models for hybrid systems. A whole range of
possible model structures for hybrid systems has already been proposed. An overview
of possible modeling techniques has been given for instance in [19, 24]. Mentioned
are, among others,

 Timed or hybrid Petri-nets, see e.g. [51];

« Differential automata [195];
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 Hybrid automata [28, 130];

» Brockett’'s model [30];

» Mixed logical dynamic models [15];

 Duration calculus [39]

» Real-time temporal logics [1,161]

» Timed communicating sequential processes [52, 100]
» Switched bond graphs [189]

We would like to emphasize that this list is by no means exhaustive.

Some of these models start from one domain (DES or differential/difference equa-
tions) and include additional elements of the other domain. Hybrid automata, for
instance, are derived from finite state machines used in describing DES by replacing
the simple clock dynamics inside each discrete state by more involved differential and
algebraic equations.

1.1.2 Hybrid automata

To give some impression on what hybrid systems look like, we discuss one interesting
hybrid model structure, that complies with our point of view, in some detail.

A widely accepted framework for a hybrid system isyérid automaton given by
the quadrupl€Q, X, A, G) (notation taken from [28]) where

» Q is afinite set ofmodes (sometimes callediscrete states or locations).

* ¥ = {X,}4e0 is acollection of dynamical systems. For magihese are given
by the ordinary differential equations (ODEs}= f,(z) or the differential and
algebraic equations (DAES), (2, z) = 0, wherez(r) € R" is a state variable.

* A ={A4l4e0- Ay C R"isthejump setfor modeg consisting of the states from
which a mode transition and/or state jump occurs.

* G = {G4} is the set ofjump transition maps whereG, is a (possibly multi-
valued) map from4, to a subset oR” x Q.

A short description of the dynamics is given as follows. Starting in a continuous
statezo € R” \ A4, in modegg, one evolves according to the mode dynamics given
by X4, until one reaches — if ever -A,,, say at the event time, (the reaching
of A, is called anevent). From this set a transition is enabled amast be fired
instantaneously. The transition is governed by the relatiang:) := G4, (z(t1))
with z(z;") := limy, z(¢). From this new state; in modegs, it is possible that again
a transition takes place, i.e; € A,. Otherwise, a continuous phase given by the
dynamicsx,, will follow.
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This framework indicates the behavior of a hybrid system: continuous phases
separated by events at which (maybe multiple) discrete actions (re-initialization of the
continuous state and discrete statg) take place.

We would like to stress that it can be nontrivial task to rewrite a physical model
description in terms of a hybrid automaton. Especially, the definition of the jump
sets and the jump transition maps (re-initialization and switching rules) can be really
difficult.

1.1.3 Modeling versus decisive power

The choice of a suitable framework is a trade-off between two conflicting criteria: the
modeling power and the decisive power. The modeling power indicates the size of the
class of systems allowing a reformulation in terms of the chosen model description.
The decisive power is the ability to prove quantitative and qualitative properties of
individual systems in the framework. A model structure, which is too broad, (like
the hybrid automaton in the previous section) cannot reveal specific properties of a
particular element in the model class. The size of a model class is often taken too large
for analysis purposes. Asindicated by [18], even for the easiest hybrid systems analysis
and control problems are often undecidable or require a high computational load. As
an example, Tsitsiklis and Blondel [18] consider the elementary hybrid system given

by

Ax(k), whencTx(k) > 0,

k+1) =
D=0 . wheneTx(k) < 0,

(1.1)
where A1, A> are matrices and is a (column) vector of appropriate dimensions.

To decide whether this switching system is stable is shown to be NP-hard. Loosely
speaking, this means that there is no algorithm that answers the question of stability in
polynomial time (as function of the size a@f;, A, andc).

The complexity of hybrid systems is also shown by a simple piecewise linear
forced Van der Pol oscillator with an ideal diode studied in [103]. The system consists
of a capacitor, an inductor, a linear negative resistor, a diode and a sinusoidal voltage
source. For the analysis the diode is assumed to be an ideal switch. The system
switches between the blocking and conducting mode and the dynamics in the individual
modes are linear. For a specific region of the parameter values (which are analytically
determined) this system displays chaotic behavior that has been experimentally and
numerically verified in [103]. The occurrence of chaos in such a simple system is
rather intriguing, but indicates that multimodal systems are extremely complex.

From the previous it is clear that one should not consider a too general class of
hybrid systems. But on the other hand, it is also useless to study a model class, which
is (almost) empty and does not contain any physically relevant system. To summarize,
it is essential to study a class of hybrid systems meeting the following criteria.

» The subclass is small enough: it must carry an additional structure facilitating
detailed analysis of its behavior and controller design.
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» The subclass is large enough: the class must be nontrivial. It has to contain
interesting examples from an application point of view.

It may be clear that several choices of subclasses are possible. In this thesis, we will
particularly be interested in so-calledmplementarity systems for reasons that will
become clear later.

1.2 Complementarity systems

Inequalities have played an important role in many research fields including mathe-
matical programming and economics (e.g. Leontief economies [114]). It is surprising
to see that inequalities have received relatively little attention in systems theory. One
reason might be that combining inequalities and differential equations means giving
up the smoothness properties that form the basis of much of the theory of dynamical
systems. However, in many situations (of which we will see several examples later) it
seems reasonable to study dynamics in conjunction with inequalities.

In mathematical programming a key role is played by a special combination of
inequalities and equations that is called thear complementarity problem (LCP),
which is defined as follows. Given a matrid € R¥** and a vectoy; € R¥, then
LCP(¢, M) amounts to finding vectors, y € R¥ such that

y=q+ Mu (1.2a)
and
u; >0, >0, {uy=00ry; =0} foralli € {1,...,k} (1.2b)

or show that no such vectors exist. The operator “or” in (1.2b) must be interpreted in a
non-exclusive sense. The conditions (1.2b) are calbeeplementarity conditions and
can equivalently be written as

u>0 y>0 u'y=0. (1.3)

The inequalities must be interpreted componentwise in (1.3). In the literature one often
encounters also the more compact notation

0<ylu=0, (1.4)

where the notatioy Lu expresses the orthogonality betweeandu. The LCP has
many economic and engineering applications [65] and an extensive literature [47] is
available on this problem.

The hybrid systems considered in this thesis can be seen as the dynamical extensions
of LCPs and will be calledomplementarity systems. In a mechanical context such
combinations of differential equations and complementarity conditions have already
been used by Lotstedt [124]. Van der Schaft and Schumacher were one of the first
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that formulated the the equations of complementarity systems (or “complementary-
slackness systems”) in a general setting [177,179]. In their most general form com-
plementarity systems are described by the differential and algebraic equations

0= F(z(t),z(1) (1.5a)
y(t) = g(z(1)) e Rf (1.5b)
u(r) = h(z(1)) € R (1.5¢)

together with the complementarity conditions
0<y@®)Lu@ =0 (1.5d)

In this formulation: € [0, co) denotes the time variable(r) the state and (z) and
y(t) the complementarity variables at time

A special complementarity system occurs when (1.5a), (1.5b) and (1.5c) are re-
placed by an “input/state/output system” of the form

x(1) S x@), u(r)) (1.6a)
y() g(x (1), u(r)). (1.6b)

These systems are called “semi-explicit” complementarity systems. Moreover, if the
input/state/output system is taken to be linear, f.éc,u) = Ax + Bu, g(x,u) =

Cx + Du for constant matriced, B, C and D of appropriate dimensions, we obtain

a linear complementarity system (LCS). Note that an LCS arises also by replacing the
static linear relatiory = ¢ + Mu in (1.2) by the linear dynamical system

x(@) = Ax()+ Bu(t) .7
y(t) = Cx()+ Du(r). (1.8)

In this thesis we will focus mainly on LCS, because we can rely in that case on the
broad literature of linear system theory.

The study of complementarity systems can be motivated by a whole range of in-
teresting applications. To give a quick round-up of examples, one might think of

« electrical networks with (ideal) diodes;

* piecewise linear systems;

* mechanical systems subject to unilateral constraints or Coulomb friction;
* switching control systems;

» dynamical systems with saturation, relays or deadzones;

« variable structure systems;

« hydraulic processes with one-way valves;
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« sets of equations originating from applying Pontryagin’s principle [80, 164] to
optimal control problems with state or control constraints.

In Chapter 2 we will give a detailed exposition on the dynamical systems that can be
modeled by the complementarity formalism and also on the modeling techniques that
have to be used. Moreover, in Chapter 6 it will be shown that also projected dynam-
ical systems [62, 147] allow a complementarity reformulation. Projected dynamical
systems are used for studying e.g. economical markets, transportation networks and
international trade.

1.3 Common meeting ground of disciplines

The fact that complementarity systems form a common denominator of several mature
research areas motivates this study. Revealing the generic structure and developing a
general framework for a broad range of applications offers many opportunities. One
merit is the possible translation of results from one research field into another. If
the differences and the similarities between the subclasses are mapped out clearly,
then it becomes transparent which results can be transformed. Specific methodologies
and proofs for e.g. constrained mechanical systems could be adapted for fields such
as electrical circuit theory or piecewise linear systems. Therefore, it is important to
investigate the results in the specific domains and identify how the complementarity is
exploited to see whether extension is possible. Of course, one has to realize that not
all results are extendable due to additional structure present in a specific domain. For
instance, in constrained mechanical systems one has a concept of an energy function
(storage function) consisting of kinetic an potential energy, which is not available in
the framework of projected dynamical systems. Hence, results obtained by explicit
use of an energy concept do not generalize (directly) to projected dynamical systems.

1.3.1 Electrical circuit theory

Modeling and simulation of electrical circuits have attracted much interest in the last
decades [13,20,40,43,44,75,108,121,136,172,201, 203]. Circuit theorists are inter-
ested in analysis, verification and automated design of large-scale electronic networks.
Modeling techniques in this area are frequently based on piecewise linear represen-
tations. For an overview of different canonical representations, the reader is referred
to [111]. Piecewise linear representations are convenient, since they allow mixed-
level simulations due to the same data structure for all kinds of circuits. Moreover,
it allows the preservation of the hierarchy in the network model, which facilitates the
replacement of a subcircuit by another subcircuit [119].

Research within circuit theory has concentrated on finding memory efficient canon-
ical representations of networks, static (DC) analysis and development of simulation
and synthesis tools for electronic circuits. Dynamical properties are studied by using
integration routines (time-stepping methods) to approximate the dynamical system by



12 Introduction

a series of static one-step problems, see e.g. [20,120,172]. In this way, the simulators
could be used for both (DC) and transient analysis. Other numerical methods are more
“event-driven” (see also subsection 1.4.3) inthe sense that they try to trace the switching
times of diodes, thyristors and other discontinuous elements exactly [13,136]. Efficient
simulators (e.g. PLANET [110]) and tools for automated network design (e.g. TOP-
ICS [119]) have been realized. However, existence and uniqueness of solutions to
the discontinuous dynamical network models and justifications of the approximations
based on time-stepping methods are not considered. One of the goals of this thesis will
be to fill these gaps.

1.3.2 Piecewise linear systems

Piecewise linear (PL) systems are studied extensively (also outside the circuit theory
community), because they form the simplest extensions of linear systems and moreover,
can approximate nonlinear systems with arbitrary accuracy. One of the first studies
on dynamical properties of PL (discrete-time) systems are stated in [190]. Sontag
considers controllability and stability issues for PL systems and tries to use the obtained
tools and methods for controlling other, more general, classes of systems (both discrete
and continuous time nonlinear systems) by discrete-time PL systems. Recently, the
PL-approach and other switching control schemes in the control society revives, see
e.g.[17,27,38,81,104,106,134,149,204] for stability and control, [50] for equivalence
of realizations, [118, 202] for observability and controllability and [37, 102] for well-
posedness issues. Widely applied switching control techniques such as sliding mode
control, gain scheduling and relay feedback [105, 123] can sometimes be formulated
in PL description as well. From a more general point of view, the PL systems and
switching control architectures can be seen as subsets of the (large) clasaiit
structure systems, Which received quite some attention in the literature (see e.g. [68,
200)).

The renewed interest in PL systems in the control community motivates the study
of complementarity systems too. As piecewise linear dynamical systems allow a re-
formulation in terms of complementarity systems, the results of this thesis contribute
to this research field as well.

1.3.3 Constrained mechanical systems

Mechanical systems with impacts and friction phenomena have a long history inspired
by the work of well-known pioneers as Newton, Huygens and Poisson. The interest in
constrained mechanical systems can be explained by the rich application field: robotics
[113]; control of robotic manipulators driving nails, compacting powders or breaking
objects (impactors) or transition phase control of a robot arm striking the surface of an
object[31]; vibration control in suspension bridges, ships colliding at fenders or rattling
gears to reduce wear, damage and noise [98]; simulation of crash-tests; regulating
landing maneuvers of spacecraft and so on. For an overview of the available literature
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on constrained mechanical systems the interested reader may want to consult [31]
for an excellent survey. The study of mechanical systems subject to impacts can be
split in different classes [31]. Among them one finds well-posedness studies [11,
124,139, 144,158, 181] for various restitution rules (inelastic and elastic) and friction
phenomena, numerical schemes and experimental validation [12, 78, 192, 194, 199],
analysis [49,72,160] and control of constrained mechanical systems [32,33]. This list
is not meant to be encyclopedic and the references serve only as possible entries to the
subfields.

Although practical simulation procedures have received a lot of attention, classi-
cal questions of existence and uniqueness of solutions have been a little neglected.
Recently, the interest for well-posedness issues (which are important for numerical
methods as well) has increased. Lotstedt [124] prdwed existence and uniqueness
of smooth solutions under rather mild conditions. Of course, for global existence one
has to study solution trajectories in a framework allowing impacts. Problems of (global)
well-posedness for general nonlinear mechanical systems are extremely complicated,
as is demonstrated by the first published existence result of reasonable generality due
to [139], which takes a whole book [193, p. 25]. Monteiro Marques’ result applies to
the single-constrained case and is based on proving convergence of the time-stepping
approach of Moreau [140, 144] using techniques fromstheeping process.

The problem of existence of solutions for a multi-constrained nonlinear mechanical
systems was mentioned as an open problem in [139]. This open problem is partly
solved by recent work in [192,193], which uses a novel time-stepping scheme for rigid
body dynamics with inelastic impacts and Coulomb friction based on complementarity
problems. The convergence of a subsequence of the approximations has been shown.
This results in both a (partial) justification of the applied simulation procedure and a
proof of existence of solutions. The question of uniqueness is not posed in this work
and the convergence of the whole sequence (instead of a subsequence) has not been
shown. However, the ideas and techniques could be used as starting point for obtaining
similar results for the class of complementarity systems.

1.3.4 Optimal control problems with state or control constraints

An extensively used methodology for solving optimal control problems is the maximum
principle, initiated by Pontryagin et al. [164]. The original maximum principle has
been used and extended by many others. Regarding optimal control problems with
state constraints a survey can be found in [80]. The maximum principle results in
necessary conditions for optimality, although the result is not rigorously established
for the general case. Therefore, the statement of the conditions is called an “informal
theorem” in [80] and is used mainly as a recipe to find candidates for the optimal
control functions. Complementarity appears in these conditions to describe the duality
between the state constraints and the corresponding multiplier (see Chapter 2). The
resulting equations allow Dirac impulses in the solutions, resulting in discontinuities
(jumps) of the adjoint variable (sometimes called co-state). The complementarity
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point of view may contribute in obtaining a rigorous proof of this theory. Existence
and unigueness of solutions to the set of necessary conditions could be crucial for
proving such a result. However, one has to realize that Pontryagin’s principle is a
two-point boundary value problem and as a consequence well-posedness requires a
different approach. Questions on the smoothness of the adjoint variables, the number
of constrained and unconstrained phases (finite or infinite) and the study of the behavior
are interesting and mainly open questions. Some first steps in this direction can be
found in the appendix of [60]. Dontchev and Kolmanovsky prove that for a linear
quadratic regulator problem with a single linear state constraint of index one (meaning
the constraint needs to be differentiated once to depend on the control input) the optimal
control is piecewise analytic with only a finite number of mode switches between
constrained and unconstrained phases. Their line of reasoning may be extendable to
linear complementarity systems (without impulsive motions).

In the case of control constraints the applications of the maximum principle results
in (depending on the cost functional and control constraint set) differential equations
with piecewise linear characteristics. As an example consider a linear quadratic regula-
tor problem with the control constraint set equal to the positive orthant in an Euclidean
space. This problem is studied in [96] and [97], where it is shown that the control input
is given by a simple (continuous) piecewise linear projection of a linear combination
of the state and co-state (adjoint) variable on the positive cone. This projection is
similar to the one-sided spring as studied for mechanical systems in [98] and has clear
relations to PL systems. We observe that many of the applications of complementarity
systems have natural connections to each other. This makes it interesting to study
complementarity systems that might reveal the relationships and common structure of
these subclasses more clearly.

1.4 Goals

The goals of this thesis are to:

(i) Formulate a mathematically precise and physically relevant solution concept for
the class of linear complementarity systems.

(ii) Deduce verifiable conditions that guarantee well-posedness of linear complemen-
tarity systems.

(iii) Develop numerical methods for the simulation of (linear) complementarity sys-
tems and obtain results on convergence of the approximations to assess the
validity of the methods.

(iv) Show the relations between the physically relevant subclasses of complementarity
systems.

The first two goals are concerned with the fundamental system theoretic basis
needed for analysis of linear complementarity systems. It is important to set up a
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well-founded theory by defining a clear solution concept and answering the classical
questions of existence and uniqueness of solutions (called “well-posedness”). Because
of the “jump-phenomena” in the system variables and the multimodal behavior, a solu-
tion concept of linear complementarity systems is a non-trivial matter. After proposing
such a solution concept, we aim to develop verifiable conditions for well-posedness.
Here “verifiable” means algebraic conditions in terms of the parameters (state space
parameters in our case) describing the system. Although questions of well-posedness
are of interest by themselves, it must be emphasized that provide basic insights that
will be important in solving issues of controllability, stability and controller synthesis.

The third objective of the thesis is to investigate numerical methods for simula-
tion of LCS. Simulation is a common tool when analytical solutions or properties of
dynamical systems cannot be derived. In some subdisciplines of complementarity sys-
tems several numerical methods have already been proposed (e.g. in electrical circuit
theory and constrained mechanical systems). This thesis will contribute in particular
to the so-called “time-stepping” and “event-driven methods” (see Subsection 1.4.3, for
a description of these techniques). Since our solution concept is closely related to the
event-driven method, we contribute especially to the re-initialization (determining the
new continuous state after a mode change) and mode selection problem (determining
the new discrete mode after a mode change). For the time-stepping methods, we will
provide arigorous base in the sense that the convergence of the approximationsto atrue
solution of the original model will be shown (so-called “consistency” of the method).

The final goal involves the search for the relations between the subclasses of com-
plementarity systems, which may result in the transfer of concepts, ideas and theory
from one domain into another.

The following subsection will be dedicated to illustrate the importance of each of
the four goals just mentioned. As such, these subsections serve as a motivation for the
presented work.

1.4.1 Solution concept

Afirst step in the study of a class of dynamical systems must be the interpretation of the
describing equations in terms of their solutions. The solution concept must be general
enough to include the behavior observed in the physical process for which the model
has been made, and limited enough to discard possible pathological solutions that have
no physical meaning at all. In the literature on hybrid systems one often encounters the
assumption of non-Zenoness in this context. Non-Zenoness means that only a finite
number of events (mode switches and/or re-initializations) are allowed to happen in a
finite length time interval. We emphasize that the term non-Zenoness, as used here,
will include the requirement that at most finitely many successive jumps (resets or
re-initializations) are allowed to take place at one time instant. We will illustrate by
some simple examples (described also in [94]) the undesirable consequences of such
an assumption.
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Example 1.4.1 A physical example which will display honexistence of solutions under
an assumption of non-Zenoness is the three-balls system in which the inelastic impacts
are modeled by a succession of simple inelastic impacts (Figure 1.1). Suppose that all

Vy(0)=1 V4(0)=0 V{0)=0

Ball 1

Figure 1.1: Three balls example.

the balls have unit mass and are touching at time 0. The initial velog{f) of ball

1lis equal to 1 and for balls 2 and 3 equabk{g0) = v3(0) = 0. If one assumes that

the impact is actually a sequence of simple impacts, first an inelastic collision occurs
between ball 1 and 2 resultingin(0™) = v2(0") = % v3(0") = 0. Next, ball 2 hits

ball 3 resulting i (0*F) = 1, v2(0**) = v3(0™) =  after which ball 1 hits ball

2 again. In this way, a sequence of jumps is generated

. 1 1 3 3 11
vi: 1 5 3 5§ 8 3

. 1 1 3 5 11
v: 0 5 7 8 1 @

. 1 1 5 5

which converges t63, 1, 1)T from which a smooth continuation could be defined as a

possible solution (the three balls stay touching and attain aveléeitger the impact).

However, if one assumes non-Zenoness one does not allow a solution containing in-

finitely many re-initializations at one time instant. In this case there would not exist a

solution on a positive length time interval from the initial condition considered above.
O

Apart from infinitely many events at one time instant, one has to be careful with
accumulation of event times. In many models accumulation of events occurs and has
a physical interpretation.

Example 1.4.2 Consider a model of a bouncing ball which is subject to gravitation
forces. The model is given by = —g (x is the height of the ball angl is the gravity
constant) and constraint> 0. To complete the model we include Newton'’s restitution
rule x(t+) = —ex(tr—) whenx(r—) = 0 andx(r—) < 0. Heree is the elasticity
constant with O< ¢ < 1. Moreover, to complete the model, we include the rule that
in case the ball is at rest (i.e(t—) = x(r—) = 0), the ball stays at rest (meaning that
the dynamics change b= 0). The event timeér; }; iy at which the ball touches the
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ground are related through (see [31, p.234])

2¢' % (0)
g

Ti+1 =T + ,1 € N

assuming thak(0) = 0 andx(0) > 0. Hence,{t;};en has a finite limit equal to

™ =10+ % < oo. Since the continuous stafe(z), x(¢)) converges td0, 0)
whenz 1 t* a continuation beyond* can be defined by (¢), x(¢)) = (0, 0), r > t*.

The physical interpretation is that the ball is at rest within a finite time span, but after
infinitely many bounces. Hence, the set of event times contains a right-accumulation
point. If one does not allow solutions with accumulations of event times, the maximal
interval on which a solution can be defined is equdDta™). O

The solution concept that will be used in the thesis will correspond tintisstic
impact case for non-smooth mechanical systems (see section 3.8). Consequently, the
bouncing ball does not fit in the framework of LCS (at least using the inelastic jump
transition rule). However, it indicates that there exist models of physical relevance that
require a solution conceptincluding the possibility of right-accumulations of events. An
example with right-accumulations of event times that will fit in the solution concept
used for linear complementarity systems, is given by the following system adapted
from [68].

Example 1.4.3 A time reversed version of a system studied by Filippov [68, p. 116]
(also mentioned in [123]) is given by

X1 = —sgnx1) + 2sgrx2) (1.92)
X2 = —2sgn(x1) — sgnixz), (1.9b)

where “sgn” denotes the signum-relation given by(sgn= 1, if x > 0, sgr(x) = —1,
if x < 0and sgix) € [—1,1] whenx = 0. Because this system consists of two
relay characteristics, it can be modeled as a LCS (see chapter 2). Solutions of this
piecewise constant system are spiraling towards the origin, which is an equilibrium.
Since%(m(t)l + |x2(t)]) = —2 whenx(t) # 0 along trajectories of the system,
solutions reach the origin in finite time (see Figure 1.2 for a trajectory). However,
solutions cannot arrive at the origin without going through an infinite number of mode
transitions. Since these mode switches occur in a finite time interval, the event times
contain a right-accumulation point (i.e. the time that the solution reaches the origin)
after which the solution stays at zero.

(Il

The previous two examples show thgidbal existence of solutions (i.e. existence
of a solutions defined for ail € [0, co)) cannot be achieved with a solution concept

A pointt € & C Ris a right-accumulation point &, if there existsr; € €,i € Nwith 7; < 7 such
thatt = lim;_, o, 7; = 7. A left-accumulation point is defined by changing™into “ >.”
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Figure 1.2: Trajectory with initial state, 2) .

excluding right-accumulations of event times. Admitting left-accumulations of events
in the solution concept, may result in nonuniqueness as demonstrated by the next
example.

Example 1.4.4 The time-reversed model of (1.9) (which is the original example in
[68]) is given by

X1 = sgnix1) — 2sgn(x2) (1.10a)
X2 = 2sgnix1) + sgn(x2). (1.10b)

This system has (infinitely many) solutions corresponding to initial state O, if one
allows left-accumulations of event times. Hence, uniqueness cannot be inferred. Note
that if we only allow right-accumulations of event times, the only solution starting in
the origin is the zero solution. Allowing also left-accumulations results in a nondeter-
ministic system, which is undesirable from a point of view of modeling and simulation.
In contrast with smooth dynamical systems, time is considered to be asymmetric for
hybrid systems, since reversing time is not natural and does not lead to well-posed
systems in general. Solutions are therefore considered in a ‘forward sense’that accepts
right-accumulation and rejects left-accumulations of event times. In some situations
we can even exclude the existence of (left-)accumulation points, see Chapter 5 and [94].
Am important observation is that the solutions with left-accumulations of events
do however satisfy (1.10) in the sense of Carathéodory. A funatisra Carathéodory
solution tox = f(x) with initial condition x(0) = xo, if the equalit} x(r) =
xo + fé f(x(1))dt holds for allz € [0, c0). Hence, one has to be careful with using
‘classical’ notions of solutions for hybrid systems. However, if one can prove unique-
ness in the sense of Carathéodory, one might be able to show that no left-accumulation

3Since the sgn-relation is multi-valued in zero, the equality ghould be replaced by an inclusiof)(
in order to be mathematically precise. However, for the particular example at hand, it makes no difference.
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of events occurs. This is the method that will be used for electrical networks with
diodes (see Chapter 5). O

A mechanical example displaying similar nonunigueness due to left-accumulation
of event times has been formulated by Bressan as described in [31, p. 58].

The previous examples indicate that there is a clear interaction between the way
of modeling, the interpretation of the equations (i.e. the solution concept) and ex-
istence and uniqueness of solutions. Care should be taken to formulate a solution
concept, since it influences the existence and uniqueness of solutions (and thus the
well-posedness of the model). As stated before, the notion of solution must include all
relevant trajectories of the original physical system and must not admit pathological
solutions representing behavior that is not encountered in practice. Looking at the
subclasses of complementarity systems, our solution concept must be able to describe
at least

« smooth continuations;
« discontinuities and impulsive motions (as in constrained mechanical systems);

* right-accumulation of event times (as in the bouncing ball and the time-reversed
Filippov's example).

1.4.2 Well-posedness

A first criterion for the validity of a mathematical model involves the existence and
unigueness of solutions (given initial conditions). This property is referred taHs
posedness and is a fundamental issue for every class of dynamical systems. It is
surprising to see that in hybrid systems theory the study of well-posedness is quite
rare. One often assumes that solutions exist, that they are unique and have a finite
number of events in a finite length time interval. However, verifiable conditions for
these properties are not presented in most cases, although it is widely recognized that
itis an importantissue. Johansson [106] calls well-posedness an important component
of a more complete theory for piecewise linear dynamical systems. Imura and Van der
Schaft [102] state that there are still few results on the basic problems of uniqueness
of solutions to piecewise linear discontinuous systems.

We do not claim that well-posedness is completely neglected. The work [129]
studies existence and uniqueness of solutions to hybrid automata. However, as a
consequence of the general framework used in [129], their conditions are not verifiable
by algebraic relations on the system parameters. For the class of PL systems, [37,102]
study questions of existence and uniqueness of solutions in a Carathéodory sense,
thereby not allowing possible discontinuities in state entries and impulsive motions.
As a consequence, their results do not apply to constrained mechanical systems or
sets of equations resulting from optimal control problems and thus not to the general
class of LCS. As mentioned before, in the field of constrained mechanical systems some
results are known [124] (local existence and uniqueness of smooth continuations), [139]



20 Introduction

(global existence with one constraint and inelastic impacts) and [192] (global existence
with inelastic impacts for multiple constraints). Although they rely on the special
structure of mechanical systems, some of the ideas can be extended to other classes
of complementarity systems like projected dynamical systems as will be discussed in
Chapter 6.

A starting point of the well-posedness results in this thesis is the work of Van
der Schaft and Schumacher. In [177] necessary and sufficient conditiotiecddr
well-posedness are given fbimodal linear complementarity systems. In this context,
bimodal means that there are only two modes. Stated differently, there is only one pair
of complementarity variables and thuse R, y € R. In [179] the local existence
and uniqueness ainooth continuations have been studied for nonlinear semi-explicit
complementarity systems (see (1.6) below).

As a last comment in this subsection concerns the fact that for smooth systems the
notion of well-posedness often includes the continuous dependence of the solutions on
the initial data. Inthis thesis, we will present an example of linear complementarity sys-
tems (in a mechanical context) that displaysontinuous dependence on initial states
caused by the sensitivity of the solution trajectories to the order in which constraints
become active. So, in general this property does not hold for linear complementarity
systems. However, in Chapter 7 continuous dependence is proven for a class of linear
complementarity systems for which the underlying state space description satisfies a
passivity condition.

1.4.3 Numerical methods

Simulation is a common tool (and final escape) when analytical solutions or properties

of model equations cannot be derived. However, simulation has to be considered as
just executing experiments. The answers obtained are only valid for the experiments
carried out. Reliable extrapolation of the results to other operating conditions cannot be
guaranteed. As a consequence, simulation is not able to show that a complex (hybrid)
model has properties like stability. The reason is that the design of experiments covering
all possible operating modes is a tedious and time-consuming activity and is almost

always impossible. A simulation can only prove that a system does not have certain

properties by executing one particular experiment that contradicts the property.

It is recognized that new techniques are required for approximating the solu-
tion trajectories of hybrid systems. Simulators and languages like Omola/Omsim
[4], Chi (x) [14], SHIFT [57], Psi [23], Prosim [187], Modelica [137] and Mat-
lab/Simulink/Stateflow are recently developed or adding hybrid features to their exist-
ing simulation environment. Most of the mentioned hybrid simulators can be catego-
rized as event-driven methods according to a classification made by Moreau [140] for
numerical techniques used for unilaterally constrained mechanical systems.
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Classification of simulation techniques

The paper [140] classifies the literature on simulation techniques for rigid body dy-
namics with collisions into three categories. We believe that this classification also
applies to possible numerical methods for complementarity systems.

e Event-driven methods

These methods are based on considering the simulation interval as a union of disjoint
subintervals on which the mode (active constraint set) remains unchanged. On each
subinterval the inequalities (unilateral constraints) are replaced by a set of equalities
(bilateral constraints), that determine the evolution of the system. On each of these
subintervals we are dealing witthfferential and algebraic equations (DAE), which

can be solved by standard integration routines [Z} E-simulation). As integration
proceeds, one has to monitor certain indicators (remaining inequalities that hold with
strict inequality at the interior of the subinterval) to determine when the subinterval
ends évent detection). At this event time a mode transition occurs, which means
that one has to determine what the new mode will be on the next subintervad (
selection). In mechanical terms, one must calculate which contacts persist or release
and which contacts are newly formed. This can be a difficult task, since the contacts
which release after the event time are not necessarily those for which an unfeasible
contact has just been evaluated. An example of this phenomenon due to Delassus is
describedin[31, p. 117]. Anillustration in a complementarity context is Example 3.8.3
below. If the state at the event time is not consistent with the selected mode, a jump is
necessaryré-initialization). For instance, when two rigid bodies run into each other, a
reset of their velocities will be required to prevent violation of the non-interpenetrability
constraint. The complete numerical method is based on a repetitive cycle consisting
of DAE-simulation, event detection, mode selection and re-initialization. It is possible
that multiple mode selections and re-initializations are required before a DAE can be
simulated over a subinterval of nontrivial support.

The event-driven methodologies are also used for simulation of switching electrical
circuits [13, 136].

e Smoothing methods

The idea is to approximately replace the nonsmooth governing relationships by some
regularized ones [140]. As an example in a mechanical setting, a non-interpenetrability
constraint will be replaced by some stiff repulsion laws and damping actions which are
effective as soon as two bodies of the mechanical system come close to each other. Itis
illustrative in this context to consider Chapter 2 of [31], where it is shown for a simple
example that the percussion explained by compliant models (containing stiffness and
damping) tend to the hard impact model (with Dirac measures in the reaction force)
when the stiffness and damping coefficients tend to infinity.
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The dynamics of the resulting approximate system is then governed by differen-
tial equations with sufficient smoothness to be handled through standard numerical
techniques. Discrete modes do not really exist anymore, so event detection and mode
selection are not necessary. Instantaneous jumps are replaced by (finitely) fast mo-
tions, so also the problem of re-initialization disappears. A drawback of this method is
that an accurate simulation requires the use of very stiff approximate laws. The time-
stepping procedures have to resort to very small step-length and possibly also have to
enforce numerical stability by introducing artificial terms in the equations [140]. This
results in long simulation times and the effect of the artificial modifications may blur
the simulation results.

e Time-stepping methods*

The describing equations are directly replaced by some “discretized” equivalent. Nu-
merical integration routines (see e.g. [71]) are applied to approximate the system equa-
tions. In particular, all algebraic relations (like the complementarity conditions) are
enforced to hold at each time-step. In this way, one has to solve at each time-step an
algebraic problem (sometimes called the “one-step problem”) involving information
obtained from previous time-steps. For linear complementarity systems, for instance,
one has to solve a linear complementarity problem at each time-step. In contrast
with event-driven methods, time-stepping methods do not determine the event times
accurately, but “overstep” them. The time-stepping methods are used, for instance,
in [20,110,120,125,143,155,172,192,194]. The work [193, p. 3] states that time-
stepping methods (applied to mechanical systems) are based on using integrals of
forces over each time-step instead of the instantaneous values of the force functions.
The contact laws are not applied moment-by-moment. Instead, they are applied to
short-time integrals. In this way there is no clear distinction between finite forces and
impulses, which allows the two to be treated on the same level. In terms of event-driven
methods, this means that the re-initialization and DAE-simulation are solved by the
same technique.

As our solution concept is closely related to the event-driven method, the mathe-
matical analysis of well-posedness has immediate consequences for this method. In
particular, contributions are made to solve the re-initialization and mode selection
problems. However, the main interest for numerical schemes in this thesis will be on
time-stepping methods. The motivation for this is that time-stepping methods are used
extensively for switching electrical circuits and unilaterally constrained mechanical
systems [20,110, 120, 125,143,155,172,192,194], but the consistency of the method
is less clear than for an event-driven method. Our main objective is to give a rigor-
ous base for time-stepping applied to electrical networks with diodes by showing the
convergence of (at least a subsequence of) the approximations to the true solution of
the original model. As mentioned before, for mechanical systems such proofs can be

4Moreau [140] refers to these methodscastact dynamics.
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found in [192].

A further advantage of the time-stepping approach is that it can be used as a start-
ing point for controlling linear complementarity systems. For smooth systems it is
common practice to use sampled data control and to design a controller on the basis
of a discretized version of the system. This methodology can be extended to com-
plementarity systems (under certain conditions), because accurate discretized models
can be obtained by time-stepping techniques. Since such a discretized model can be
rewritten in a discrete-time piecewise linear description (for which stabilization and
control problems have already been studied [15, 190]), this opens several possibilities
for controller synthesis for complementarity systems.

The use of smoothing as a numerical tool is not investigated in this thesis (and is
recommended for further research). The complementarity conditions0, y; > 0
and{u; = 0 ory; = 0} could, forinstance, be replaced by the piecewise linear function
y; = max(0, —au;), wherea will be a parameter approaching infinity. It would be
interesting to study whether the solutions of the relaxations (as functighooinverge
tothe solutions of the original linear complementarity system. Of course, one could also
make other, smoother, approximation of the complementarity conditions. As remarked
before, a drawback of this approach is that one has to deal with very stiff differential
equations whenever one requires accurate approximations of the real solution.

Mode selection

Mode selection refers to the problem of determining the next mode (“active index set”
or “discrete state”) on the basis of the current continuous state. In the terminology
of electrical circuits with diodes, it involves the selection of blocking (current is zero)
and conducting (voltage is zero) diodes in the next time frame given the continuous
state of the network (voltages across capacitors and currents through inductors). This
problem is essential for simulation based on an event-driven method, but has also a
clear connection to well-posedness. If from a certain state vector no mode can be
chosen, there does not exist a solution starting from this state (deadlock). If multiple
modes can be selected, there may be a situation of nonuniqueness of solutions.

A practical example illustrating the need of efficient mode selection methods can be
found in [196], where the objective is to verify computer-controlled power converters
for the propulsion of a locomotive by a digital real-time (“hardware-in-the-loop”)
simulation. Instead of testing the obtained control system directly to the locomotive,
one connects the inputs and outputs of the designed control system to a real-time
simulation of the target process (all loops are closed via the simulator). The demand
of such real-time simulation is motivated by the following factors [196]:

* reduction of risk (loss of human life or capital)
* decrease of costs (tests in target system can be extremely expensive)

« lack of availability (designated working environment is not available)
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« lack of coverage (not all test states can be reached during regular operation).

Some of these factors play also key roles in e.g. crash-tests, flight simulators or design
of a nuclear reactor. In [196] it is indicated that in case idealized models of switches
are used, at least the following two separate issues have to be dealt with:

» The causality of the model will change during every mode transition;

« State events will have to be detected and continuous mode equations re-arranged
and re-initialized for every mode transition.

Itis obvious that the real-time condition asks for efficient mode selectors. The propul-
sion system of the locomotive contains thyristors that require a frame time (i.e. the
calculation time for one simulation step with the entire model after which communica-
tion with the control systems takes place) of the simulation pfs30’he determination

of the state of the thyristors within such an extremely fast time frame appeared to be a
big problem [196].

So the problem of mode selection is not only important from an academic point
of view, but also from an industrial point of view. In [179] the problem of mode
selection is treated for complementarity systems in the semi-explicit form, where only
smooth continuations are considered. Of course, one has to incorporate the possibility
of impulsive continuations and state re-initializations to arrive at a solution for the
complete mode selection problem. Therefore, the mode selection problem will be
considered in this thesis for linear complementarity systems although some of the
applied ideas have further extensions.

1.5 Outline

The purpose of the previous section has been to describe and motivate the separate
goals, and to indicate the difficulties in solving the problems. The approaches to these
goals are described in individual chapters as indicated by the following outline of the
thesis. A nice feature is that the chapters are self-contained as they consist of accepted
or submitted papers.

In Chapter 2, the study of complementarity systems is motivated by a whole range
of possible applications. We consider unilaterally constrained mechanical systems,
piecewise linear systems, electrical circuits with ideal diodes, hydraulic systems with
one-way valves, systems of equations originating from applying Pontryagin's maxi-
mum principle to optimal control problems with state and/or input constraints, projected
dynamical systems, variable structure systems (e.g. relay systems and switching con-
trol systems), control systems with saturation or deadzones, etcetera. This chapter
consists of the paper [91].

In Chapte 3 a mathematically precise solution concept will be given for linear com-
plementarity systems. To show that this is not an artificial definition without any phys-
ical relevance, we will prove that it corresponds to the switching and re-initialization
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rules for linear constrained mechanical systems as proposed by Moreau [139] for the
inelastic impact case. Moreover, several mode selection methods are proposed and
discussed. Using this analysis, we are able to formulate sufficient conditiohg4br
well-posedness based on the principal minors of the leading row and column coeffi-
cient matrices. Under these conditions, the set of regular states (the continuous states
from which smooth continuation is possible without a re-initialization) will exactly be
characterized. It will be shown also that after at most one jump of the state variable,
smooth continuation is possible. As a final result in this chapter, these results are
used to provezlobal well-posedness for bimodal systems and linear complementarity
systems of “low index.” This chapter is based on the papers [92] and [94].

The well-posedness results in Chapter 3 are based on the mode selection tool called
the linear dynamic complementarity problem (LDCP). Another equivalent method,
called therational complementarity problem (RCP), is studied in Chapter 4. Since the
solutions of the RCP have a direct relationship to (initial) solutions of linear comple-
mentarity systems, solvability issues of RCPs are essential for well-posedness. In this
chapter we will show that the existence and uniqueness of solutions to RCP can be
completely characterized by solvability properties of a family of linear complemen-
tarity problems, see (1.2). As a consequence, we can rely on the vast literature on the
LCP [47] to obtain existence and uniqueness results of solutions to RCP and thus of
well-posedness of linear complementarity systems. These results apply (among others)
to linear constrained mechanical systems, linear relay systems (using results of [123])
and linear passive complementarity systems (including linear passive electrical circuits
and ideal diodes). The results in this chapter have been published in [93].

The article [84] is included as Chapter 5, which discusses the extension of the
‘initial well-posedness’ results obtained in Chapter 4 to global well-posedness results
using an assumption of passivity. Immediate applications of these results are linear
passive electrical circuits with ideal diodes. As we will see, for such networks existence
of solutions is guaranteed ¢, co) and the solutions are unique, even if one allows
accumulation of event times. As a byproduct, we obtain that derivatives of Dirac
impulses do not occur and Dirac impulses can only occur at the initialztisd® (at
“switch on”). These facts are “common sense truths” in the circuit theory community,
but we are not aware of any rigorous proofs of these facts in the literature. Moreover,
in proving these results we obtain an exact characterization of the set of regular states.

In Chapter 6 the actual proof is given for the claim of Chapter 2 that projected
dynamical systems [62,147] can be cast into the complementarity formalism. Building
on the results of [179] and convexity analysis the result is shown. Moreover, we give
an alternative proof of global existence of solutions to projected dynamical systems.
Usually, this proof has been based on the Skorokhod problem [188]. We believe that
the proof presented in this thesis is more direct and that it reveals additional properties
of the solution trajectories. The results of Chapter 6 have been reported in [86].

The results on time-stepping methods of [35] are written down in Chapter 7. This
chapter starts by presenting an example of a linear complementarity system for which
time-stepping based on the backward Euler integration formula fails. This motivates
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the need for a rigorous proof of the consistency of the method for certain subclasses of
complementarity systems. We will therefore be interested in proving the convergence
of the approximations generated by the time-stepping method based on backward
Euler as reported in e.g. [20, 120, 172] applied to linear passive electrical circuits with
diodes. The same arguments as used in the consistency proof yield also the continuous
dependence of the solution trajectories on the initial state. A similar convergence
problem is studied for linear complementarity systems of “low index.”

Finally, in Chapter 8 the contributions of the thesis are summarized and several open
problems, which we believe interesting and relevant for both industry and academia,
are recommended for future research.

Kanat Camlibel acted as one of my co-authors for the papers on which Chapters 5
and 7 are based, and these results are part of his PhD work too.
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Applications of complementarity systems

2.1 Introduction 2.6 \Variable structure systems

2.2 Electrical networks with ideal 2.7 Optimal control problems
diodes with state constraints

2.3 Pipelines with one-way valves 2.8 Projected dynamical systems

2.4 Constrained mechanical systems 2.9 Conclusions

2.5 Piecewise linear characteristics

This paper has been presented at the European Control Conference 1999 in Karl-
sruhe (Germany) [91].

2.1 Introduction

Technological innovation leads to an increasing interest in systems of a mixed con-
tinuous/discrete nature (called ‘hybrid systems’). Recently, hybrid systems receive a
lot of attention both from the control [7] and computer science community [162]. A
subclass of hybrid systems consists of complementarity systems as introduced in [177].
In its most general form a complementarity system is governed by the differential and
algebraic equations

0= F(z(@),z()) (2.1a)
y(1) = g(z(1)) € R¥ (2.1b)
u(r) = h(z(1)) € R¥ (2.1c)

together with the complementarity conditions
{yi(t) =00ru;(t) =0}, yi(t) =0, ui(t) >0 (2.1d)

foralli € {1, ..., k}. The complementarity conditions are similar as those appearing
in the linear complementarity problem of mathematical programming [47].

A special complementarity system occurs when (2.1a), (2.1b) and (2.1c) are re-
placed by an “input-output system” of the form

() = fx@),u@) (2.2a)
y() g(x(t), u(1)). (2.2b)
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In this case we speak of “semi-explicit” complementarity systems.

If the system is linear, i.ef (x, u) = Ax + Bu, g(x, u) = Cx + Du for constant
matricesA, B, C, D, we speak of a linear complementarity system (LCS).

The class of complementarity systems has been investigated in [86, 92,93, 123,
177,179]. Several basic issues are studied in these papers: the introduction of a
mathematically precise solution concept, existence and uniqueness of solutions, mode
selection methods, simulation issues and the study of the particular behavior of these
systems. Current and future research will include stability analysis, development of
numerical algorithms to approximate solutions and the inclusion of measurement and
control variables. The purpose of this paper to show that the analysis of the class of
complementarity systems is motivated by a wide range of applications.

2.2 Electrical networks with ideal diodes

Consider a linear electrical network consisting of resistors, inductors, capacitors, gyra-
tors, transformers (RLCGT) and bfideal diodes. To model this system as a LCS, the
network is viewed as the interconnection of an RLCGT network with the diodes. More
precisely, the RLCGT components form a multiport network described by a state space
representation = Ax + Bu, y = Cx + Du [3] with state variabler representing
voltages over capacitors and currents through inductors. The input/output variables
andy represent the port variables: the paif, y;) denotes the voltage-current vari-
ables at the-th port. Interconnection of theth port to an (ideal) diode results in the
equations

up ==V, yp=»rLoru =1, y= -V,

whereV; and/; are the voltage across and current throughi ttiediode, respectively.
Finally, the ideal diode characteristic of th¢h diode is given by (see also fig. 2.1)

Vi <0, I; >0, {V; =0orl; =0}. (2.3)

Figure 2.1: The-th ideal diode characteristic.
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2.3 Pipelines with one-way valves

Many chemical and hydraulic processes contain valves that only allow flows in one
direction. A lid in the pipe can be opened to one side only, which prevents the fluid or
gas from streaming back. The situation is shown in fig. 2.2.

< P >
I

-
—

Figure 2.2: A pipeline with a one-way valve.

The flow in the pipe at timeis denoted byf (+) and the pressure over the valve (lid)
by p(¢). Ideally, only two situations can happen. The lid is either completely closed
(dotted situation) or completely open (solid situation). The closed case occurs only if
the pressure on the right is larger than the pressure on thelejt£ 0). The flow is
then equal to zerof{(+) = 0). In the other situation (valve open), the pressure over the
valve is zero and the fluid streams in the positive directipf)(= 0 and /() > 0).
Hence, flow and pressure are complementarity variables.

2.4 Constrained mechanical systems

Consider a conservative mechanical system in whidenotes the generalized coor-
dinates ang the generalized momenta. The free motion dynamics can be expressed
in terms of the Hamiltoniai# (¢, p), which has the interpretation of the total energy

in the system. The equations are

oH

q = 8—(61,17) (2.4a)
)4
OH

p = —8—(61,19). (2.4b)
q

The system is subject to the geometric inequality constraints given by
C(g) > 0. (2.4c)

Friction effects are not modeled here. We refer to subsection 2.5.3 for phenomena like
Coulomb friction.

To obtain a complementarity formulation, we introduce (see also [92,124,160,177,
179]) the Lagrange multiplier generating the constraint forces needed to satisfy the
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unilateral constraints (2.4c). According to the rules of classical mechanics, the system
can then be written as

OH
qg = a—(q,p) (2.5a)
p
oH acT
p = —B—(q,p)+—(q)u (2.5b)
q dq
y = C(q) (2.5¢)

together with the complementarity conditions (2.1d). The conditions (2.1d) express
that the Lagrange multipliet; is only nonzero, if the corresponding constraint is active
(y; = 0). Vice versa, if the constraint is inactiyg; > 0), the corresponding multiplier

u; is necessarily equal to zero.

The control of these systems is a major research topic. Since most control the-
ories are model-based, adequate modeling of dynamical discontinuities and impact
phenomena are necessary. Control applications can be found for instance in the field
of robotics [31,49, 113].

2.5 Piecewise linear characteristics

In this section we consider a dynamical system in which certain variables are coupled
by means of a static piecewise linear (PL) characteristic. The situation is depicted in
fig. 2.3. The variables, z appear in the dynamics of the syst&n These variables

are related “in closed loop” through a PL relation. As an example one could think of a
mechanical system with Coulomb friction or an electrical circuit containing a resistor
having a PL behavior (see e.g. [121]).

Vv z
2

I

Figure 2.3: System with a PL relation.

2.5.1 A simple max-relation

Letv andz be related through = max(0, z). See fig. 2.4. We introduce two auxiliary
variablesu, y and the algebraic equatian= u — y. It is easily verified that adding
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the complementarity conditions> 0,y > 0 and{y = 0 oru = 0}, results inu = v.
Hence, the relation = max(0, z) can be replaced by

Z = u—y (2.6a)
v = u (2.6b)
u>0 y>0, {y=00ru=0} (2.6¢)

resulting in a complementarity system. Hence, any system that can be formulated in
terms of ‘max’ operations (think of ‘max-plus systems’), can be cast into a comple-
mentarity framework due to the fact that= max(w, z) = w + max(0, z — w).

\%

Figure 2.4: A simple max-relation.

Direct applications of this simple relation are one-sided springs. In fig. 2.5 a linear
spring is attached to a wall, but not to the cart. {efenote the position of the cart with
respect to the equilibrium of the spring. The spring foFa@) is a nonlinear function
of g:

—kg, ifg<0O
F(g) = 2.7
@ =1, it g >0 (2.7)

with & > 0 denoting the spring constant. The interpretation is clear. Only when the
spring is pressedy < 0), the spring exerts a nonzero foregq on the cart. In the
other situation where the cart is on the right of the equilibrigne(0), the spring is

at rest and the forc€(q) is equal to zero. The relation (2.7) can compactly be written
asF(q) = max(—kq, 0). Systems with one-sided springs are studied in e.g. [98].

As a second example consider the following single input control systemix +
Bu where the control inpui is restricted to take nonnegative values only. In [95]
one is interested in the existence of a nonnegative state feedback of the ferm
max(0, Fx) whereF is a constant row vector resulting in a stable closed loop system
x = Ax + Bmax, Fx).

A max-relation also occurs in application of Pontryagin’s maximum principle to
optimal control problems with control restraint sets being convex polyhedra. The
maximum principle yields a two-point boundary problem containing max-relations as
shown in [96, 97].
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Figure 2.5: One-sided spring.

2.5.2 Piecewise linear (PL) functions

A dynamical system described by an ordinary differential equation and one or more
continuous static Pliunctions can be modeled as a complementarity system. To make
this plausible, consider the function betweesindz as given by fig. 2.6. The function
consists of three connected branches with slepgs= 1, 2, 3. The offsetat =0 is

equal tog and the slope changesat «;,i = 1, 2. A description of this function in
terms of max-relations is given by (2.8), as is easily verified.

\
r2

0 \a T,

/ a \—

Figure 2.6: An arbitrary PL characteristic.

v=g+riz+ (rz —r1)maxz — az, 0) + (r3 — r2) max(z — az, 0) (2.8)

Since the max-relation can be rewritten as a complementarity system, it is obvious
that this PL characteristic can be rephrased in terms of a complementarity description.

Applications are for instance saturation and deadzone characteristics (fig. 2.7)
which occur in many control systems. Furthermore, devices as bipolar transistors,
MOSFET's and p-n junction diodes in electrical network theory are often modeled by
PL functions [20,43,121].

Finally, it is clear that many continuous nonlinear (static) relation can be suitably
approximated by PL functions.
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Figure 2.7: Saturation and deadzone characteristic

2.5.3 PL relations

Besides the examples given in the previous subsection, there exist many physically
relevant models that are given by Pdlations, but not by PLfunctions. Examples are
mechanical systems with Coulomb friction or relay systems (see fig. 2.8). However,
also these systems can be put in a complementarity framework by using an alternative
approach. The approach is not given in full detail here, but is sketched by applying it
to the example of a Coulomb friction/relay characteristic (see also [112,123, 160]).

\Y,

-1
Figure 2.8: Relay or sgn-relation.
The relay characteristic in fig. 2.8 can be described by
v=1 if z>0
-1l<v<l if z=0 (2.9

v=-1 if z<0,

which is sometimes denoted by= sgnz).
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Lemma 2.5.1 The PL relation as given in fig. 2.8 can be described by the equations

uytup =2 (2.10a)
yn—y2=2 (2.10b)
v = 3(uz —u1) (2.10c)

together with the complementarity conditions

{ur=00ry1 =0}, u1 >0, y1>0 (2.11)
{up=00ry2 =0}, up >0, y2>0. (2.12)
O

Proof Due to the complementarity conditions there ate=24 possibilities.
u1 = uz = 0 : since (2.10a) implies that2 0, this mode is not feasible.

up =y, =0 : (2.10a)and (2.10c) give= 1u, = 1. Eq. (2.10b)implies = y1 > 0.
This mode corresponds to the right branch in fig. 2.8.

uz = y1 = 0 : Similar to the previous case, we can derive that this mode corresponds
to the left branch.

y1 =y2 =0 : Eq. (2.10b) implieg = 0 and due to (2.10a) and (2.10c) it follows that
—1 < v < 1. This corresponds to the middle branch.

Note that in the last mode1 = y» = 0) the causality betweemand; is different
then in the other two feasible modes.

The above modeling leads to a complementarity system of the form (2.1), because
the algebraic equations (2.10a)-(2.10b) are used. Alternative modeling may lead to a
semi-explicit form in case the systel (see fig. 2.3) is represented by= f(x, v)
andz = g(x, v). Indeed, take

up = 3(1-v) (2.13a)
2 = 3(1+v) (2.13b)
Z = y1—u2 (2.13c)

together with the complementarity conditions@#, y;). Similarly as in the previous
proof, one can check all the four possibilities to verify that the above equations describe
the relay characteristic. By suitable substitutions one gets the semi-explicit form

¥ = f(x,1—2u) (2.14a)
yi = g(x,1—2u1)+uz (2.14b)
y2 = 1-u (2.14c)



2.6. Variable structure systems 35

Other approaches to PL modeling use absolute value functions [44], extended and
generalized complementarity problems [37, 201] or state variables [20,121]. More
complicated examples can also be modeled as complementarity systems. Examples
can be found in [121], where a “reversed Z-characteristic” has been put in a comple-
mentarity system (left picture in fig. 2.9) and in [201], where a model has been derived
whose characteristic consists of the edges of a square (right picture).

\ \%

Figure 2.9: Reversed Z-curve and square

Existence and unigueness of solutions to dynamical systems with PL characteristics
are nontrivial. Such well-posedness issues are studied in [37].

2.6 Variable structure systems

2.6.1 Convex definition

Consider a system that switches between two dynamics as a result of inequalities.
In fig. 2.10 the state space is separated into two parts by a hypersurface defined by
¢(x) = 0. On one side of the surface; := {x € R" | ¢(x) > 0} the dynamics

X = fi(x) holds, on the opposite side_ := {x € R" | ¢(x) < 0} the dynamics

X = f_(x) is valid.

C.

X' =1f,(x)

@(x)=0

C
X' =1 (X)
Figure 2.10: Switching dynamics.

A sliding mode occurs when in a statey, lying on the hypersurface (x) = 0,
f+(x0) pointsinthe direction of _ and f_ (xp) points in the direction of  (fig. 2.11).
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Hence, from the initial statey itis impossible to go t@'_ or C, because the dynamics
immediately steers you back to the hypersurface satisfging = 0. A kind of
sliding solution has been formalized by Filippov [68] by twevex definition which
corresponds to infinitely fast switching. In brief, it states that the sliding mode is
given by taking a convex combination of both dynamics Af; (x) + (1 — A) f—(x),

0 < A < 1 such thatt moves alongp(x) = 0.

f(Xo)

o

Figure 2.11: Sliding mode.

Proposition 2.6.1 The variable structure system with solutions according to the convex
definition can be modeled by

X =Af4(x0)+ Q=21 f-(x) (2.15)
and
A=1 if ¢kx)>0 (2.16a)
O<ia<l if ¢x)=0 (2.16b)
A=0, if ¢kx)<0O, (2.16¢)

i.e. L = % + %sgn(d) (x)) with ‘sgn’ the relation described by (2.9). As seen before,
this PL relation allows several complementarity reformulations. (]

Similar techniques as for a single surface, apply to multiple surfaces splitting up
the state space.

2.6.2 Equivalent control definition

Another solution concept introduced by Filippov is based onetp@valent control
definition of sliding modes [68]. This definition is related to “switching control sys-
tems.” The system given byy= f(x, u) with x the state variable is controlled by the
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discontinuous feedback (called the “equivalent control”)

L :gm), £(x) >0 2.17)

g-(x), &(x) <0

with the functiont : R” — R modeling the switching surface. Similar to the previous
subsection, a sliding mode occurs when the dynanfics) := f(x, g+(x)) and
f—(x) := f(x, g—(x)) point outwardC, andC_, respectively. The equivalent control
definition of a sliding mode picks a convex combination of the control laws instead
of a convex combination of, (x) and f_(x) (note that the definitions are equivalent
when f (x, u) is affine inu). Formally, the sliding mode is given by the differential
and algebraic equations = f(x, Ag4+(x) + (1 — A)g—(x)), E(x) = 0 and valid as

long ask € [0, 1] is satisfied. Obviously, this system can also be modeled as a system
X = f(x,2g+(x) + (1 — 1)g_(x)) with a characteristic betweenand&(x) as in
(2.16).

Proposition 2.6.2 A variable structure system as above with solutions according to the
equivalent control definition can be rewritten in terms of a complementarity system.[]

2.7 Optimal control problems with state constraints

An important class of optimal control problems consists of maximizing the criterion
J(x0,v) := fOT[F(x, v, 1)]dt + S(x(T), T) by choosing an appropriate control func-
tion v subject to the dynamics = f(x, v, t) with initial conditionx(0) = xp and the
state constrairit(x, t) > Oforallz € [0, T]. Additional requirements like control con-
straintsg(x, v, t) > 0 and end-point conditions(x(T), T) > 0 andb(x(T),T) =0
could be included, but are omitted for brevity.

Inthe survey [80] Pontryagin’s maximum principle [164] is used to obtain necessary
conditions for a control input to be optimal.

Introduce the Hamiltonia® (x, v, A, t) := F(x, v, 1)+A" f(x, v, t). The optimal
controlvop satisfies

vopt = arg maxH (xopt, v, 1) (2.18a)

. oH

Xopt = H(xopb Vopt, ) (2.18b)
. dH an’
A= _g(xopt, Vopt, ) — P (xopt, u (2.18c¢)
y = h(xopt 1) (2.18d)

with complementarity conditions holding between the multipli@nd constraint vari-
ablesy. The variable. is called the adjoint or co-state variable. There are additional
boundary conditions such that the maximum principle results in a two-point bound-
ary problem. It is possible that jumps occur in the adjoint variablélso for these
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jumps additional relations are available. We do not specify all the available condi-
tions, but only illustrate that this kind of optimal control problems fit in the class of
complementarity systems.

The formulation in [80] is called an informal theorem, because the result is not
rigorously established for the general case. It is presented as a kind of recipe to find
possible candidates for the optimal controls.

2.8 Projected dynamical systems

Projected dynamical systems (PDS) have been studied in [62,147]. These systems are
described by differential equations of the form

x(t) = g (x @), —F(x(1))), (2.19)

whereF is a vector fieldX is a closed convex set, aliti is a projection operator that
prevents the solution from moving outside the constraintkset.oosely speaking, a
PDS obeys an equation of the forim= — F(x) as long as is contained in the interior
of K or —F(x) is “pointing inwardsK .” When — F (x) is pointing outward and is at
the boundary ok, the operatoflg projects— F(x) into the direction ofK such that
the solution stays insid& .

To be precise, the cone of inward normals at K is defined by

n(x) ={y | (y,x —k) <Oforallk e K}. (2.20)

Givenx € K andv € R", define the projection of the vectorat x with respect tak
by

Mg (x,v) =v— (v, n* (x))n*(x), (2.21a)
where

n*(x) earg max (v, —n). (2.21b)

nen(x), [Inll<1
Definition 2.8.1 The PDSK, F) is given by
x=Igkx, —Fx)). (2.22)
]

We consider convex set§ that can be given by finitely many inequalities, i.e.
K =Kj :=={x e R" | h(x) > 0} with h : R" — RP? a real-analytic function such
that the component functioris are convex. Vh; denotes the gradient @&f and is
considered to be a row vector. The Jacolifix) denotes the matrix in which thieth
row is equal tovh; (x), i.e. theij-th element ofH (x) is equal to%(x). Moreover,
F is assumed to be real-analytic as well. Under suitable assumptions (like a rank
condition on the JacobiaH (x) and growth conditions on the vector fiel{x), see

Chapter 6 for the details) the following result can be proven.
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Proposition 2.8.2 Under suitable assumptions (see Chapter 6) both PDS(K},, F') and
the complementarity system given by

() = —Fx@®)+H x@)ul) (2.23a)
y) = hx(@)) (2.23b)
{yit) = Ooru;(t) =0}, yi(t) >0, u;(t) >0, (2.23¢c)

have a unique solution defined on [0, oo) for any given initial state xg. Moreover, the
solutions coincide. (]

PDS are used for studying equilibria of oligopolistic markets, urban transportation
networks, traffic systems, international trade, agricultural and energy markets (spatial
price equilibria).

2.9 Conclusions

The class of complementarity systems may seem quite restrictive at first sight. The
goal of this paper has been to show that this is not the case: a wide variety of interest-
ing discontinuous dynamical systems can be rewritten in a complementarity formalism.
Among the applications of complementarity systems are many examples relevant to the
systems and control community. We mentioned the switching control systems (vari-
able structure systems), optimal control problems with state and/or control constraints,
systems with discontinuous positive feedback and control systems with relays. Further-
more, many challenging questions are still open in the field of control of complemen-
tarity systems. These include characterization of stability, controllability, state/output
feedback stabilizability and the development of simulation tools. An incentive to con-
tinue this line of research is the range of possible applications: control of mechanical
systems with Coulomb friction, unilateral constraints and one-sided springs; control of
robots; simulations of crash-tests; regulating landing maneuvers of spacecraft; feed-
back control of dynamical systems with saturating actuators or deadzones; control of
traffic systems and economical markets; control, design and verification of switching
circuits.
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This chapter has been published in SIAM Journal on Applied Mathematics [92].
Parts of the chapter have been presented in an abridged form at the IFAC Conference on
System Structure and Control in Nantes (France), July 1998 [90] and the Conference
on Decision and Control in San Diego (USA), December 1997 [87].

3.1 Introduction

In many technical and economic applications one encounters systems of differential
equations and inequalities. For a quick roundup of examples, one may think of the
following: motion of rigid bodies subject to unilateral constraints, electrical networks
with ideal diodes, optimal control problems with inequality constraints in the states
and/or controls, dynamical systems with piecewise linear characteristics like satura-
tion functions, deadzones, relays, Coulomb friction and one-sided springs, projected
dynamical systems, dynamic versions of linear and nonlinear programming problems,
and dynamic Walrasian economies. It has to be noted that there is considerable inher-
ent complexity in systems of differential equations and inequalities, since nonsmooth
trajectories and possibly jumps have to be taken into account. As a result of this,
even basic issues such as existence and uniqueness of solutions are difficult to settle.
Given the wealth of possible applications however, it is of interest to overcome these
difficulties.

In the literature one can find many strands of research dealing with dynamics
subject to inequality constraints, some mainly motivated by problems in mechanics,
others more closely connected to operations research and economics. The framework
of differential inclusions (see for instance [9]) gives a general setting for the study
of systems in which both differential equations and inequalities play a role. In this
chapter, however, we shall be interested in more specific dynamical systems for which
uniqueness of solutions holds. Although of course one can get unique solutions from
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a differential inclusion by imposing suitable side constraints, we prefer to think of
the systems considered in this chapter as systems that switch between modes on the
basis of certain inequality constraints, and that behave within each mode as ordinary
differential systems rather than as differential inclusions. This “multimodal” way of
thinking is natural in a number of applications; in the study of Coulomb friction, one
has the transition between stick mode and slip mode, in the study of electrical networks
with ideal diodes, there is the transition between the conducting and the blocking mode
of each diode, and in the context of dynamic optimization, one has mode transitions
when an inactive constraint becomes active or vice versa. A similar point of view
may be found in the literature on the so-called “hybrid systems” encompassing both
continuous and discrete dynamics, which have recently been a popular subject of study
both for computer scientists and for control theorists (see for instance [7,162]).

Among the studies that have been made of dynamical systems exhibiting some
sort of switching behavior, one may mention a number that have been inspired by
applications in mechanics [31, 124, 139, 144, 160, 192, 194, 199], in electrical engi-
neering [20,121], and in operations research [62,147], as well as general studies such
as [68]. The work in this chapter is more general than most of the cited studies in
the sense that we do napriori impose conditions on the “index” of the constraints.
(The index measures the number of actual constraints following from a given algebraic
constraint within the context of a given set of differential equations; the term comes
from numerical analysis, see for instance [29].) Our treatment is also general in that
we allow an arbitrary finite number of state variables, and an arbitrary finite number
of constraints. On the other hand, our work is more restricted, since we consider only
linear differential equations; in conjunction with the switching rules, the systems that
we study are therefore piecewise linear dynamical systems.

As a consequence of the fact that we are looking at systems of arbitrary index,
we have to take into account the possibility of solutions contaitiimguises. The
occurrence of suchimpulsesis state-dependent and in this sense our situation is different
from the one in [10] where impulses are externally imposed rather than generated by the
system itself. One of the main reasons for restricting the development in this chapter to
linear dynamics within each mode is the fact that this allows us to treat impulses within
a standard distributional framework. Earlier works in the research program that has led
to this chapter are [177-179]. The paper [177] uses a solution concept, which is not
in accordance with mechanical systems with multiple constraints, while in [179] one
considers a nonlinear framework with onlyiooth continuations and no specification
of jump or mode switching rules. Finally, in [178] jump and switching rules are given
that are only valid for the mechanical case. Sammaplete specification of the dynamics
on a general level is not given so far. Without a complete solution concept, issues of
existence and uniqueness of solutions can only be studied partially. The contribution of
this chapter is as follows: (i) it gives a complete definition of what s to be understood by
a solution of alinear complementarity system; (ii) it gives sufficient conditions for well-
posedness of linear complementarity systems, in the sense of existence and uniqueness
of solutions; (iii) it presents an effective procedure for generating solutions to linear
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complementarity systems. In addition to this, we establish an explicit connection to
the literature on mechanical systems that are subject to mode-switching by showing
that our formulation agrees with the one of Moreau [144] (see also [31, 139]) for the
class of systems covered by both formulations, namely linear mechanical systems.

The chapter is organized as follows. We start with an example, to motivate the
ingredients needed for defining a solution concept for complementarity systems. To
introduce the notion of solution some mathematical preliminaries as presented in Sec-
tion 3.3 are required. A definition of the class of linear complementarity systems with
its solution concept is given in Section 3.4. The definition relies on a mapping which
assigns a “next mode” to each continuous state; several alternative ways of constructing
this mapping are discussed in Section 3.5. Sufficient conditions for local existence and
unigueness of solutions follow in Section 3.6. After that, we present a computational
example to illustrate the construction of solutions from the definition. In Section 3.8
it will be shown that the proposed solution concept is not an artificial one, but that it
complies for linear constrained mechanical systems with the inelastic formulation of
Moreau. Finally, conclusions follow in Section 3.9.

In this chapter, the following notational conventions will be in for@& denotes
the real numberdR, the nonnegative real numbers, aNd= {0,1,2,...}. Fora
positive integel,  denotes the sdtl, 2, ... , 1}. If a is a (column) vector witlt real
components, we write € R* and denote théth component by;. For two vectors
a, b € R¥, the notatioru Lb means that for all € k eitheraq; = 0 orb; = 0. Given
two vectorsz € R¥ andb € R/, then cola, b) denotes the vector iR¥*/ that arises
from stackingz overb. M € R™*" means thai/ is a real matrix with dimensions
m x n. M is the transpose of the matrid. The kernel ofM is denoted by Ke/
and the image by InM. GivenM e R**! and two subset € k andJ C [, the
(1, J)-submatrix ofM is defined a1, := (mij)ic1 jes. Incase/ = [, we also write
M, and if I = k, we write M, ;. For a vectou, a; := (a;);c;. The diagonal matrix
with diagonal entriegs, ... , a; is denoted by diagq, . .. , ax).

The field of rational functions in one indeterminate is denote@®by). Rational
vector functions withk components and rational matrices with dimensienx n
are denoted byRF(s) and R™*"(s), respectively. For reasons of clarity, we shall
systematically use a notation in which vectors dRés) are written with an argument
s to distinguish between the vectore R* and the rational vectar(s) € R¥(s). A
rational matrix is called proper, if for all entries the degree of the numerator is smaller
than or equal to the degree of the denominator. A rational matrix is called biproper, if
itis square, proper and has a proper inverse. If two rational veetoysy (s) € R¥(s)
satisfy that for all € k eitheru;(s) = 0 or y; (s) = 0, we writeu(s) Ly(s).

The setC*° (R, R) denotes the set of smooth functions, i.e. all functions fioto
R that are arbitrarily often differentiable. For a smooth functiotine i -th derivative
is denoted by,

A vectoru € RF is called nonnegative, and we write> 0, if u; > 0,i € k
and positive § > 0), if u; > 0,i € k. If a vectoru is not nonnegative, we write
u # 0. Asequence of scala¢s®, u?, ... , u") is called lexicographically nonnegative,
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written as(ul, u?, ... ,u") = 0, if W, u?, ... ,u") =(0,0,...,0) oru/ > 0 where
j:=min{p € i | u? # 0}. A sequence of scalars is called lexicographically positive,
denoted by(ul, u, . .oou") = 0, if Wl u?, ..., u") = 0and@l, u?, ..., u") #
(0,0,...,0). For a sequence of vectos?, u?, ..., u") with u’ € R¥, we write
@ u?,...,u") = Owhen(ul,u?, ... u) > Oforalli € k. Likewise, we write
Wt u?, ... u") = OWhen(ul-l,ul-z, ... uf) > Oforalli ck.

For setsA and B, A\ B ;= {x € A | x € B} andP(A) denotes the power
set of 4, i.e. the collection of all subsets ef. For two subspaceg, T of R”, the
notationV @& T = R" means tha¥ and7 form a direct sum decomposition &,

e V+T:={v+t|veV,reT}=R'andVNT = {0}.

3.2 Example

Before specifying the class of linear complementarity systems (LCS), we illustrate
some of the aspects that play a role in the evolution of such systems by an example of
two carts connected by a spring (used also in [177]). The left cart is attached to a wall
by a spring. The motion of the left cart is constrained by a completely inelastic stop.
The system is depicted in figure 3.1.

X, X,

[— —

Figure 3.1: Two-carts system.

For simplicity, the masses of the carts and the spring constants are set equal to 1.
The stop is placed at the equilibrium position of the left cart. Byx> we denote
the deviations of the left and right cart, respectively, from their equilibrium positions
andxs, x4 are the velocities of the left and right cart, respectively. iByve denote
the reaction force exerted by the stop. Furthermore, the variaisiset equal to.
Simple mechanical laws lead to the dynamical relations

x1(t) = x3(0)

x2(t) = x4(t)

K3() = —2x1(t) + x2(t) + u(r) (3.1)
xa(t) = x1(t) —x2(t)

y@) = xa().

To model the stop in this setting, the following reasoning applies. The variable
y(t) = x1(t) should be nonnegative, because it is the position of the left cart with
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respect to the stop. The force exerted by the stop can only act in the positive direction
implying thatu(¢) should be nonnegative. If the left cart is not at the stop at time
(y(t) > 0), the reaction force vanishes at timé.e. u(¢) = 0. Similarly, if u(z) > 0,

the cart must necessarily be at the stop, iy§r) = 0. This is expressed by the
conditions

0<y(@)Llu()=0. (3.2)

The system can be represented by two modes, depending on whether the stop is active
or not. We distinguish between the unconstrained mo¢e & 0) and the constrained

mode (1) = 0). The dynamics of these modes are given by the following Differential
and Algebraic Equations (DAES)

unconstrained constrained
x1(1) = x3(1) x1(1) = x3(1)
X2(t) = xa(t) x2(1) = xa(t)
x3(t) = —2x1(t) + x2(t) x3(1) = —2x1(t) + x2(t) + u(?)
x4(t) = x2(t) + x2(2) x4(t) = xa(t) + x2(2)
u(t) =0 y(@) = x1(r) = 0.

When the system is represented by either of these modes, the(tripley) is
given by the corresponding dynamics as long as the inequalities in (3.2)

unconstrained constrained
y@) =0 u() >0

are satisfied. A mode change is triggered by violation of one of these inequalities. The
mode transitions that are possible for the two-carts systems are described below.

» Unconstrained— Constrained: The inequalityy(¢) > 0 tends to get violated
at a time instant = z. The left cart hits the stop and stays there. The velocity
of the left cart is reduced to zero instantaneously at the time of impact: the
kinetic energy of the left cart is totally absorbed by the stop due to a purely
inelastic collision. A state for which this happens is, for instance,) =
0,-1,-1,07.

» Constrained — Unconstrained The inequalityu(z) > 0 tends to be violated
atr = t. The right cart is located at or moving to the right of its equilibrium
position, so the spring between the carts is stretched and pulls the left cart away
from the stop. This happens for example i) = (0,0,0,1) .

» Unconstrained — Unconstrained with re-initialization according to con-
strained mode. The inequalityy () > 0 tends to get violated at= z. As an
example, considet(t) = (0,1, —1,0)". At the time of impact, the velocity
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of the left cart is reduced to zero just as in the first case. Hence, a state jump
(re-initialization) to(0, 1, 0, 0) T occurs. The right cart is at the right of its equi-
librium position and pulls the left cart away from the stop. Stated differently,
from (0, 1, 0, 0) T smooth continuation in the unconstrained mode is possible.

This last transition is a special one in the sense that first the constrained mode is
active causing the corresponding state jump. After the jump no smooth continuation
is possible in the constrained mode resulting in a second mode change back to the
unconstrained mode.

From stater(7) = (0, —1, —1, 0) T, we can enter the constrained mode by starting
with an instantaneous jump tqt+) = (0, —1,0,0)". This jump can be modelled
as the result of a (Dirac) pulseexerted by the stop. In faat,= § results in the state
jumpx(t+) — x(r) = (0,0, 1,0) . This motivates the use of distributional theory as
a suitable mathematical framework for describing physical phenomena like collisions
with discontinuities in the state vector.

To summarize, the motion of the carts is governed by two systems of Differential
and Algebraic Equations (DAES), called the constrained and the unconstrained mode.
A change of mode is triggered by violation of certain inequalities corresponding to the
current mode. The time instants at which this occurs, are called “event times.” At an
event time, the system will switch to a new mode. A mode transition often calls for
a state jump or re-initialization. In the example, velocity jumps occur, when the left
cart arrives at the stop with negative velocity. In this chapter, the above dynamics will
be formalized for the complete class of linear complementarity systems and special
attention will be paid to the mode selection problem and well-posedness issues. How-
ever, first we recall some facts concerning systems of linear differential and algebraic
equations, such as appear in the constrained and unconstrained mode descriptions.

3.3 Mathematical Preliminaries
We consider a linear differential/algebraic system of the form

x(t) = Kx(@)+ Lu(@®) (3.3a)
0 Mx(t) + Nu(t). (3.3b)

The time arguments will often be suppressed for brevity. Throughout this section,
x(t) € R" andu(t) € R™. The system parameter§, L, M and N are constant
matrices of dimensions x n,n x m, r x n andr x m, respectively.

Definition 3.3.1 A statexg is said to beconsistent for (K, L, M, N), if there exist
smooth functions: andx such thatc(0) = xo and (3.3) is satisfied. The set of all
consistent states faikK, L, M, N) is denoted byV (K, L, M, N) and is called the
consistent subspace. (|
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The following sequence of subspaces converges in at in(@itension of state)
stepstoV = V(K, L, M, N) (for a proof see [83]):

Vo = R” (3.4)
Visis = {xeR"|3u e R"suchthatkx + Lu € V;, Mx + Nu = 0}.

Definition 3.3.2 The quadruplék, L, M, N) is calledautonomous, if for every con-
sistent stateg the system (3.3) has a unique solutianu). ]

The system (3.3) is autonomous, if the full-column-rank condition

Ker|: jf, ] = (0} (3.5)
holds together with
V(K,L,M,N)NT(K,L, M, N) = {0} (3.6)
whereT (K, L, M, N) is the subspace that is obtained as the limit of the sequence

o = {0
Tiv1 = {(xeR"|JueR"3Ix e T; withx = Kx + Lu, Mx + Nu = 0}.
(3.7)

This sequence converges in maximaidlgdimension of state) steps (proof can be found

in [83]). The subspac& = T(K, L, M, N) can be interpreted as themp space
associated t@K, L, M, N), i.e. the space along which fast motions will occur that
take an inconsistent initial state instantaneously to a point in the consistent subspace
V.

To formalize the interpretation df as a jump space, we introduce the class of
impulsive-smooth distributions as studied by Hautus and Silverman [83]. The general
form of an impulsive-smooth distributiam (note the different font used for distribu-
tions) is

l

u= Z u_ia(i) +ureg9 (38)
i=0
e
uimp

wheres = §©@ denotes the delta distribution with support at zéf®), its r-th distribu-
tional derivativeu®, =1, ..., u~! are coefficients ifR andu,., is a distribution that
can be identified with the restriction {0, co) of some smooth function. The regular
part of an impulsive-smooth distributianis denoted by, ., and its impulsive part
by u;mp. The class of impulsive-smooth distributions will be denoted’hy,. For an

elemenu of C;,,, of the form (3.8), we writea (0+) for the limit value lim o U,¢, (7).
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Having introduced the clags;,,,, we can replace the system of equations (3.3) by its
distributional version

X = KX+ Lu+ xo

0 = Mx+Nu (3.9)

in which the initial conditionxg appears explicitly, and we can look for a solution of
(3.9) in the class of vector-valued impulsive-smooth distributions. In [83] it is shown
that under the conditions (3.5) and (3.6) there exists a unique solution) € 7"

imp
to (3.9) for allxg € V + T'; moreover, the solution is such thai0+) is equal toP‘Zxo,
the projection ofro onto V along the jump spacg. In fact,x (0+) depends only on
the impulsive part ofi: if U, = Yt_qu~"8©, then

l
x(0+) =xo+ Y K'Lu™'. (3.10)
i=0

Lemma 3.3.3 Consider the system (3.3) and suppose that the number of inputs (m)
equals the number of constraints (r). Then the following statements are equivalent.

1. (K, L, M, N) is autonomous.

2. The system (3.9) admits a unique impulsive-smooth distribution for each initial
condition.

3. VIK,LLM,NY®T(K,L,M,N)=R" andKer[ ]l\‘, :|={O}.

4. G(s) := M(sI — K)~YL + N is invertible as a rational matrix.
O

Proof. The implication 2= 1 follows from the definition of an autonomous system.
The quadruplgK, L, M, N) is autonomous iff the system : x = Kx + Lu,y =
Mx + Nu is left invertible in the sense of [83]. In [83], it is proven that the statements

* the systenk is left invertible
e V(IK,LLM,N)NT(K,L,M,N) = {0} and Ker[ i, } = {0}

* G(s) is left invertible

are equivalent. Sincé& (s) is assumed to be squage = r), left invertibility is the
same as invertibility. Hence, & 4. According to [83, Thm. 3.24], invertibility of

G (s) implies additionally tha¥ (K, L, M, N) ® T(K, L, M, N) = R". This proves

4 = 3. Finally, 3= 2 is a consequence of the fact that the assumptions (3.5)-(3.6)
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imply that there is a unique solutiqu, x) € C™*" to (3.9) for allxo € V + T, as

m

mentioned earlier. Sincg + T is equal toR”, this implies 2. O

The systems studied in this chapter are described by standard state space equations
of linear systems together with complementarity conditions as in the complementarity
problems of mathematical programming. Therefore some concepts from complemen-
tarity theory will be recalled briefly. The Linear Complementarity Problem (LCP) [47]
is defined as follows.

Given a matrixM € R¥K andg € R*, findu, y € R* such that

y = q+Mu (3.11)
O<y L u=0 (3.12)

This problem is denoted by LC&(M).

Let a matrixM of sizek x k and two subsets andJ of k of the same cardinality
be given. The(l, J)-minor of M is the determinant of the square matfik ; :=
(mij)ier,jes. The(, IN-minors are also known as the principal minod$.is called a
P-matrix, if all principal minors are positive. A square matriX is said to bepositive
definite, if xT Mx > O for all nonzerax € R”. Note that a positive definite matrix is
not necessarily symmetric according to this definition.

We state the following results.

Theorem 3.3.4 For given M, the problem LCP(q, M) has a unique solution for all

vectors q if and only if M is a P-matrix. ]
Proof. See [47, Thm. 3.3.7]. O
Theorem 3.3.5 A positive definite matrix is a P-matrix. |
Proof. [47, Thm. 3.1.6 and Thm. 3.3.7]. O

3.4 Linear Complementarity Systems

In this section, we introduce linear complementarity systems (LCS) and formulate the
notion of solution for such systems.
A linear complementarity system is governed by the simultaneous equations

() = Ax(t)+ Bu(t) (3.13a)
y(1) = Cx()+ Du(r) (3.13b)
O<y@® L u@=0. (3.13¢)
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The notation in (3.13c) is consistent with the notation used in complementarity prob-
lems in mathematical programming (see the formulation of the linear complementarity
problem in section 3.3). In this section, we will describe how the relations above have
to be interpreted to arrive at a notion of solution to such a complementarity system.
The functionsu, x andy take values ifR¥, R” andR*, respectively;A, B, C and
D are constant matrices of appropriate dimensions. Note that the dimensions of the
variablesy(r) andu(¢) are the same. Equation (3.13c) states that for every component
i=1,..., keitheru;(t) = 0 ory;(t) = 0. The set of indices for whick; () = 0,
called themode or active index set, may change during the time evolution of the system.
The system may therefore switch from one ‘operation mode’to another. To define the
dynamics of (3.13) completely, one has to specify when the mode switches occur, what
their effect will be on the state variables, and how a new mode will be selected. We
will do this below, extending earlier treatments in [177] (where only systems with a
single constraint were consideréd = 1), see also Example 3.8.3 for a comparison
of the mode selection criteria) and [179], which only treated existence and uniqueness
of smooth continuations while impulsive motions and re-initialization rules were left
out of consideration and only a limited discussion of mode selection criteria could be
given. A generalization from smooth to impulsive-smooth continuations is not straight-
forward. The interpretation of the inequalities for impulsive motions is not obvious. A
requirement of such an interpretation will be that it must comply with physical laws for
‘real-life’ systems included in the class of complementarity systems. In this section,
we will formalize a distributional interpretation of the inequalities that agrees with
Moreau’s re-initialization rules for linear mechanical systems (see Section 3.8).

The system has*2modes. Each mode is characterized by the active index set
I C k, which indicates that; = 0,i € I andu; = 0,i € I wherel¢ :=k\I ={i €
k| i & I}. For each such mode the laws of motion are given by systems of Differential
and Algebraic Equations (DAESs). Specifically, in madthey are given by

(1) = Ax()+ Bu(r)
y() = Cx(@)+ Du(r)
vit) = 0,iel (3.14)
wi(t) = 0,ielf,
or equivalently,

x() = Ax(®)+ Beju(1)

0 = Crex(t) + Dryus(r)

yie(t) = Creex(t) + Dyeyuy (1) (3.15)

up(t) = 0

yi®) =0

The set of consistent states for madequalsV (A, B,.;, Cre, D;y) and is denoted by
V. The jump space is given b¥; := T (A, Bes, Cre, D;;). We call model au-
tonomous, if the quadrupl€A, Be;, C;e, D;;) is autonomous. A standing assumption
in the rest of this chapter will be the following.
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Assumption 3.4.1 All modes of the complementarity system (3.13) are autonomous.
(Il

By Lemma 3.3.3 this is equivalent to saying taat; (s) := Cre(s] — A)"1Be; + Dy

is invertible for each index sdt C k. Note that the notatio;; (s) is consistent in
the sense that;; (s) is the (I, I)-submatrix of the rational matrig (s) := C(sI —
A)~1B + D. Again by Lemma 3.3.3, assumption 3.4.1 implies tiatp 7; = R”
forall I C k and that (3.14) has a unique impulsive-smooth solution for all individual
modes given an arbitrary initial state.

3.4.1 Continuous phase

Definition 3.4.2 Givenxg € R"” and/ C k, we denote the unique distributional
solution to (3.14) for modé and initial statexg by (u*o-/, x¥0-7 y¥o.ly ¢ cktn+k

imp

According to [83, Thm. 3.10], there exists a linear mappifigsuch that (3.14)
is satisfied forcg € V; by takingu(z) = F;x(¢). Substituting this feedback in (3.14)
transforms the DAE into an ordinary differential equation (ODE). Hence, the regular
part of an impulsive-smooth solutian satisfying (3.14) for a given initial state is a
Bohl function, i.€. U, is of the form

0 (t<0

ureg(t)={ EeS'y (1> 0) (3.16)

for real matricest, G and a vectow depending on the initial state and the specific
mode/.

3.4.2 Re-initialization

If initial states of (3.14) are not consistent, i.exdf¢ V;, then a re-initialization of the
initial state will be necessary as pointed out in Section 3.3. Indeeg dfV;, then the
solution to (3.14) will contain a nontrivial impulsive part resulting in an instantaneous
jump or re-initialization of the state variable. As discussed in Section 3.3, the re-
initialized vectorx*o-/ (04) is equal to the projection af onto the consistent subspace
V; along the jump spacg. That isx*®!(0+) := P;xo, whereP; is the projection
operatorPy’ .

3.4.3 Event detection

Suppose that the current time, state, and mode at®, xo, and/, respectively. Note
that due to the time-invariance of the system description (3.13), the assumptich
is just a normalization. The system (3.13) will be represented by (3.14) for ihase
long as the inequalities in (3.13c)

ur%! (1) = 0 andy;%/ (1) = 0 (3.17)

reg
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are satisfied for > . The functiord : R” x £ (k) — R, gives the length of the time
interval during which the system evolves in madfrom initial statexg. Note that we
only consider the regular part here. In formal terthis defined as follows.

Definition 3.4.3 The time-to-next-event functioh: R x £ (k) — R, is defined as

0(xo. ) :=inf{t > 0| u;%, (1) # 0ory;/ (1) # 0}

reg
with the convention in) = oo. O

The next event time after time will be t + 0(x(z), I) (by time-invariance), when
the mode and the state at timeare equal td andx(z), respectively. Since smooth
continuation is not possible in modeafter the event time + 6(x(z), I), a transition
to another mode must occur. An important aspect of the solution concept will be how
to select the new mode.

To illustrate the definition of), consider Example 3.4.4 and 3.4.5 of the two-
carts system in the next subsection. In these ca5¢8,—1,0,0)", {1}) = % and
6((0,1,-1,0)7, {1) = 0.

3.4.4 Mode selection

The mode selection procedure that we propose is based on the conaégiablution.
Loosely speaking, an initial solution with initial statgis a triple(u, x,y) € ij;f;*"
satisfying (3.14) for some modeand satisfying (3.17) either on a time interval of
positive length or on a time instant at which delta distributions are active. The idea is
that an initial solution is a starting trajectory for the “global” solution to (3.13).

Example 3.4.4 Consider the two-carts system with initial stafe —1,0,0)". The
solution to the constrained modeui$r) = cost andy(r) = 0. Hence, it satisfies
(3.14) forI = {1} on [0, c0) and (3.17) o0, %). So, this solution satisfies (3.13)
on[0, 7). Therefore we admit selection of the constrained mdde (1}) as smooth
continuation in this mode is possible. |

Example 3.4.5 From the initial staterg = (0, 1, —1, 0) " first a state jump occurs to
Piyxo = (0,1, 0, 0)" governed by the laws of the constrained mode, but no smooth
continuation is possible in the constrained mode. Solving the dynamics corresponding
to the constrained mode, i.e. (3.14) with= {1}, gives(u, X, y) with U = § + U,

whereu,., (1) = — cost. Although (3.17) is not satisfied on a positive time interval,
incorporation of this solution in the definition of initial solutions seems well-motivated
on physical grounds. We admit selection/o& {1}. |

We now make the notion of initial solution more precise. Given an impulsive-
smooth distributiorv € C;,,;,, we define the leading coefficient of its impulsive part
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by

0, if Vimp = 0

leadv) := { vl i Vi = Yo v=16® with v~ 0. (3.18)

Definition 3.4.6 We call a scalar-valued impulsive-smooth distributioa C;,,, ini-
tially nonnegative, if

leadv) > 0O, if Vimp # 0
there existg > O such that for alt € [0, ) v, (r) > 0, otherwise

A vector-valued impulsive-smooth distributionﬂj‘mp is called initially nonnegative,

if each of its components is initially nonnegative. We call an impulsive-smooth distri-
butionu initially positive, if u is initially nonnegative and additionally if; is regular,
then for some > Ou;(r) > 0,1 € (0, &). |

Definition 3.4.7 We call (u, X, y) € C** an initial solution to (3.13) with initial
statexy, if

1. there exists al C k such that(u, x, y) satisfies (3.14) with initial statep in
the distributional sense; and

2. u,y are initially nonnegative.

Given a state, define the sef(xg) by

$(x0) := {J C k | there exists an initial solutiofu, X, y) to (3.13) with
initial statexg suchthau; =0, i € Jandy; =0, i € J}. (3.19)

The set$(xp) denotes the set of all possible modes in which an initial solution exists
with initial statex.

Remark 3.4.8 There may be more than one mode corresponding to a given initial
solution(u, x, y) to (3.13). With the index set defined by

J:={i ek|u; #0}, (3.20)

the complementarity conditions require= O fori € J. Hence(u, x, y) is an initial
solution in mode/. Consider now the “undetermined index set”

K :={i e k |u; =0andy; = 0}.

Any modeJ C I € J U K may also be selected and the initial soluti@n x, y)
satisfies (3.14) for = J with initial statexg as well. As an example considey = 0.
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In this case(u, x,y) = 0 is a possible initial solution/ andK as defined above are
equal tog andk, respectively. Consequently, modiean be chosen arbitrarily, which
means that this initial solution satisfies the mode dynamics for each mode. For a given
initial solution, the freedom in the choice of the mode corresponding to this solution
is exactly characterized by the undetermined index set. |

Remark 3.4.9 If an initial solution (u, X, y) has a nontrivial impulsive part, it can

be the case that the corresponding mode is only valid for the time instant O itself.
This happens when the smooth pat.g, Y,.,) are not initially nonnegative. An
example is provided by Example 3.4.5, which explains also the special mode transition
as mentioned in Section 3.2. The constrained mad€d(1, —1,0)7) = {{1}}) is
selected only for the re-initialization of the statg(©, 1, —1,0) ", {1}) = 0). From

the re-initialized state(1;(0, 1, —1,0)" = (0,1,0,0)" (see also Section 3.7) a new
mode is selected$((0, 1,0, 0)T) = {#}). In the unconstrained mode a smooth initial
solution exists with the re-initialized stat@, 1, 0, 0) " as initial state. O

3.4.5 Solution concept

We are now in a position to define a solution concept for (3.13). A poiaté C R

is called a right-accumulation point &f, if there exists a sequenée };.n such that
1; € & andt; < t for all i and furthermore, lim, 7; = 7. A left-accumulation
point is defined similarly by interchanging<" by “>.” A set& C R is called right-
isolated, if it contains no left-accumulation points. We aa# & isolated, if it is not
an accumulation point of.

Definition 3.4.10 A solution to (3.13) on[0, T,), T, > 0, with initial statexg, is a
quadruple(€, x., u., y.), whereg, the set of event times, is a right-isolated closed
subset of0, 7,) with empty interior and

xe: (0, T)\E —- R”
ue: (0, T,)\& — RF
Ye: (O.T,)\& — R,
being arbitrarily often differentiable that satisfies the following.
1. 0eé¢
2. Fort € €, x.(t+) :=1im; 7 rge xc(1) = lim;_ o zi, Where{z; }; e satisfies
Ziv1 = Pr .,z (3.21)
liv1 € 8(zi)

and

0= {xc(t—) = limsgerge xc(), ifr>0 (3.22)

X0, if t=0.
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3. Forisolated € & there exists ati € $(x.(r+)) such that
™ i=min{t >t |te8l=1t+0(x(t+),1)>0 (3.23)
and(u. (1), x.(t), y.(¢)) satisfies (3.14) for mode and forz € (z, t¥).
O

Py, denotes the projection operator corresponding to nipdeas introduced in
Subsection 3.4.2. The definition requires that the limits in item 2 and in the first case
of (3.22) exist.

The seté specifies the event times, i.e. the times at which there is a change of
mode. Two successive isolated event timesid t*) are related by 3 in terms of
the time-to-next-event functiof (Definition 3.4.3). This requirement is included in
the solution concept to exclude redundant event times. The ftriple., y.) denotes
the trajectories in the continuous phases of the complementarity system (as imposed
by item 3). Item 2 links the continuous phases at the event times by a series of mode
selections and re-initializations. Theultiplicity m(t) of the event timer € & is
defined as the miii € N | z; = x.(r+)}, i.e. the number of re-initializations needed
before smooth continuation (a continuous phase) is possible. Imm@se= oo, one
needs a limiting operation to determine the state just after the exént). If m(z) is
finite, then only a finite number of mode selections and re-initializations (projections)
in (3.21) are needed. Item 2 specifies also the initial conditions.

Remark 3.4.11 In the literature of hybrid dynamical systems it is often assumed that
only a finite number of events exists in a finite time interval. Solutions with this
property are sometimes calledn-Zeno solutions. The relaxation of our solution
concept is twofold. First, we allow that there are infinitely many mode switchings and
re-initializations at one time instant. Second, right-accumulation points of event times
are included. We incorporate solutions that could be cailgd-Zeno to be consistent

with the literature on hybrid systems. As an example of a right-Zeno solution consider
the example of a bouncing ball with elastic impacts (with restitution coefficient smaller
thanone). This system has aright-accumulation point, because the ballis at rest withina
finite time span but after infinitely many bounces. Since our solution concept complies
with mechanical systems with inelastic impacts (see Section 3.8), the bouncing ball
example does not fit in the class of systems that we study, but it indicates that there
exist models of physical systems that require right-Zeno solutions. An example of a
complementarity system allowing right-Zeno solutions is provided by a time reversed
version of a system studied by Filippov [68, p. 116], i.e.

X1 = —Sgnix1) + 2sgrx2) (3.24a)
X2 = —2sgnix1) — sgnixz), (3.24b)

where “sgn” denotes the signum-function given by@gn= 1, if x > 0 and sgix) =
—1, if x < 0. Because this system consists of two relay characteristics, it can be mod-
elled as a linear complementarity system (see Chapter 2). Solutions of this piecewise
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constant systems are spiraling towards the origin, which is an equilibrium point. Since
%(| x1(t) | + | x2(t) |) = —2, solutions reach the origin in finite time. However,
solutions cannot arrive at the origin without going through an infinite number of mode
transitions; since these mode switches occur in a finite time interval, the event times
contain a right-accumulation point (i.e. the time that the solution reaches the origin)
after which the solution stays at zero. Left-accumulation points are excluded from Def-
inition 3.4.10 due to the requirement that the eventgsit right-isolated. However,

note that the time-reverse of the system (3.24) (which is the original example in [68])
has (infinitely many) left-Zeno solutions corresponding to initial sigte= 0 in a
generalized solution concept that admits left-accumulation points. Such a generalized
solution concept results in a nondeterministic system and nonuniqueness of solutions,
which is undesirable from a point of view of modelling and simulation. In the solution
concept of Definition 3.4.10 the only solution emanating from the origin in Filippov’s
original example is the zero solution. O

Before we present conditions on the complementarity system to guarantee the
existence and uniqueness of solutions, two algebraic mode selection procedures will
be introduced.

3.5 Mode selection methods

An essential problem in the definition of the solution concept and in the time simulation
of complementarity systems is to find the set of possible continuation n#gagsfor

a given state. In fact, this is the construction of a (possibly multi-valued) map from
the continuous state spaié to the discrete space (k). The determination of (xo)

in the previous section is based on finding all initial solutions and the corresponding
modes. In this section, we obtain two alternative representatiofiéxgf that do not
require the solution of differential equations.

3.5.1 Rational complementarity problem

As noticed in Section 3.4, the solutions to (3.14) are impulsive-smooth distributions
whose regular parts are Bohl functions. Such “Bohl distributions” have rational Laplace
transforms. Specifically, the Laplace transfaim) of u = Zf’:o u=isW 4 Uyeg With
U.¢ asin (3.16) equals [82]
l . .
U) =Y u's"+ E6I -Gt
i=0
Observe that the polynomial part of the Laplace transform corresponds to the impulsive
part and the strictly proper part to the regular part of the Bohl distribution.

Lemma35.1Letv = Y v 6D 4 V,p € Cipmp be a Bohl distribution. The
following statements are equivalent.
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1. v is initially nonnegative.

2. There exists a og € R such that the Laplace transform V (s) satisfies V(o) > 0
forallo € R, o > op.

3. The sequence given by (v 0, Vieg(0), Vﬁ?g(O), vgi,(O), ...) 1s
lexicographically nonnegative.

Also the following statements are equivalent.
1. v is the zero distribution.

2. The Laplace transform V (s) is the zero function.

3. The sequence given by (v, v 0, Ve (0), Vflezq(O), VSEL(O), ...) s
the zero sequence.

O

Proof. Evident.

Let (u, x,y) be an initial solution to (3.13) with initial stateg. The Laplace
transforms ofl, y, denoted byi(s), ¥ (s), are rational and satisfy

Y(s) = C(sI — A)"Ixg + [C(sI — A)"1B + D]0(s) andy(s)L0(s)  (3.25)
for all i € k; moreover there existsa € R such that
y(@) =0, G(0) =0 (3.26)

forallo € R, o0 > op. The converse is true as well, so the Laplace transforms are
rational and satisfy (3.25)-(3.26) iff the corresponding time functions define an initial
solution to (3.13).

The above observations result in the formulation ofRa&onal Complementarity
Problem (terminology introduced in [179]). Note that the formulation of the RCP here
is a relaxation of the one in [179], because we allow general rational solutions.

Rational Complementarity Problem. (RCP(xg)) Let (A, B, C, D) and initial
statexg be given. Find rational vector functionsgs) andu(s) such that the equalities

y(s) = C(sI — A)"Yxg + [C(sI — A) " B + Dlu(s) andy(s) Lu(s))  (3.27)
hold for alli € k, and there exists @ € R such that for alb > o we have

(@) =0, u(o) > 0. (3.28)
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If (u(s), y(s)) is a solution to RCR{), any index sefl C k satisfyingu c(s) = 0
andy; (s) = Orepresents a modein which an initial solution exists. Hence, itis easily
observed that due to the one-to-one relation between initial solutions and solutions to
the corresponding RCP the set of possible continuation méd@s must be equal to
Srcp(xo), Where

Srcp(xo) = {I C k | I(u(s), y(s)) solution to RCPxg)
such that;c(s) = 0 andy;(s) = 0}. (3.29)

A second algebraic mode selection method can be derived by using the power series
expansion of the solutions to RCE). This is described next.

3.5.2 Linear dynamic complementarity problem

If (u(s), y(s)) is a solution to RCEo), then it necessarily has to satisfy-(s) = 0
andy; (s) = 0 for somel C k. Consequently,

0 = Rr(s)xo+ Grr(s)u(s)
vie(s) = Ryce(s)xo+ Grep(s)uys(s),

whereG (s) is the proper transfer functiofi(s/ — A)~1B + D, andR(s) is the
strictly proper rational matrix' (s/ — A) 1. Note thaiG; (s) is invertible by Assump-
tion 3.4.1. This implies that; (s) = —Gl_ll(S)Rl.(s)xo and

y1¢(s) = [Rrea(s) — G1e1(s)GH(s) Rre(s)]x0.

It follows from the representation theory of rational matrix functions (see for instance
[116]) that the degree of the polynomial part @f;,l(s) is at mostn. Hence, the
polynomial parts of the rational functionsgs) andy(s) have degree at most— 1. In
terms of time-domain solutions, this means that only derivatives of the Dirac function
up to ordem — 1 can appear in initial solutions. So we can write

NOE I (3.30)

i=—n+1

and likewise fou (s). Totranslate the nonnegativity conditions (3.28) to the coefficients
of the power series expansion around infinity, we use tligt is nonnegative for all
sufficiently large reat, if and only if

Ly ) =0 (3.31)

and similarly foru(s).
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Given the system descriptig@t, B, C, D), the Markov parameters of the system
are defined by

wi=|P o Mi=0 (3.32)
CA-1B, ifi=12...
Note that
e . .
G(s)=) H's™". (3.33)
i=0

Using the power series expansionsydf) andu(s) and (3.33), RCR{) can be
reformulated as thé&inear Dynamic Complementarity Problem (terminology intro-
duced in [179]) by considering the coefficients corresponding to equal powers of
The formulation here extends the concept of LDCP as introduced in [179], because
impulsive motions are included.

Linear Dynamic Complementarity Problem (LDCP, (xg)) Let a system de-
scription (A, B, C, D), an integerk > —n + 1 and an initial stateg be given.
Let H', i > 0 be given by (3.32). Find sequences”t1, y="*2 .. y¥) and
(™"t w2 u¥) such that the equations

i

Yi= > HTu, if —n4+1<i=<min0,«) (3.34a)

j=—n+1
i
Yi=CAT o+ Y HTW, ifls<iczk (3.34b)
j=—-n+1

are satisfied, and for all indiceés= k at least one of the following is true:
(yi_"+l, yl._”+2, ..., y)=0 and (ui_""’l, ui_"+2, .. uf) =0 (3.35)

7y T2y =0 and TR u AL uk) =0 (3.36)

l 1

LDCPx (xp) denotes the problem of finding vector sequen@e"s);?';_nﬂ and
()3 _,44 that satisfy LDCR(xo) for all x > —n + 1.
If w/)s__,., and(y/)5__, ., form a solution to LDCR(xo), then index sets

J C k satisfying (3.35); € J and (3.36),; € J¢ represent candidate modes for
selection.
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The complete set of candidates for selection, denote|'gy(xo), is defined by

Stpepxo) == {J Sk [3w!Ys__, 1. (»/)5__, 1 Solution to LDCR (xo)
such that3.35) holds fori € J and(3.36) holds fori € J¢}.

Theorem 3.5.2 Let a system (A, B, C, D) be given. The following statements are
equivalent when Assumption 3.4.1 holds.

1. The equations (3.13) have an initial solution for initial state xg.
2. RCP(xq) has a solution.
3. LDCPy,(xg) has a solution.

There is a one-to-one correspondence between initial solutions to (3.13), solutions to
RCP(xg), and solutions to LDCPq(xq). Furthermore, for all xg € R",

$(x0) = 8rcp(x0) = $7pcp(*0).
O

Proof. From the derivation of RCP, it follows th@&and2 are equivalent. I§u(s), y(s))
is a solution to RCR{), then the coefficients of the power series expansion of this
solution around infinity form a solution to LDCGRxg). Hence,2 implies 3.

To see that3 implies I, suppose(y "+1, y=*2 ) ("L u=t2 . Hisa
solution to LDCR, (xg). Takel C k such that (3.35) holds fare I and (3.36) holds
fori € 1°. Definep(0) := xo + Z;’:—& A'Bu~t. We first show thap(0) € V;. To this
end, note thay; = O andu). =0foralli € {-n+1, —n +2,...}. From (3.34b), it
follows thatp(0) satisfies

0=y} = Crep(0)+Dy1v(0)
0=y2=Cr.Ap(0)+D;1v(1) 4 CroBosv(0)

0=y" = Cre A 1p(0)+D11v(k — 1) + CreBev(k — 2) + .. + C1eA“"2B4 v(0)
(3.37)

wherev(i) = u"[+1, i > 0. Combining algorithm (3.4) and the equations above,
it follows that for/ > 0 the statesA!p(0) + Zf;% A'Byv(l — 1 — i) belong to
Vi(A, Ber, Cre, Dy1), , j = 0. In particular forl = 0 this means thap(0) <
lim VJ(A, Be;, Cre, D;;) = V;. This means that there exists a smooth solution
(Uregs Xregs Yreg) 10 (3.14) for modd with initial statex(0) = p(0).

By differentiating (3.14) in time and evaluating the resulting equalities at time

instant O for the SOIUtiONU, g, Xreg, Yreg), WE Observe thaii(i) = uf‘Zg,I(O), i =
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0,1, ... satisfies (3.37) as well. To show that this implies tHat v’ for all i, observe
that due to (3.37) both sequences satisfy the discrete-time analogue of the first two lines
of (3.15), i.e.

p(i +1) = Ap(i) + Bejv(i); 0= Crep(i)+ Dyjv(i), i=0,1,2,... (3.38)

with initial statep(0). The differencav(i) := v(i) — 0(i) satisfies (3.38) with initial
state 0. We introduce the formaitransform

o0
w(z) = Z w'z7.
i=0

Using thez-transformGy;(z) of the discrete-time system (see e.g. [117]), we get
0 = Gy (@w(z). The invertibility of G;;(z) implies thatw(z) = 0 and hence,

v(i) = v(@) foralli > 0, or equivalentlyuifrl = ufe)g’,(O), i > 0. This also implies

thaty'+1 = yiie)g(O), i>0.

We defineu := Y773 u™ 80 4 Uyeq,y 1= Y721 y18¢~D +y,,, and letx be the
solution tox = AX + BuU + xg8. Obviously,(u, X, y) satisfiesI in Definition 3.4.7.
We only have to show thatin Definition 3.4.7 is satisfied. Since

Gy )= 0y 20,y 0.
and
(M7ﬂ+17 an‘l’z, . ) — (ufl’l‘i’l, e MO, u(O) u(l) )

reg’ “regr "

form a solution to LDCR, (xo), (3.35) or (3.36) is satisfied for alle k. According to
Lemma 3.5.1, this is equivalent toandy being initially nonnegative. Consequently
(u, X, y) is an initial solution with initial stateq.

The one-to-one correspondence follows easily from the above, because solutions to
RCP and initial solutions are related through Laplace transform and its inverse. Solu-
tions to RCP are uniquely transformed to solutions to LDCP by taking the coefficients
of a power series expansion around infinity. Moreover, a solution to LDCP is linked
to an initial solution by setting the derivatives of an initial solution at zero equal to the
LDCP solution as stated above (see also remark 3.5.3). The final statement is a result
of the one-to-one correspondence. O

Remark 3.5.3 Note that in the proof of Theorem 3.5.2, a direct link between initial
solutions and solutions to LDGRxp) is given. If(u, X, y) is an initial solution with
u=Y"3gu"80 4 u,,andy = Y73 y's® +y,, for initial statexo, define

i =u,i=-n+1..,0andi’tt = ul(0),i > Oandlety’,i > —n+1

be defined analogously. Thea)®_, ;. (7)%_,. 4 is a solution to LDCR, (xo).

We shall use the transformations between LRGER)), RCP{o) and initial solutions
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frequently. The above proof also yields an alternative way of deriving the LDCP:
differentiate the initial solution with incorporation of the impulsive part and evaluate
the results at time instant zero. For smooth continuations, this method can also be used
in the nonlinear case [124,179]. |

In the above theorem it is shown that the infinite version of LDCP can be used
to select the correct modes. However, under suitable conditions, already the finite
version LDCR, (xg) selects the right modes, wheteis the dimension of the state
variable (see Theorem 3.6.12 below). In [55], it has been shown that |.DgFfor
finite « is a special case of the Generalized Linear Complementarity Problem [201]
and the Extended Linear Complementarity Problem [53]. In [201], an algorithm is
proposed to find all solutions to GLCP. Such algorithms can be used to efficiently
solve the LDCP.

3.6 Well-posedness results

Due to the multimodal and nonlinear behavior of linear complementarity systems, basic
questions like existence and uniqueness of solutions given an initial state are nontrivial.
It is not difficult to find linear complementarity systems for which no solution exists
from certain initial conditions or for which the solution is not unique (see [177]). In
this section we will derive conditions guaranteeing well-posedness.

3.6.1 Local well-posedness

Definition 3.6.1 The complementarity system (3.13) is locally well-posed if for each
initial state there exists an> 0 such that a unique solution @@, ¢) in the sense of
Definition 3.4.10 exists. O

An equivalent way of defining local well-posedness is by requiring that for each
state there exists a unique solution on an interval of positive length starting with either
a finite number of jumps or an infinite number of jumps with convergence of the event
states, followed by smooth continuation on that interval.

Definition 3.6.2 Let (A, B, C, D) be a system with Markov parametert, i =
0,1,2,.... The leading column indices, . .. , nx of the linear systemA, B, C, D)
are defined foij € k as

nj =inf{i e N | H}; # 0}

with the conventiop inf) = oco. The leading row indicegs, ... , px Of (A, B, C, D)
are defined foij € k as

pj :=inf{i € N| Hj, # O}.
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Since we consider only invertible transfer functions (see Assumption 3.4.1 and
Lemma 3.3.3), the leading row and column indices are all finite. Due to the Cayley-
Hamilton theorem, we even haye < n andn; < n. The leading row coefficient
matrix M(A, B, C, D) andleading column coefficient matrix N (A, B, C, D) for the
system(A, B, C, D) are defined as

H{}
M(A, B, C, D) := : andN (A, B,C,D):=(H)}...H}})  (3.39)
H*

respectively. We omit the argumertts, B, C, D), if they are clear from the context.
The main result of this section is stated as follows. Recall that a square matrix is a
P-matrix, if all of its principal minors are strictly positive (Section 3.3).

Theorem 3.6.3 If the leading row coefficient matrix M and the leading column coef-
ficient matrix N are both P-matrices, then the linear complementarity system (3.13) is
locally well-posed. From each initial condition, at most one state jump occurs before
smooth continuation is possible, i.e. the multiplicity of an event time is at most one.

d

Remark 3.6.4 The definition of well-posedness if often taken to include continuous

dependence of solutions on initial conditions. Such continuous dependence is not

claimed in the above theorem. An example of a linear complementarity system that

displays discontinuous dependence on initial conditions will be given in Section 3.8.
O

To prove the main result, we first need some auxiliary results.

Lemma 3.6.5 If the leading row coefficient matrix M has only nonzero principal
minors, then assumption 3.4.1 is satisfied, i.e. all modes are autonomous. The same
holds when the leading column coefficient matrix N has only nonzero principal minors.

O

Proof. Lemma 3.3.3 states that itis sufficient to show thiat(s) is invertible foralll <
k. For notational convenience, we assuime [ for somd ¢ k. If M has only nonzero
principal minors, them(;; is invertible. HenceG;(s) = diag(s ™, ... ,s ")V (s)
whereV (s) is a biproper matrix, becaudé(co) = Mj; is invertible [82, Thm. 4.5].
The reasoning is analogous for the case in whithas only nonzero minors. O

Definition 3.6.6 A statexg of the complementarity system (3.13) is called regular, if
there exists a smooth initial solution with initial staig O
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A statexg is regular if and only if RCP() has a strictly proper solution. Or

equivalgntly,xo is regular if and only if LDCR,(xo) has a solution with,—*t1 =
.=u"=0.

Under the assumption that the leading row coefficient matrix is a P-matrix, the
following result characterizes the regular states. The result is an extension of a similar
resultin [179] which was derived under the additional assumption of “uniform relative
degree” (i.e.o1 = p2 = ... = pr = p). In contrast to [179] we restrict ourselves here
to the linear case, but an extension to the nonlinear case is straightforward.

Theorem 3.6.7 Let a system (A, B, C, D) be given. Suppose that the leading row co-
efficient matrix M is a P-matrix. Thenxo € R" is aregular state of the complementarity
system (3.13) if and only if for alli € k

(Ciex0, CieAxo, ... , Cia A" “Lxg) = 0. (3.40)
Moreover, the smooth continuation is unique. O

Proof. Note thatyl.(’)(O) =CieAlx0,j=0,...,p;—1,i =1,..., k, independently
of the choice of a smooth input Hence, the above condition is necessary to guarantee
y(t) > 0,1 € [0, &) for some positives.

To prove the converse, we will show that if for alle « (3.40) holds, the corre-
sponding LDCR, (xo) has a solution witlu =**t1 = ... = 49 = 0. This is sufficient
to show that a smooth initial solution exists. The idea of the proof is to reduce the
LDCP4 (xpo) to a series of LCPs that can all be solved uniquely. This idea originates
in [124].

We will show that LDCP (x0) with the additional requirement"+1 = =
y0 = 0,u*t!t = ... = 4% = 0 has a unique solution. From such a solutlon it is
immediately clear that (3.34a) is satisfied. The remaining equalities can be written as

v =Ciedi o, =12, i =1,k (3.41)
and
y]/-)1+p
:gp(xo,ul, o uP™hH 4+ M, (3.42)
pA+P
Yk

whereés, &2, ... are certain linear functions. We denote by/), / € N the truncated
problem of finding:/, j = 1,...,landy/,i € k, j = 1,... , p; +1 satisfying (3.41)
and (3.42),p € {1, ..., 1} together with the requirement that for all indides k at
least one of the following statements is true:

GRy2 .oyt =0 and Wi ub) >0 (3.43)
OhyZ .y ™y =0 and @l W ... uby=0. (3.44)
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The problent. (/) is a subproblem of LDCR (xo) and if we find a solutioiy?, y2, .. .),
(ul, u?,...) satisfyingL (/) for all / > 0, then this solution is a solution to the corre-
sponding LDCR, (xg) with y"*1 = ... =0 =0,u "1 = ... =u%=0.

We claim thatZ (/) has a unique solution for all> 0. This is obvious fof = 0.
We will proceed by induction in the same way as in [124,179].

We write I;, J;, K; for the active (input) index set, the inactive index set and the
undecided index set, respectively, determined.ldy. Formally, forl > 1,I; = {i
k1@l .. ouy =0, i=tiek| Gl ...,y > 0yandk; =k \ (I; U J;) with

yli=1...,k j=1...,p+landu’,i =1,...,1determined (uniquely) by
L(l). For convenience we also defifig:= 0, Jo = {i € k | (y,.l, ,yip") > 0} and
Ko=k\ Jo.

Note thatL (I — 1) is a subproblem of.(/), so variables uniquely determined by
L(l — 1) are automatically uniquely specified fb(/). As a consequencé, 1, J;_1,
K;_1 are determined as well. Compariiig!/) with L( — 1), we observe thak (/)
has one additional equation: (3.42) fer= [. We divide this equation into the three
parts given byl;_1, J;—1 andK;_1. For notational convenience, we omit all indices
depending or and all superscripts:

yI 27 Mg Myy Mk uy
yi V=1 zsv | +| My My; Mk uy (3.45)
YK ZK Mg; Mgy Mgk ug

with z = &(xo, ut, ..., u!~1). From the definition off;_1, J;_1 and K;_1, we get
y; = 0andu; = 0, because (3.43) or (3.44) should hold. By substituting this result
in (3.45), we obtain

0 = z7+Mpur+ Migug (3.46)
yi = zj+Myur+ Mygug (3.47)
Yk = 2k + Mgur + Mgguk. (3.48)

SinceM is a principal submatrix of a P-matrix, it is invertible and hence we get from
(3.46) thatu; = —M,‘,l(zz + Mk ui). Substituting this expression in (3.48) leads to

YK = 2K — Mg M fer + (Mgg — Mg MM )uk (3.49)
Due to (3.43) and (3.44) and the definitionkf_1, the complementarity conditions
O<ug Lyg=>0 (3.50)

hold. So, (3.49) and (3.50) constitute an LCP. Sintgg — Mg M;,lMIK isa Schur
complement of a P-matrix, itis itself a P-matrix by Proposition 2.3.5in [47]. According
to Theorem 3.3.4, the corresponding LCP has a unique solution. kgome can
computeu; andy,;. Hence, the induction hypothesis has been provei. f@o we
find a solution of LDCR,(xo) with u"*1 = ... =40 =0,y "t = ... =0 =0.
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and hence a smooth initial solution correspondingd@xists. Since the solution to

LDCP4 (xg) with u~"*t1 = ... = 4% = 0 is unique, the one-to-one correspondence
between initial solutions and solutions of LDGPxg) implies that the corresponding
smooth initial solution is unique. O

One can even prove that the initial solution corresponding to a regular initial state is
unique and thus smooth. Our next result is concerned with the unigqueness of solutions
emanating from a not necessarily regular initial state.

Theorem 3.6.8 Let a system (A, B, C, D) be given. If the leading column coefficient
matrix N is a P-matrix, then for every state 260 andeveryk > 0, the problem LDCP; (x0)

has a solution that is unique except foru i €k, j=k—mni+1,...,«, which are
left undetermmed Furthermore, u; 1 = ui_"+2 =...=u; " =0,i € k and
y = =y0=0. O

Proof. The proof is based on separation of the equalities (3.34) in two parts (3.34a)
and (3.34b), providing the equations fgr i = —n + 1,... ,0andy’,i =1, .

respectively. For both parts we start an induction that is analogous to the one used
in the previous proof: we reduce the LDCP to a series of LCPs which can be solved
uniquely. This is done by selecting certain equations from (3.34) for each successive
LCP in such a way that only principal submatrices of the leading column coefficient
matrix N appear in these LCPs.

We introduce the index set9; := {i € k | n; = j}, j = 0,1,...,n and
S;:==U/_00i,j=0,1,...,n. So, then;-th Markov parameter is the first Markov
parameter in which the-th column is nonzeroQ; is the set of indicesfor which the
i-th column in the sequence of Markov paramet(eHQ H, ...)is nonzero for the
firsttime in H7. S; is the set of indices for which the matrrx(Hf’l,H}l,..  Hl)is
nonzero. As noted before; < n. Hence,S, = k. By definition, H’Sr =0,i <j
andSp € S1C€ S C...C8S,.

After suitable permutation of rows and columns if necessary, there are integers
ko, ...  kpy1 With O = ko < k1 < k2 < ...k, < kny1 = k such thatO; =
{kj+1,...,kjs1},j=0,1,...,n. Then

0 1
=[Hy0, Heo, - - - Hfon].

We claim that for 1< r < n the problem LDCB,,, (xp) has a solution with

1 —nt2 -
uSr"_': = ”S,n_-; =...= uSO"'H =0 (3.51)
y7n+l y7n+2 - = y7n+r -0 (352)
The remaining variables;/ n+l ugc””, uSE”J“ are left undetermined. This will
r—2

be the induction hypothesrs
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Forr = 1, we only have the equation
y = gO~ (3.53)

with the complementarity conditions© y=*+1 L u="*1 > 0. The complementarity
conditions follow from the fact that for each index either (3.35) or (3.36) should hold.
Sincer’Sa =0, (3.53) reduces to

y = H950u§0"+l. (3.54)

Sinceu_.’”rl does not appear in this equation, itis left completely undetermined (except

for the condltlonrf’Hl > 0). Considering (3.54) and the complementarity conditions
only foryi lie So results in the LCP
—n+1 0 —n+l —n+1
ySon+ = HSOSOMSOHJ’_ = NSOSOMSOH+

0 S y;on-‘rl J_ MEOH-HL 2 O

SinceNs,s, is a principal submatrix ol itis a P-matrix. Theorem 3.3.4 then implies
that the above LCP has a unique solution. Obviously:*! = 0, ug"* = 0 is
the unique solution. From (3.54);”*1 = 0 follows immediately. This proves the
induction hypothesis for = 1.

Suppose that the induction hypothesis above holds ferl, where 2< r < n.
Since LDCR.,,4,-1(x0) is a subproblem of LDCE,,(xp), we consider only the
additional equality in (3.34):

yT = HOT g gLl Byt
HYqug! ™ + Hlug"™ "t HG "
= H.So”S(:H_r + H.Sl\sousln\“;g v+ H:Srll\Sr 2”S:Hl_\S, ,
= Hlpguge'" + Higug "t .. +H.’011u5”+11. (3.55)

The second equality follows frorH’SC = 0, the third one follows from the induction
hypothesis (3.51). The last equahty is a consequencg;of S;_; = O;. Since

gc”“, ugc”z, . SC”” do not appear in this additional equation, these variables
r—1 2

r—

remain undetermlned

u
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Equation (3.55) consists éfscalar equations. Considering only the equalities for
y; " i € S,_1, we find

—n+r
N
—n+r 1
—n+r 0 1 r—1 01
Vs, = (Hsr 00 Hs 10, Hsrflorfl) :
—n+1
uor—l
—n+r
U,
—n+r—1
Ug,
- ‘NSV,].S,,]_ :
—n+1
uor—l
=v_,

Since (3.35) or (3.36) should hold for allit follows that

0< yS_r’:'r lv_,>0.

This is the LCP we are looking for. Sindés, 5., (as a submatrix o) is also a
P-matrix, the above LCP has a unique solution (Theorem 3.3.4). Hence, this solution
mustbev_, = yg" T = 0. Using this in (3.55) shows that”*" = 0. In combination
with the induction hypothesis fer— 1, this yields the hypothesis fer This completes
our induction step and hence the proof of our first claim.

To complete the proof, we start a second induction with hypothesis as stated in the
formulation of the theorem. Note that this is equivalent to saying: LR&§ has a
unique solution for every statg, only MSS’ gi o u’g ”*1 are left undetermined.
For« = 0 this hypothesis is true, for it follows from the prewous induction by taking
r = n. Suppose the hypothesis is true for- 1, « > 1. Since LDCR_1(xp) is a
subproblem of LDCP(xg), the variablesu’go_l, g, w1l u L are
already uniquely determined. We set

= fiek| @R T - 0y,
J = {ie/%|(y;”+1,y;”+2,...,yi 1~ 0y and
= k\(TUJ).

In comparison with LDCP_1(xg), LDCP, (x0) has the additional equality

”00

MK 1

K _ k=1 k-2 k—n  k—n—1 —n+1 01
y _a(xo,uso sUg he s Ug LU s, U )+ N .
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for some functiorr. Splitting this equation into three parts according to the index sets
I, J, K, we can follow the same reasoning as in the proof of Theorem 3.6.7 to conclude
thaty*, u¥, ,u%y*, ... u "™ are uniquely determined and thus prove the induction

hypothesis fok. O

We are now in a position to prove Theorem 3.6.3.

Proof of Theorem 3.6.3Lemma 3.6.5 implies that all modes are autonomous.
Take an arbitrary initial stateg. It follows from Theorem 3.6.8 that LDCR(xo)
has a unique solution which satisfies"™ = ;"™ = ... = u;" = 0,i € k
andy7tl = ... = y0 = 0. Due to the one-to-one correspondence between ini-
tial solutions and solutions to LDGRxp), an initial solution(u, x, y) exists and the
solution must be unique as well. In case the initial condition is regular, the initial
solution is smooth. In other cases, we have to prove that after the state jump cor-
responding tqlu, X, y) smooth continuation is possible. Stated otherwise, we have
to show that the re-initialized state(0+) is regular. The re-initialization is given
by the impulsive parti;,,, = Y7—5 u~'s@), where the coefficients~ follow from
LDCP4(x0). Since the impulsive part is unique, the re-initialization is unique; it re-
sults inx(0+) := xg + Z;’;& A'Bu~ (see (3.10)). The complementarity conditions
(3.35) and (3.36) imply thaty®, y2,...,y") = 0. The right hand side of (3.34)
contains foryil, cee yl."", i € k only coefficients corresponding to the impulsive part,
i.e. onlyu® ..., u="t1 Hence, observe thaC;,x(0+), ..., CisAP ~1x(04)) =
O ... ¥ =0, i € k. According to Lemma 3.6.7%(0+) is a regular state. So
after at most one re-initialization, (unique) smooth continuation is guaranteed:

3.6.2 Global well-posedness

This subsection contains material of the paper [94] and presents two classes of linear
complementarity systems that can be proven to be globally well-posed.

Definition 3.6.9 The linear complementarity system (3.13) is globally well-posed, if

1. For each initial state there exists a solution[0nco) in the sense of Defini-
tion 3.4.10.

2. If (&7, u{, xZ, yg'), Jj = 1, 2 are two solutions corresponding to the same initial
state and both defined ¢8, 7,) for arbitrary7, > 0, then

Wl xl yha = @2, x2, y2) (1)
forallr € [0, T,) witht ¢ €1 U &2.

We will also use the term “global existence” for the first, and “global uniqueness” for
the second statement above. |



70 Linear Complementarity Systems

Local existence does not imply global existence. A problem arises when the event
times contain a right-accumulation point < oo and there is no limit for,(¢) as
t 1 t*. Infact, this is the only phenomenon that may prevent a local well-posed linear
complementarity system from being globally well-posed. Note that local uniqueness
of solutions is equivalent to global uniqueness of solutions using the solution concept
of Definition 3.4.10 (see also Chapter 4).

Bimodal linear complementarity systems

A LCS is said to be bimodal, if there is only one complementarity pairy)
(i.,e.k = 1). As a consequence, the corresponding LCS has two mddes/ and

I =1{1)).

Theorem 3.6.10 Consider a bimodal LCS (3.13) with C # 0. 1 The following
statements are equivalent.

1. The leading Markov parameter M = N is defined (i.e. p1 = n1 < oo) and
positive.

2. The linear complementarity system (3.13) is locally well-posed.

3. The linear complementarity system (3.13) is globally well-posed.

O

Proof. Thm. 3.6.3 yields 1= 2. To prove 2= 1, consider the following cases.

1. Suppose the leading Markov parametér= . is defined and negative. Ac-
cording to Lemma 3.6.5 all the modes are autonomous in this situation.

(@) D =0.[177, Thm. 4.8] claims that the system is not locally well-posed.

(b) D < 0. It can easily be seen from (3.13) that= —D~1Cx (mode
I = {1}) andu = 0 (model = ) both generate a smooth initial solution
and thus a local solution in the sense of Definition 3.4.10 for an initial state
xo with Cxg > 0.

2. In caseM andV are not defineddy = n1 = o0), all Markov parameters are
zero. ltis clear thay is independent of in (3.13b). Hence, for anyp € R”
with Cxg < 0 there does not exist a solution.

INote thatC = 0 is a degenerate and uninteresting case, since the complementarity conditions do not
involve the state vectar. Any quadrupl€é, uc, x¢, yo) with u() a solution to LCRO, D) for all ¢ ¢ & and
satisfying (3.13a)-(3.13b) is a solution to (3.13). It can easily be seen that for a Bcdl@P(0, D) has a
unique solution if and only iD # 0.
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As mentioned before, local uniqueness of solutions and global uniqueness of solutions
are equivalent (see also Chapter 4). Since global existence implies local existence, we
have 3= 2. It remains to show that 2> 3, i.e. we have to show that local existence
implies global existence of solutions.

The mode dynamics are givenby= Ax for I = Jandx = A+ BFyy for I = {1}
with F; as in subsection 3.4.1. It can easily be verified that the consistent subspace for
I = ¢ equalsVy = R”" and thus the re-initialization operaty as in subsection 3.4.2
is just the identityf. The re-initializationP(y, is the projection orV3; along7jy,.

Let [0, t*) be the maximal interval on which a soluti@@, u., x., y.) exists for
initial statexp and suppose that* < co. We drop the supscriptfor ease of notation.
Time t* is a right-accumulation point of events, because otherwise the LCS evolves
in either one of the modes on an intergal — 8, t*) for somes > 0 Then it is clear
that lim;4.« x(¢) exists, because the dynamics within a mode is linear. Consequently,
continuation beyond* would be possible due to local existence of solutions.

Without loss of generality we may assume that the initial modé}isSincer* is
a right-accumulation of events there are infinitely many cycles consisting of smooth
continuation in mod¢1}, smooth continuation in modéand then a jump of the state
variable according t@1;. Consider the state, at the beginning of the cycle (after the
re-initialization). It is clear thaPx, = x;, € V1. Denote the duration of modé;}
by A1 (may be equal to zero) and in moféy Ay and define,, = eA+BFwA1y,,
Note thatx,, € V{1; due to invariance o¥;;, under the dynamics = (A + BFy))x.
Then we obtain fox, := Pgyet2eA+BFu)A1y, at the end of the cycle

A+BFiy)A
|+ leATBFIALy, — x| <

AA

lxe — xpll < 1 Pyye” ™ xm — X
——
:P(l)xm

cpApll Py llllxem | + cryAdllxs |l < c(Ag + An)lixpll < cAllxp]l - (3.56)

for certain constants, c;1y ande, andA = Ag+ Aj the duration of the complete cycle.
Consider the sequence of stateg; . at the beginning of the cycles and It be the
duration of thei-th cycle starting inv; and ending inx;+1. Hence, (3.56) translates
into ||x;11 — x; || < cA;llx;|| and yields|x; 11|l < (14 cA;)|x;]l. Consequently, we
have that

i
Ixiall < T @+ ca)ixoll.
j=1
By taking the logarithm of this inequality and using t@?‘;o Aj = t*,itcan be seen

that||x;|| < ™" |lxo|l. This implies thak (r) is bounded off0, 7*). Form > n it holds
that

m—1
lxm — xall < ¢ Ajllxill.

i=n
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Since) 2y A; = t* andx is bounded oni0, t*) this yields thafx;};cy is @ Cauchy
sequence and hence has a limit. It is clear that then alsg.lim(r) must exist.
Local existence of solutions implies that a solution can be defined beygmhich
contradicts the definition af*. Hences* = oc. O

LCS with low leading row indices

Theorem 3.6.11 Consider the linear complementarity system (3.13) and let the leading
row and column coefficient matrices M and N be P-matrices. If the leading row indices
pi are contained in {0, 1} for all i € k, then the linear complementarity system (3.13)
is globally well-posed. (]

Proof. According to Thm. 3.6.3 the system (3.13) is locally well-posed. Since local
uniqueness is equivalent to global uniqueness of solutions, it remains to show that local
existence results in global existence of solutions using the hypothesis in the formulation
of the theorem. Defin& := {i € k | p; = 1}. The set of regular state® is equal to

{xo € R" | Ckexp > 0} (Theorem 3.6.7). Sinc® is closed, it is invariant under the
dynamics. Indeed, iR is notinvariant, there exists ag € R such that alocal solution

(&, ue¢, x¢, yo) satisfiest. (0) = xg andx.(z) € R fort € (0, ¢) for somes > 0. The
factthatyg € R implies the existence of a8 o < ¢ such thatu,, x., y.) isequalto a
smooth initial solution ofi0, «). This implies that for initial state. () with t € (0, «)

there exists amooth initial solution equal ta — (u.(t + ), x.(t + ), yc(t + 7)).
Hencex (1) € R for t € (0, @), which leads to a contradiction.

Suppose that the maximal interval on which a solutienx, y) (we omitted the
subscriptc) with initial statexg exists is equal t¢0, 7*) with t* < oco. Since every
event time has at most multiplicity one, we can assumeiat R (otherwise take
one initial jump). Sincer is invariant under the dynamics of the LCS, it holds that
x(t) € R forall r € [0,7t*). In a continuous phase there is at most exponential
growth, because the solutians governed in modé by x = (A + B Fy)x with F; as
in subsection 3.4.1. Since in each mode there is at most exponential growth without
jumps, it is clear that(¢) is bounded ori0, t*) (say|lx(¢)|| < M for all ¢ € [0, T*)).
Hence, when the solution is given on the interalr) C [0, t*) by model, then

lx(2) — x(s)|| = [|eATBFDE) x () — x(5)|| < crlt — s|llx(s)]| < 1Mt — s
(3.57)

For arbitrary(s, t) < [0, ) with x possibly evolving through several modes we obtain
from (3.57) that

lx(@®) —x()II <M maxc; [t—s].
1P (k)

This implies thatr is Lipschitz continuous offi0, 7*) and thus also uniformly con-
tinuous. A standard result in mathematical analysis [169, ex. 4.13] states'that
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lim; 4. x(¢) exists and lies inR due to closedness o®. Therefore, smooth continu-
ation is possible from* beyondr*, because of the existence of local solutions. This
contradicts the definition af*. Hencesz™* = oc. O

3.6.3 Mode selection by a finite LDCP

The next theorem states that in caseis a P-matrix, it is sufficient to consider
LDCP, (xp) (instead of LDCR, (x0)) for selection of a mode. Hence, only an algebraic
problem with a finite number of constraints has to be solved.

Theorem 3.6.12 Let a system (A, B, C, D) be given. If the leading column coef-
ficient matrix N is a P-matrix, then from every initial state there exists a unique

initial solution to (3.13). This solution evolves in mode I where I := (i €k |
(ui—n+17 ”i_n+2’ W7y > 0} where W!)i__ 1o 01)j__, 14 constitutes a solu-
tion to LDCP, (xp). O
Proof. Let (y™**L, y=*2 . y") and "1, u~"*2, ..., u") be a solution to

LDCP,(xp) and let/ be defined as in the formulation of the theorem. Defi(@) :=

xo0+ Z?;Ol A'Bu~'. Note that this is the state after the jump induced by the impulsive
distribution 3"~ u~15® starting fromxo. It follows from the definition off that
;" . W) = 0,i e I¢ and in combination with (3.35), (3.36) the same
definition yields(yi_”“, ...,y =0,i € I. Using (3.34b), we conclude tha(0)
satisfies

0=y} = Crep(0) + Dyjv(1)
2 _
2_

0=y; =C1sAp(0) + D;jv(2) + CreBosv(1)

0=y" =CreA" 1p(0) + D;jv(n) + CreBojv(n — 1) + .. + C1o A" 2B, 1v(1)
(3.58)

with v(i) = u’, By using (3.4) and the equations above, it can be shown that for all
j=0,1,...,nthe vectorp(0) € V;(A, Be1, C1e, Dy1). Clearly, this implies that
p(O) € lim Vj(A, Ber,Cre, Di1) = V, (A, Ber, Cre, Dy1) = Vi, for the algorithm
converges withim steps (similarly as in the proof of Theorem 3.5.2). Hence, there
exists a regular solutio(U, e, X,eq, ¥ reg) t0 (3.14) in mode with initial state p(0).

We define

n—1

0 = D> w8+
i=0

5’ = Yreg-
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Furthermoreg denotes the solution to (3.14) in mofieorresponding téi and initial
statexp. Note that according to Theorem 3.6:8"*1 = ... = y0 = 0. Obviously,
this is a solution to (3.14) in modg so it only remains to show that, § are initially
nonnegative. We shall do this by proving tluéfg(O) =y tlforali =0,1,... ,n—
ni —1and consequently,ﬁie)g(O) = yitl

Notice that bothv(i) = ung,(O) i=1..,nandv() =u},i=1...,n
satisfy (3.58). We extend the solution of LDQ(RO) with zeros to get an infinite
sequenceéu "1 ..., u",0,0,...). The differencaw(i) = uﬁie)g ;0 —uit i >0
can be taken as an input to the discrete-time system

gi+1) = Aq(Q)+ Bew(i), ¢q(0) =0
y(i) = Creq(i) + Dijw(i) (3.59)
satisfyingy(0) = ... = y(n — 1) = 0. Taking thez-transform of the discrete-time

system (3.59) (see e.g. [117]) with inputi) gives (with some abuse of notation the
z-transform ofw is denoted byw(z))

o
Gr@w@) =) 3@z =7"p() (3.60)
for some proper rational vector functigriz). For notational simplicity, we set= I,
I € k. SinceNy; is a P-matrix (and hence invertible},; (z) can be written as

Gii(z) = Vo(g)diagiz™™, ..., z7 ™), (3.61)

where V> is biproper (i.e. proper rational with proper rational inverse), because
Va(o0) = Nyy is invertible (Theorem 4.5 in [82]). Hence, (3.60) yields

w(2) = G (@)p(2) = diagz ™", ...,z (),
wherep(z) = V{l(z)p(z) is proper. The definition oy (i) now implies that

(1) (O) — Ml-‘rl

rcg
forall je ITandi =0,1,... ,n—n; — 1.
Since forj € I,

—n+1 (0) (" ni—1) —n+1 n—1;
(uj ., rng(O) s Upeg. j ) = (j veee U )>0

the distributionli; € Ciy), is initially positive for j € I. Note thaty; = 0 by
construction of: ¥y =y, satisfies together with, ., the condition (3.14) for mode
I and initial statep(0). Similarly, for j € 1, i; = 0. Note that

(y7n+ls'-~ 7y yr('?)g9 }(’Zgl))_(y*n‘l’l, 1yn)zos
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becauseuf"e)“ = ui/.+l forjerlandi =0,1,...,n—n; — 1. As aconsequence we
have that if(y;"**, ..., y") > O, theny; € Ci, is initially positive. Forj € I¢,

it may happen tha(tyj_'”“l, cee y;’) = 0; however, this implies that; is identically

zero. To see this, note thyt,, ;- can be written as the output of the system

x = (A+ BFp)x
Yreg, e = (Cpe + Dyeo F)x,

because the inpuit satisfying (3.14) can be given in feedback formuay) = F;x(¢)
(see section 3.4). By the Cayley-Hamilton theorem and because the state space dimen-
sion of the system is equal g

implies

_ —n42 1
(y] n+l’ yj n+ U yjo7 yreg,j(o)’ y}(’e)g,j(o)’ .. ) =0.

Sincey g, j is of Bohl type,y; = Y e, € Cimp is identically zero (Lemma 3.5.1).
Hence,([, X, ¥) is an initial solution to (3.13).

Uniqueness follows from the fact that that LDGBxg) has a unique solution (The-
orem 3.6.8). Indeed, the one-to-one correspondence between initial solutions and
solutions to LDCR, (xg) implies that there is only one initial solution, which must
evolve in the above mode. O

Remark 3.6.13 Since LDCR,(xp) has a unique solution, the modeas defined in
the previous theorem (selected by LD{®))) is obviously contained i8 3 -p(x0) =
Srcp(xp). Since there is only one corresponding initial solution, it evolves in all
the modes contained iy -p(x0). Hence, all selected index sets4fiyp(xo) are
appropriate. Of course, the additional modes containégipp(xo) are characterized
by the undetermined index sktas in Remark 3.4.8. |

Remark 3.6.14 Solving LDCR, (xg) can be simplified by using Theorem 3.6.8. This

theorem states that the variables'*%, y="+2, ...,y andu; ™™, w72, . u ™,
i € k can immediately be set to zero, which reduces the number of equations to be
solved. 0

In the section below, we illustrate the above theory by means of the two-carts
example.
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3.7 Algorithm for constructing solutions

In this section, a method will be proposed to construct analytical solutions to linear

complementarity systems. The method will be illustrated by applying it to the two-

carts example of Section 3.2. We emphasize that it is not the purpose of this chapter to

give anumerical scheme for the simulation of complementarity systems, although the

analytical algorithm may be used as a guideline for the development of such a scheme.
The algorithm is described by the following procedure.

Algorithm 3.7.1 Let xg be the initial state and, the final time.

0. initialization: Setz := xg, & := {0}, andt’ := 0 as the initial state and time.
1. step one: Select for initial state a model € $(z).

2. step two: Consider the following two possibilities:

1. From the state smooth continuation is possible in modgi.e.z € V;.
Go to step four.

2. No smooth continuation is possible in mob&om z, i.e.z ¢ V;. Go to
step three.

3. step three: Compute the projectio®; of z along7; onto V; (Subsection 3.4.2).
Setz := P;z. Go to step one.

4. step four: Compute the solutiofu®’, x>/, y%!) (see Subsection 3.4.1).

5. step five: Determine the next event tintz, ). Define (u.(t), x.(t), y.(t)) :=
wal@ — ), x¥ 1@ — 1), y>l@¢ —t)) fort € (t',t' +6(z,I)). Sett :=
'+0(z, 1), 86 :=&U{t'}andz := x.(t'-). If ' > T, the algorithm terminates.
Otherwise, go to step one.

]

The algorithm can be visualized by the flow diagram as given by Figure 3.2.

Remark 3.7.2 Algorithm 3.7.1 produces a solution ¢@, 7,) if the following condi-
tions are satisfied.

1. The algorithm does not get into a situation with< 7, and$(z) = @. Such a
situation is called “deadlock.”

2. All encountered event times have a finite multiplicity. Stated otherwise, the
algorithm does not end up in an infinite loop consisting of only re-initializations
and mode selections, where a limiting operation is required.

3. The event times do not have a finite accumulation point strictly smallerfthan



3.7. Algorithm for constructing solutions 77

A 4

Contfinuous phase

v
Event detection

Z=X (o)

A

Mode selection

Re-Initlalisation

A

Is smooth

continuation possibls

in the selected mode
without

re-initialisation %

Yes

Figure 3.2: Schematic description of complete dynamics

]

Theorem 3.7.3 Let a system (A, B, C, D) be given satisfying the conditions of The-
orem 3.6.3. Algorithm 3.7.1 produces a solution on [0, T,) if and only if accumulation
of events does not occur on the interval [0, T,]. O

Proof. By Theorem 3.6.3 the first two conditions mentioned in Remark 3.7.2 are sat-
isfied (deadlock cannot occur and the maximal multiplicity of an event time is one).
Therefore the result follows. O

Returning to the two-carts system of Section 3.2, we suppose that the initial state
equals
xo=e¢ 40 -1-10" ~ (0.3202 —0.4335 0.3716 —1.0915 "

and7, = 3. Note that for this system the Markov parameters are givei By=
H! = 0andH? = M = N~ = 1. Hence, the two-carts system satisfies the suf-
ficient conditions for local well-posedness presented in this chapter. Consequently,
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Algorithm 3.7.1 can only fail if the set of event times contains a finite accumulation
pointt < 3. According to Algorithm 3.7.1, we start by settifg.= {0}, z := xo and
t':=0.

Step oneThis step selects the unconstrained mote=( € $(z)), because the
only initial solution for initial state; is (u, X, y) given by(0, eA’z, Ce”’z). Note that
y is initially nonnegative, becausg0+) = xo1 ~ 0.3202 is equal to the distance of
the cart to the stop which is strictly positive.

Step two This step leads to the decision that smooth continuation in the selected
mode is possible, because Vj; = R* (every state is consistent for the unconstrained
mode).

Step four The unconstrained dynamics is specified by a linear ordinary differential
equation; the solution is equal t6-/ (1) = 0,x%1(¢) = Az, y> ! (1) = Ce?'z.

Step five Determining the zero crossing §f-/ givesé(z, I) := 1. The cor-
responding state is equal {0, —1, —1,0)", which is not regular for the uncon-
strained mode. Note thg{tﬁ;{g(l) = 0, yf;fg(l) < 0, so continuing in the uncon-
strained mode would violate the inequality constraitt) > 0. Henceu.(t) = 0,
xe() = A D0—-1-107, y.(t) = CeA(0—-1—-10)" fort € (0,1), & = {0, 1},
t':=1landz:=(0 —1 —10)". Sincer’ < T,, we go to step one.

Step oneFor the purpose of illustrating mode selection by RCP, the dynamical
system is transformed to the Laplace domain:

X10
X2
X30
X40

o

(s4+352+1)y(s):(s(52+1), s, s241, 1) + (2 + Dyuls).

(3.62)
Substitutingz for (x10, x20, 30, X40) | results in
(s4 + 352+ Dy(s) = —s — 52— 1+ (s2 + Du(s).

Sincey(s) oru(s) should be zero, there are only two possibilities:

2
—sc—s—1
unconstrained modei(s) = 0, = - -
(s) y(s) s44+352+1
S
constrained mode =0; =1 .
¥(s) u(s) =1+ = 1

Since the RCP requires nonnegativity for sufficiently large values of the indeterminate
s, the combinatiory(s) = 0, u(s) = 1+ ?ﬁ is the unique solution to RGP); so
$8(z) = 8rcp(z) = {{1}}. Hence, the constrained mode must be seledted (1}).

Step two Since the solution to RGP) is not strictly proper, the answer to the
question in the decision block in Figure 3.2 is negative, so we have to re-initialize.
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Step three Using (3.4) and (3.7), we can compute the consistent states and the
jump space:

Ty =Im ;V{l}ZKeI‘(lOOO):”ﬂ

0010

OPFr OO
[cNeNeN o
[cNeoN Ne
= O OO

To re-initialize we have to projeetonto Vj1y along7is;, which results in
— _ ply, _ T
z:=Pyz= Py 2=(0-100".

Step onéWe have to solve RGR):
(s* + 352 + Dy(s) =—s+ (s + Du(s)

together with the complementarity conditions. The only solutioy(is = 0, u(s) =
ﬁ resulting in/ := {1}.
Step two Since the solution to RGP) is strictly proper, smooth continuation in
the selected mode is possible. The physical interpretation is clear: the left cart hits the
stop. Instantaneously, the velocity is put to zero and the right cart keeps the left cart

pushed against the stop.

Step four The dynamics of the constrained mode is given by a set of DAEs. How-
ever, these can easily be translated into an ODE (note that there must exist a linear map-
ping Fyyy such thaw« () = Frx(¢) satisfies the mode dynamics; see Subsection 3.4.1).
The inputz must be chosen in such away, that it kegmtentically zero. Since = x1,

y = x3, ¥ = 2x1 + x2 + u, u should equal-2x1 — x2. (Note thatF; = (-2 —100

is a possible choice, but is not the only choidg. = (¢« — 1 8 0) is an alternative

for everya and g, because; = x3 = O for consistent states.) Hence, the dynamics
in the constrained mode is given by = x3 = 0, X2 = —x2, u = —x». Solving this

set of equations for initial stategivesu®! (1) = cost, xi’l(t) =0, xg’l(t) = — COSt
andy®!(r) = 0. Note that we could also have concluded this by taking the inverse
Laplace transform of the solutiain(s), y(s)) to the RCP in the last mode selection.

Step fiveAn event s detected &{(z, 1) = inf{r > 0| coqt) < 0} = 5. The piece
of (uc (1), x.(t), yc(t)) on(1, 1+ %) is given by the initial solution above as described
in Algorithm 3.7.1. & := {0,1,1+ 7}, := 1+ % andz := (0,0,0, 1T. Since
t' < 3=T,, we proceed with step one.

Step oneThis time LDCP will be demonstrated as a mode selection tool. Since the
conditions of Theorem 3.6.12 are satisfied, a finite version of the LDCP can be used
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for mode selection: LDCRz) reads

-3 _ 0
vyl o= u3

NUN—

ybo= o3

y2 = u0—2u?4u3

y3 = wl—2ut+u?+3u"8

v = 14w -2+ ut 4372 373,

together with complementarity conditions (3.35) and (3.36). Setting= 0, i €
(—3,...,4}leadstau=2,... ,ut, u?) = (0,...,0, —1) < 0. Hence, (3.35) does not
hold. It is obvious that setting' = 0,i € {—3,...,4}leadsto(y~3,...,y3 y =
0,...,0,1) > 0sothat (3.36) holds. HenoéﬁDCP(z) = {#} and the unconstrained
mode must be selected (= 7).

Step two Since the impulsive part of is zero, i.e.u 3 =u 2 =u1 =40 =
0, smooth continuation is possible. This can also be observed from the fact that
(0,0,0,1)" is a consistent state for the unconstrained mode. In terms of the physical
system: the right cart is on the right of its equilibrium and pulls the left cart away from
the stop.

Step fourand fiveDetermining anew piece 0fi. (1), x.(¢), y.(t)) leadstai.(t) =
0, xc(t) = ¢2"1-%(0,0,0,1)T andy.(r) = CeA?~1-%2)(0,0,0,1)7 in the same
way as before. The next event timetl7 + 6(z, I) is strictly larger thar?, = 3 so
that the algorithm halts with a complete solution[On3).

The computed trajectory is plotted in figure 3.3. Note the complementarity between
u andxj; and the discontinuity in the derivative of at timer = 1.

To show that the particular mode transition mentioned in Section 3.2 can be handled
properly by the proposed algorithm, we take the initial state- xo = (0,1, —1,0) "
(labeling ofzg as in (3.21)). Substituting this initial condition in (3.62) results in

(s4 + 352+ Dy(s) =s — s2—1+ (s2 + Du(s).

Solving RCP{p) (step one) leads te(s) = 0 andu(s) = 1 — ﬁ and so
Srcr(zo) = {{1}}. We select the constrained mode & {1}). Smooth continua-
tion is not possible in the selected mode (step two), because the solution to RCP is
not strictly proper. Re-initialization (step three) leadsto= P20 = (0,1,0,0) .
RCRz1) has to be considered (step one):

(s4 + 352 + Dy(s) =s+ (s2 + Du(s).

Notice that setting (s) equal to zero results im(s) = T the strictly proper part
of the solution of RCR{p). This is not a valid choice. The only solution:igs) = 0
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15
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0

0.5 1 1.5 2 2.5 3 3.5
time
Figure 3.3: Solution trajectory of two-carts system.
andy(s) = (94+3ST+1) which corresponds to the unconstrained mode, Ixe= ¢.

Since the solution of RCPY) is strictly proper, smooth continuation is possible in the
unconstrained mode (step two) and we can go to step four and five to compute the
smooth continuation.

3.8 Mechanical Systems

In this section, it will be shown that the proposed mode selection rule coincides with
the one of Moreau [139, 144] when these rules are applied to the class of systems that
are covered by both frameworks, to wit, linear mechanical systems.

We will focus on linear mechanical systems whose dynamics in free motion is given
by the differential equations

Mg(t) + Dq(t) + Kq(t) =0 (3.63)

whereg denotes the vector of generalized coordinates. Furthermpréenotes the
generalized mass matrix, which is assumed to be positive defibitdenotes the
damping matrix and is the elasticity matrix. The system is subject to unilateral
constraints given by

Eq(t) >0, (3.64)
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whereE has full row rank. Furthermore, we assume that impacts are purely inelastic.
To obtain a complementarity formulation, we introduce the constraint fatces

with u the corresponding Lagrange multiplier needed to satisfy the unilateral con-

straints. Moreover, define the state vectoas colg, ¢). According to the rules of

classical mechanics, the system can then be written as follows (with omission of all

time arguments)

. 0 1 0
X = ( —MﬁlK _M,]_D ) X+ ( M_]_ET ) u (365&)
A B
y = (EOux (3.65b)
——
C
O0<y L u=0 (3.65¢)

for all i. This systems satisfigs = n; = 2,i € k; note thatM = & = EMET is
positive definite and hence a P-matrix (Theorem 3.3.5). Hence, the system is locally
well-posed (Theorem 3.6.3).

We consider only initial stateg = col(go, go) with Eqg > 0. We call these points
feasible. In the two-carts system, this means that we do not consider initial states for
which the left cart starts on the left of the stop. In[139, 144] no jumps ocapitgelf,
but jumps occur in the velocities These jumps are governed in the inelastic impact
case by the following minimization problem, whefe= {i € k | E;oqo = 0O}.

Minimization Problem 3.8.1 Let an initial statexg = col(qo, go) be given. The new
state after re-initialization, denoted by0+) = col(¢g(0+), ¢ (0+)), is determined by

qg0+) = qo
7 (0 = arg min 3w —dgo) Mw — o).
q(0+) g{lehlwzo}z(w go)  M(w — qo)
O

The notation “arg min” denotes the set of vectors in the constrained set that mini-
mize the criterion over the constrained set. Note that the minimization problem has
a unique solution. The problem reflects a kind of “principle of economy”: among
the kinematically admissible right velocities, the one is chosen that is nearest in the
kinetic metric [139, p. 75]. Observe that if we prove that jumps in our formulation
correspond to the above minimization problem, then it follows that the feasible set
{x e R" | Cx > 0} is invariant under the dynamics as introduced in Section 3.4, since
the smooth dynamics do not take the solution outside this set.

The Kuhn-Tucker conditions [115] for the minimization problem give necessary
conditions for optimality. The vectaj(0+) is the minimizing argument only if there
exists a Lagrange multiplier such that

M(GO+) — o) — E;,»=0 (3.66)
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0<ALlEjeq(0+)=0. (3.67)
The equality (3.66) is equivalent to

GO+ =go+MLE] 1 (3.68)
and thereforg(0+) = E4¢(0+) andA satisfy the following LCP withyg := Eqo:

37(0+) = Yo+ EjeM LE] 2 (3.69)
0<y;0+) Lar=0. (3.70)

According to Theorem 3.3.4, this LCP has a unique solution, bedause ~1E ],
is a P-matrix. Since the minimization problem 3.8.1 is convex, the Kuhn-Tucker
conditions are even sufficient for optimality. Hence, the LCP (3.69)-(3.70) is equivalent
to the minimization problem for determining the jumps. This observation was also
made in [178]. Notice that once this LCP is solved, the required jumps are known,
because (0+) then follows from (3.68).

We will prove now that LDCR(xp) (and hence LDCR (xg) and RCP{p)) are
equivalent to the optimization problem in the sense that both methods produce the
same state jumps and select the same mode.

Theorem 3.8.2 For linear mechanical systems of the form (3.65) with M positive
definite and E of full row rank, the re-initialization by means of LDCP,(xg) (or
LDCPy,(x0) or RCP(x0)) agrees with Moreau’s rule for the inelastic impact case [139],
[144] for feasible initial states. Linear mechanical complementarity systems are locally
well-posed. (]

Proof. Since the row coefficient matrix and the column coefficient matrix are P-
matrices, local well-posedness follows from Theorem 3.6.3. Furthermore, Theo-
rem 3.6.8 states that 2 = u~3 = ... = =" = 0. Because we start from a feasible
statexy, it follows that alsa:~1 = 0. Indeed, the first relevant LCP in the LDQRp)

(as in the proof of Theorem 3.6.7) is given by

yt=Cxo+ CABu™?!

with the corresponding complementarity conditions. Since this LCP has a unique
solution, the solution must satisfy ! = 0, becaus&xg > 0. Hence,y "+1 =
y"t2 = =y0 =0andy! = Cxq. The next relevant equality in (3.34) is

y? = CAxo+ CABuU®. (3.71)

We define/ again agi € k | C;xo = 0}. Since one of the expressions (3.35) or (3.36)
has to be satisfied fare J, the conditions

y2=>0,ul>0 y?Lud ieJ
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have to hold. Becausg' > O for elements € J¢, 0= u? = u} = ... = u” must
hold to satisfy (3.36). Considering onlye J, we can write down the LCP following
from (3.71) and the above complementarity conditions:
y2 = C1eAxo+ CreAByju’ (3.72)
0<y?Lud>0. (3.73)

This LCP is identical to the LCP (3.69) and (3.70). This shows that the re-initialization
by means of LDCR(xp) leads to the same result as minimization problem 3.8.0.

From this proof, we see that for feasible initial states only proper rational solutions
to RCP occur, i.e. jumps only take place alongBm

Example 3.8.3 To illustrate the equivalence of Moreau’s rule and the complementarity
rule, consider the two-carts system of Section 3.2 extended with a hook. See figure 3.4.

X,

L,

Figure 3.4: Two-carts system with hook.

The complementarity description is given by

x1(t) = x3(t)

x2(t) = xa()

x3(t) = —2xa(t) + x2(¢) + ua(t) + uz(r)
x4(t) = x1(t) —x2(t) —uz(t)

(@) = x1()

y2() = x1(r) — x2(t)

whereu1, u2 denote the reaction forces exerted by the stop and hook, respectively.
These equations are completed by the complementarity conditions (3.13c). Taking

v(6 )= (88) (A ) - (1 %)
(3.74)

leads to a description as in the beginning of this section.
Using the minimization problem to determine the re-initialization and mode se-
lection in case of an initial statér1o, x20, x30, x40) | With x10 = x20 = 0 results in
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unconstrained

Figure 3.5: Re-initialization scheme

the alternatives shown in figure 3.5. Note that the minimization problem consists of
finding the minimal distance to the feasible set (area indicated by “unconstrained”).
The arrows denote the re-initialization directions.

To illustrate that RCBp) gives the same results, the equations corresponding to
(3.25) are given below:

(s4 + 3524 Dyyi(s) (s2 + 1)x30 + x40 + (s2 + Dui(s) + szuz(s)
G* 4+ 32+ Dyals) = s2x30 — (5% + Dxao + s%u1(s) + (252 + Dyua(s).

To determine the continuous statesfor which the stop-constrained mode £ {1})
is selectedy;(s) = 0 anduz(s) = 0 are inserted in the equations above. Next we
solve foru(s) andy2(s), which leads to

1
u(s) = —x30— R R
1 2 —s?
= ——  [-s®-1-— .
y2(s) s4+3S2_|_1[ s 82+1]X4o

Entering the stop-constrained mode is only allowed if for sufficiently large values
of the indeterminate the above two expressions are nonnegative (see (3.26)). This
requiresxzg < 0 andx4o < 0. This indeed corresponds to the indicated area for
the stop-constrained mode in figure 3.5. Note that the polynomial pautsarfiduz
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equal—x3g and 0, respectively. Henca,,,, = (—x30, 0) 's for the corresponding
initial solution (u, X, y). According to (3.10), the state jump equalé—xzo, 0)| =

(0, 0, —x30, 0)". This agrees with the direction of the arrows in figure 3.5. Similarly,
the other modes and re-initialization directions can be verified.

This example shows also that the mode selection procedure that was suggested
in [177] does not always agree with Moreau’s impact rule for the inelastic case. This
fact has already been mentioned in [178] without giving an explicit example. It is
proposed there that if is the current mode and violation of (3.17) occurs at tinie
statex(t), the new mode is given by

J:=U\T)UTy,

where

. Vi
My o= {iel°|y}y;

x(1),1
reg,i

<0, t € (r,t +¢) forsomes > 0}

I = {iel|u <0, t € (r, 7t +¢) for somes > 0}.

In words, this means that constraints that are active or inactive according toimode
will become inactive or active, respectively, if their corresponding inequalities would
be violated by continuation of the solution in matldn the example, this means that if

we are in the unconstrained mode= ) and we arrive inc(t) = (0,0, —1,2) ", the
selected mode should be= {1, 2}, the hook/stop constrained mode. This does not
agree with the minimization problem illustrated in figure 3.5, which indicates the hook-
constrained mode. A physical argument against the choice in [177] in the indicated
situation, might be that removing the stop does not lead to violation@f > 0.

The above example also illustrates the fact that the solutions of linear complemen-
tarity systems do not always depend continuously on the initial state. The discontinuous
dependence is caused by the sensitivity of solutions to the order in which constraints
become active. Considerthe initial statg&) = (¢, ¢, —2,1) T, ¢ > 0. Fore = Othe
solution is a jump t@0, 0, 0, 0) T, after which the system stays in its equilibrium posi-
tion. Fore > 0, first the hook becomes active, resulting in a jumgete, —%, —%)T.

This is followed by a regular continuation in the hook-constrained mode until the left
cart hits the stop. The state just before the impa@,i®, —% + g(e), —3 +g(e)) " for
some continuous functiogi(e) with ¢g(0) = 0. Re-initialization yields the new state
(0,0,0,—3 + g(e)) T, which converges t¢0, 0,0, —3)T if ¢ | 0. Obviously, the
system has a discontinuity i, 0, —2, 1) . One may also note that the sequence of
initial statesxg(e) = (0, —e, —2, 1), ¢ > 0 leads after two re-initializations far | 0

to the limit statg(0, O, % %). This alternative limit corresponds to a situation in which
first the stop-constrained and then the hook-constrained mode is active. O

3.9 Conclusions

The main purpose of this chapter has been to define a new class of dynamical sys-
tems called “linear complementarity systems”. The definition builds on ideas from
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linear system theory and from mathematical programming, and is motivated in part by
systems of differential equations and algebraic inequalities that have been studied in
mechanics and in electrical network theory. Applications are envisaged for instance
in the modelling of power converters and other electrical networks that depend on
controlled switching, in linear-quadratic control problems subject to linear inequality
constraints, and in the study of piecewise linear systems.

Alinear complementarity system can be viewed as a dynamical system that switches
between several operating modes, and behaves as a linear system within each mode.
The state spaces corresponding to different modes are in general not all of the same di-
mension, although they are naturally embedded in one encompassing space; in relation
to this, state trajectories may exhibit discontinuities when a mode switch takes place.
To give a precise definition of what is to be understood by a solution of a comple-
mentarity system, one has to be precise about the conditions under which a transition
from one given mode to another given mode can take place, and one has to specify the
associated jumps of the state variable. For mode selection, we have used ideas from
mathematical programming, in particular from the theory of the linear complemen-
tarity problem [47]; for the determination of jumps we have relied on linear system
theory, more specifically the geometric theory of linear systems [83].

When a class of dynamical systems is introduced, a first concern should be to give
conditions for existence and uniqueness of solutions. We have given such conditions
in terms of leading row and column coefficient matrices. Several methods for mode
selection have been discussed, and a method for generating solutions has been pre-
sented. Also, we have shown that our notion of solution agrees with the one proposed
by Moreau [139] for the class of systems that both solution concepts apply to.

In spite of the length of this chapter, it is clear that many issues remain to be
investigated. The method that we have shown for constructing solutions only allows
us to establish existence of solutions on intervals that do not contain accumulation
points of the set of event times. To overcome this problem it seems necessary to work
with sequences of approximating solutions, which may be generated for instance by
time-stepping methods; compare the work by Stewart and Trinkle [192,194]. A related
issue is to provide conditions under which numerical solution methods for piecewise
linear systems (see for instance [121]) can be shown to be consistent. The rational
complementarity problem that has been discussed only briefly here is expected to play
a crucial role in such investigations; see Chapter 4 for a more extensive treatment of
the RCP.

Of course, all of the well-known topics of interest in dynamical systems theory can
also be addressed in the context of complementarity systems: conditions for stability,
existence of limit cycles, occurrence of chaos, and so on. Control of mechanical
systems with unilateral constraints is discussed by Brogliato [31]. Perhaps the main
challenge is to effectuate the interaction between the various fields of research that find
a common meeting ground in complementarity systems.
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The Rational Complementarity Problem

4.1 Introduction 4.5 Relation between RCP and

4.2 Notation linear complementarity systems
4.3 Complementarity Problems 4.6 Well-posedness results

4.4 Relation between RCP and LCP 4.7 Conclusions

This chapter has been published in Linear Algebra and its Applications [93]. Parts
of the chapter have been presented in an abridged form at the American Control Con-
ference in Philadelphia (USA), June 1998 [88] and the Conference on Decision and
Control in Tampa (USA), December 1998 [89].

4.1 Introduction

The classicallinear complementarity problem (LCP) can be formulated as follows.
Given a reak-dimensional vectoy and a reak x k matrix M, find k-dimensional
vectorsy andu such thaty = ¢ + Mu and for all indices we havey; > 0,u; > 0, and
atleast one of; andu; is zero. The LCP and various ramifications and generalizations
of it play an important role in many optimization and equilibrium problems, and for this
reason the LCP has been studied extensively in mathematical programming; see [47]
for a comprehensive treatment. The rational complementarity problem (RCP), which
is the main subject of this chapter, is a variation of the LCP in which the field of
real numbers is replaced by the fiékds) of rational functions with real coefficients.

To formulate a complementarity problem ovR(s), we equip the field of rational
functions with a suitable order to be defined below.

The RCP is motivated by its relations to a class of discontinuous dynamical sys-
tems, called linear complementarity systems (LCS) as studied in [87,92,177,179].
Linear complementarity systems are specified by linear differential equations and in-
equalities similar to those appearing in the linear complementarity problem. Typical
examples of such systems include mechanical systems subject to unilateral constraints,
electrical networks with diodes, systems subject to relays and saturation characteristics,
optimization problems with state constraints and systems with Coulomb friction. The
dynamics of the complementarity class consists of continuous-time phases separated
by state-events resulting in re-initializations of the continuous state of the system. In
fact, in each continuous-time phase (called ‘modes’) the system is governed by its own
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characteristic dynamic laws. The RCP plays a crucial role for LCS as it couples the
continuous state to a corresponding mode. Systems in which continuous dynamics
and switching rules are connected are called ‘hybrid dynamical systems.’ Hybrid sys-
tems have recently drawn much attention, see e.g. [7,162]. In this field of research
existence and uniqueness of solutions are often assumed, and sufficient conditions are
rarely given. In previous papers [87,92,177,179] well-posedness results for LCS were
obtained based on the so-callBgear dynamic complementarity problem, a version

of the complementarity problem based on taking derivatives of the LCS. The RCP
has only been mentioned without exploiting its possibilities. In establishing a rela-
tionship between RCP and LCS, conditions for existence and uniqueness of solutions
to LCS are derived in this chapter. These conditions are more general than the ones
in[87,92,177,179].

There is a connection between the RCP and a parameterized form of the LCP;
this relation is explored in detail in this chapter. There are also relations between
the RCP and certain generalizations of the LCP. Specifically, we discussdie
complementarity problem (OCP) that was defined in [22] as well as a version of the
LCP defined over a general totally ordered field. We illustrate that certain results can
be derived on an abstract level; however for the main part of the chapter we opt for a
concrete treatment heading directly towards establishing the connection between RCP
and a parameterized LCP. It is this connection (plus the body of knowledge already
available for LCP) which enables us to establish well-posedness results for LCS. As
specific applications we discuss linear mechanical systems with unilateral inelastic
constraints, passive linear electrical networks with ideal diodes (and more generally
linear dissipative systems with complementarity conditions), and linear systems with
relays (based on LCP-results in [123]). The earlier well-posedness results in [87,92,
177,179] do not cover these special subclasses of complementarity systems.

The outline of the chapter is as follows. In the next two sections, we introduce some
notational conventions and several complementarity problems: LCP, RCP, OCP and
an ‘abstract linear complementarity problem.” In section 4.4 necessary and sufficient
conditions guaranteeing existence and uniqueness of solutions to RCP will be presented
in terms of LCPs. In section 4.5 LCS will be introduced together with its solution
concept. The connection between solutions to RCP and initial solutions to LCS will
be stated. In the next section three physically relevant subclasses of complementarity
systems are considered for which well-posedness results are obtained.

4.2 Notation

In this chapter, the following notational conventions will be in foré&denotes the
natural number$0, 1, 2, ...}, R the real numberdR; the nonnegative real numbers
andC the complex numbers. For a positive integer denotes the sdtl, 2, ... , I}.

If a is a (column) vector withkk components, we denote itssh component by;.
Given two vectorss € Rf andb € R/, then cola, b) denotes the vector i<+
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that arises from stacking over b. The support of a vectar € R* is defined as
suppa = {i € k | a; # 0}). M is the transpose of the matrid € C™*" and
M* denotes the complex conjugate transpose. A mafrix C">*™ is called positive
semi-definite if 2Ra*Mx = x*(M + M*)x > 0 for allx € C™. This is denoted by
M > 0. In case strict inequality holds for all nonzero vectorave call the matrix
positive definite and writé/ > 0. By { we denote the identity matrix of any dimension.
Given M e R¥*! and two subset$ C k andJ C [, the (1, J)-submatrix of M
is defined asVf;; := (M;j)ies,jes. In caseJ = [, we also writeM;, and if I/ = k,
we write M, ;. The(l, I)-submatrices are sometimes called the principal submatrices.
For a vectow, a; := (a;)ie;. A matrix M € RF*! generates a convex cone, denoted
by posM, obtained by taking nonnegative linear combinations of the columi.of
Formally,

posM := {q € R¥ | ¢ = M for somev € R, }.

By R(s) we denote the field of real rational functions in one variable. For reasons
of clarity and cohesion, we shall systematically use a notation in which vectors over
R(s) are written with an argumentand (vectors of) time functions appear with an
argument. Vectors ovelR are written without argument; distributions are also written
without an argument, but in a different font. gis) = 0 for all s, we write (to avoid
misunderstandingg)(s) = 0. If p(s) is not the zero polynomial, we write(s) # O.

M(s) € R¥*/(s) means thad! (s) is ak x [ matrix with entries ifR(s). Furthermore,

the kernel of a rational matrix (s) € R¥*!(s) overR(s) is denoted by ket M(s).

The dimension of a linear subspatef R¥(s) overR(s) is denoted by dim) L. A
rational matrix is called (strictly) proper, if for all entries the degree of the numerator
is smaller than or equal to (strictly smaller than) the degree of the denominator.

A vectoru € R¥ is called nonnegative, and we write> 0, if u; > Oforalli € k
and positive § > 0), if u; > 0 for alli € k. If two vectorsu, y € R¥ satisfy that for
all i at least one of;; andy; is zero, we writex Ly. Similarly, we writeu(s)_Ly(s)
for two rational vectors:(s), y(s) € R¥(s), if for all i at least one ofi; (s) = 0 and
y; (s) = 0 is satisfied.

The set of arbitrarily often differentiable functions fraknto R™ is denoted by
C®(R; R™).

4.3 Complementarity Problems
In this section, we introduce several instances of the complementarity problem. One of
the fundamental results in the literature on complementarity problems will be examined

for all versions of the complementarity problem considered here.
The linear complementarity problem (LCP) [47] is defined as follows.

Definition 4.3.1 (Linear complementarity problem) Given a matrix e Rk and
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avectorg € RF. LCP(g, M) amounts to finding, y € R¥ such that

y =2 0,u>0 4.2)
ylu (4.3)
O

Recall that (4.3) implies that for all € k y; = 0 oru; = 0. Furthermore,
it is evident that (4.2)-(4.3) can be replaced by y = 0, wherea denotes the
componentwise minimum of two vectors.

LCP(g, M) is calledsolvable, if there existu, y € RF satisfying (4.1), (4.2) and
(4.3). LCPg, M) is calledfeasible, if there existu, y € R* that satisfy (4.1) and (4.2).

In [47], a wealth of theoretical and algorithmical results have been gathered con-
cerning this fundamental problem in mathematical programming. We recall some
notations and concepts from [47].

If we rewrite (4.1) as

q=—Mu+1y=(—M1)<z>, (4.4)

we see that we have to expregss an element of the cone pesM {). However,
this has to be done in a special way. In general, whea Az with z; # 0, we say
that the representation uses the colufn of A. The conditiony_Lu requires that in
expressing; as an element of the cone pesM {) not both—M,; and{,; may be
used.

Definition 4.3.2 Given M € R¥*k J C k, K C k, J N K = ¢ we define the matrix
Cu(J,K) e kacardJuK) as1

Cu(J,K) = (=Msj Jok). (4.5)
We define thecomplementarity matrix Cyp(J) € R¥*k (relative toM) by
Cu(J):=Cu(J,J°)

with J¢ := k\ J :={i € k | i ¢ J}. The associated cone p6g (/) is called a
complementarity cone (relative toM). O

If M e R¥*k there are 2 complementarity cones. From the discussion above
Definition 4.3.2, it follows that if for som@ e R¥ a solution to LCRg, M) exists,
theng has to be an element of a complementarity cone(hp&/) for someJ C k.

Lscard” denotes the cardinality of a set. For a finite set the cardinality is equal to the number of elements
in the set.
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Hence, the collection of vectotsfor which a solution to LCRy, M) exists is exactly
the union of all complementarity cones &f, i.e.

LCP(q, M) has a solution ify € | ] posCy(J). (4.6)
JCk

Hence, the existence of solutions to LGPM) for all ¢ € R is equivalent to the
union in (4.6) being equal tB*.

If we assume that all complementarity matrices\fare invertible, a necessary
and sufficient condition for existence and uniqueness of solutions tqd, @) for
all ¢ is that the 2 complementarity cones @ form a ‘partition’ of the spac®&*. We
call such a set of2cones a partition of the vector spak, if the union of the cones is
the whole vector space and the intersection of any pair of cones is a lower dimensional
cone (called ‘face’ or ‘edge’) [171].

For index setd, J C k with the same number of elements e J)-minor of M
is the determinant of the square math& ; := (M;;)ier,jes. The (I, I)-minors are
also known as the principal minors/ is called aP-matrix, if all principal minors are
strictly positive.

The following result is classical.

Theorem 4.3.3 For given M € R¥*¥, the problem LCP(q, M ) has a unique solution
for all vectors g € R* if and only if M is a P-matrix. ]

Proof. See [47,171]. O

In this chapter we shall be motivated to consider a problem in which the role of the
real numbers in the LCP is taken over by the figld@) of rational functions with real
coefficients. To formulate the “rational complementarity problem” it is convenient to
first introduce a total ordering dR(s). One can define many orderings Bis), but
we shall be particularly interested in the following one.

Definition 4.3.4 A rational functionf (s) € R(s) will be said to benonnegative if
JdJopeR Vo eR {o>o00= f(o)>0}
If this condition holds we writef (s) > 0. O

In other words, a rational functiofi(s) is nonnegative if and only if (o) is nonnegative

for all sufficiently large reat . Itis easily verified that the binary relatienso defined

is indeed a total ordering dR(s). Indeed, a nonzero rational function must be either
eventually positive or eventually negative, since a rational function can have only
finitely many poles and zeros. The ordering defined above can also be described
as the one induced by the lexicographic ordering of the coefficients of the Laurent
series around infinity. On the rational vect@$(s) a partial ordering induced by the
ordering in Definition 4.3.4 can be introduced as follows. We writeffar) € R¥(s)
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that f(s) = Oifand only if f;(s) = Ofori = 1, ..., k. After these preparations, the
RCP can now be stated as follows.

Definition 4.3.5 (Rational complementarity problem)Let a rational vectog (s) €
R*(s) and a rational matrin/ (s) € R¥*X(s) be given. Theational complementarity
problem with data q(s) and M(s), denoted by RCR((s), M(s)), is the problem of
finding rationalk-vectorsu(s) € R¥(s) andy(s) € R¥(s) such that

y(s) = q(s) + M(s)u(s) and 0< u(s) L y(s) = 0. 4.7)

Any pair of rational vectors satisfying the above conditions is said todadugion of
RCPg(s), M(s)). O

Writing out the RCP explicitly in terms of the ordering yields: firdional vector
functionsu(s) andy(s) such that

¥(8) = q(s) + M(s)u(s) andy " (s)u(s) = 0 (4.8)
hold for all s € R and there exists & € R such that for alb > o¢ we have
y(0) =0, u(o) = 0. (4.9)

The latter formulation of the RCE(s), M (s)) is used in [179].

Clearly, RCP is strictly analogous to LCP and one may expect that results like
Theorem 4.3.3 willmutatis mutandis be valid for RCP. We shall prove below that
this is indeed the case, but we shall also establish a relation between RCP and a
parameterized version of LCP. Since a large body of results on LCP is available, it will
prove to be convenient to have such a relation. First let us discuss how RCP fits into
various possible generalizations of LCP.

Firstly, we note thafR(s) can be looked at as an (infinite-dimensional) vector
space oveR, and hence the same holds ®f(s). Obviously the partial ordes is
compatible with the vector space structur&®bts) as a vector space ov&r moreover,
for each two elementg(s) andg(s) there is a maximuny (s) v g(s) and a minimum
f(s) A g(s) (coinciding with the componentwise maximum and minimum), so that
R*(s) is actually a (realyector Iattice [159]. Therefore, RCP can be looked at as a
special case of therder complementarity problem which is defined in [22]. This fact
was pointed out to us by Kanat Camlibel.

Definition 4.3.6 (Order complementarity problem)Let X be a vector lattice. Let a
vectorqg € X and alinear mappingf : X — X be given. Therder complementarity
problemwith data given byg andM (denoted by OCR{, M)) is the problem of finding
vectorsu andy in X such that

y=¢g+ Muandu ny=0. (4.10)

Any pair of vectors(u, y) satisfying the above conditions is said to beo#ution to
OCPg, M). O
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To formulate a statement analogous to Theorem 4.3.3 for OCP, first the notion of
a mapping of typeR) has to be introduced. In the definition below (taken from [22,
Def. 2.10.b]) the notations™ := x v 0 andx™ := —(x A 0) are used for the positive
and the negative parts of

Definition 4.3.7 Let X be a vector lattice. A linear mapping : X — X is said to
be of type P) if the conditions

Mx)TAxtT=0andMx)" Ax~ =0 (4.11)
hold only forx = 0. |

The definition could be summarized a8f is a mapping of typeR) if it does not
reverse the sign of any nonzero vector. The result for OCP that is most closely to
Theorem 4.3.3 is now the following [22, Thm. 2.14].

Theorem 4.3.8 Let X be a vector lattice. A linear mapping M : X — X is of type
(P) if and only if for each q € X the problem OCP(q, M ) has at most one solution. []

A real matrix is of type P) if and only if it is a P-matrix (cf. [66], [47, Thm. 3.4.4]).
In the general context of OCP, however, the typgiroperty is not strong enough to
guarantee existence of solutions, as is shown by an example in [22].

Of course, it would be possible to consider a generalized OCP with vector lattices
overR(s) rather than oveR. However, in this way we would not make use of the
fact that in the rational complementarity problem we are dealing with a space that is
finite-dimensional as a vector space ol&r). So, rather than looking at RCP as a
special case of an OCP formulated o®®), we will look at it as a special case of
an abstract version of the standard LCP. This abstract version can be formulated as
follows.

Definition 4.3.9 (Abstract linear complementarity problem) Consider a totally or-
dered field(F, >). Letg be a vector irf* and letM be a matrix oveF of sizek x k.
Thelinear complementarity problem over F with data given byg andM (LCPg(q, M))
is the problem of finding vectorsandy in F* such that

y=¢g+ Muandu Ay =0. (4.12)

Any pair of vectors(u, y) satisfying the above condition is said to bedution to
LCPr(q. M). O

Obviously, RCP is the same as L&®, while LCR is the standard LCP. So if we
can prove that Theorem 4.3.3 and related results can be generalizedjioth€RPwe
get immediate corollaries for the rational complementarity problem. Unfortunately
it appears that the proofs of Theorem 4.3.3 that are available in the literature (for
instance [47,171]) do not readily extend to the abstract case because of their dependence
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on geometric intuition and/or topological properties of the real line. Below we shall
present a proof of the abstract analogue of Theorem 4.3.3 on the basis of an indirect
argumentusing aresult from mathematical logic known as “Tarski’s principle”. Further
on in the chapter we shall however use a different approach, using more concrete
reasoning to obtain results that are formulated only for RCP; this will suffice for the
intended applications to certain dynamical systems.

First we establish that in the context of an arbitrary totally ordered field, a matrix
is a P-matrix if and only if it is of typeF) in the sense of Def.4.3.7. The standard
proof of this fact (see [47,66]) makes use of eigenvalues in a way that does not extend
to general ordered fields.

Lemma 4.3.10 Let (F, >) be a totally ordered field. The following properties are
equivalent for matrices M € F**k,

(i) All principal minors of M are positive.
(i) Ifx e F* satisfies (Mx);x; <O foralli € {1, ... ,k}, thenx = 0.
O

Proof. The proof of the implication from (i) to (ii) as given in [66] is directly applicable

to the case in which the real line is replaced by an arbitrary totally ordered field, so we
only need to prove the implication in the reverse direction. The proof will be given by
induction with respect to the size of the principal submatricéd 050 suppose that (ii)
holds, and consider first the minors corresponding to principal submatrigéstdize
1,i.e. the diagonal elements #f. Lete, denote the-th unit vector. Since obviously
(Mep)i(ep); = 0fori # p, condition (ii) impliesM ,, = (Me) ,(ep), > 0. Assume

now that all minors of principal submatrices of sizes up-tdl are positive, and suppose
that there is a principal submatrb{;; of sizej such that deM;; is nonpositive. Take

p € I and defind := I \ {p}. Let N be the matrix defined by

detM”
N =\ T7 N= ———— 7 4.13
rp detMﬁ ( )
Note that by our assumptions> 0. Since(M + N);; is obtained from\/;; by adding
A times thep-th unit vector with card() components to the-th column ofM;;, and
since the determinant of a matrix is linear as a function of each of its columns, we have

dettM + N);; = detMy, +AdetM,~,~ = 0.

Therefore, there exists a nonzero vectgrsuch thattM + N);;x; = 0. Letx be
the vector defined by; = (x;); fori € I andx; = Ofori ¢ I. Write y = Mx,
and note thay; = M;;x; = —Nj;x;. Consequently, fof ¢ I we havey;x; = 0
becauser; = 0, fori € I the relationy;x; = 0 holds because; = 0, and finally
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YpXp = —)»xﬁ < 0. Therefore condition (i) is violated and we have reached a
contradiction. O

To getthe analogue of Theorem 4.3.3 for the abstract version of LCP we shall appeal
to some ideas in mathematical logic, in particular a result knowFaasi’s principle.
We briefly review the most pertinent facts; see [167] for a complete treatment. A totally
ordered fieldF, >) is said to bereal closed if its ordering> is unique and there is no
proper algebraic extension field Bthat has an ordering extendirg It can be shown
that a totally ordered field is real closed if and onl¥'if/—1) is algebraically closed.
For exampleR is real closed buR (s) is not. It follows from Zorn’s lemma that every
totally ordered field admits an algebraic order extension that is real closed; by atheorem
of Artin and Schreier [8], the real closure is unigue up to isomorphismelémnentary
property of a totally ordered field is one that can be stated in first-order logic (allowing
guantification over individual elements but not over sets) using the algebraic operations
and the order relation. Tarski’s principle [167, Cor. 5.3] asserts that real closed fields
are indistinguishable froR on the basis of elementary properties; so any elementary
property that can be shown to holdliis true in every real closed field.

Theorem 4.3.11 Let (F, >) be a totally ordered field. The following statements are
equivalent for matrices M in FF*K,

(i) Forallq e F¥, the problem LCPg(gq, M) has a unique solution.

(i) All principal minors of M are positive.
O

Proof. We have already shown in the foregoing lemma that (ii) is equivalent to the
statement that/ is of type (P). The implication from (i) to (ii) then follows as in [16,

p. 274] (see also [22, Thm. 2.14]), since the argument given there, which proceeds from
the assumption tha¥ is of type (P), is valid over an arbitrary totally ordered field. It
remains to prove the reverse implication. For this, note that the property expressed in
the theorem is (for each givet) an elementary property. Since the statement is true
for R by Theorem 4.3.3, it follows from Tarski’s principle that the statement is also
true for the real algebraic closufeof F. In particular, if all principal minors ofif

are positive, then there exists for each giver F* a unique pair of vectors and

u in F* such thaty = ¢ + Mu andy Au = 0. LetI C k be the set of indices

for which y; = 0, and letM be the matrix of siz& x k whose j-th column equals

the j-th column of—M if j € I, and is equal to thg-th unit vector ifj ¢ I. Note
that M is invertible, since its determinant is (up to a sign) a principal minoMof
Definev = M~1¢ € F*. Because:; = 0 andy;c = 0 we must have;; = y; and

vre = uye, and in particular it follows that both andx must actually belong t&*.

So we have constructed a solution to &R, M). Since the solution is unique over

F, itis certainly also unique ovéf. O

In particular it follows that the rational complementarity problem REFY, M (s))
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has a unique solution for afl(s) if and only if all principal minors of\/ (s) are positive
in the ordering that we defined dR(s). A corollary that is specific to RCP is the
following.

Corollary 4.3.12 For a rational matrix M (s) € R¥*X(s), the problem

RCP(q(s), M(s)) has a unique solution for all q(s) € R*(s) if and only if there exists
aog € R such that for all 0 > o the problem LCP(q, M (0)) is uniquely solvable for
all g € R, ]

Proof. According to Theorem 4.3.11, the first statement is true if and only if
VICk JdogeR VYo eR {o>o09= detM;;(c) > 0} (4.14)

whereas the second statement can be reformulated as (Theorem 4.3.3)
JogeR Vo eR VICk f{o>o00= detM;;(c) > 0}. (4.15)

Since the first quantification in (4.14) is over a finite set, the two statements are equiv-
alent.
a

Note that the corollary is actually equivalent to Theorem 4.3.11 as applied to RCP.
The connection between RCP and LCP as given in the corollary will be of crucial
importance below to show well-posedness results for certain dynamical systems. Ac-
tually, we shall need some refinements of the corollary. Not in all cases does an
“abstract” approach lead directly to a statement relating RCP and a parameterized
LCP. Interchanging quantifiers is involved and this is not always as easy as in the proof
above. Below we shall follow a “concrete” approach, in which we aim directly for
connections between results connected to RCP and corresponding results connected to
a parameterized LCP.

4.4 Relation between RCP and LCP

Letg(s) € R¥(s) andM (s) € Rk be given. For any particular € R the data of RCP
(4.8)-(4.9) defines a standard L@GRo), M (0)). So, a connection between the RCP
and the corresponding parameterized set of LCPs must exist, especially considering
Corollary 4.3.12.

The first refinement of Corollary 4.3.12 is concerned with the question of existence
of solutions to RCP independently of uniqueness. Note that the theorem below applies
to RCRgq(s), M(s)) for a specificg(s) and does not state a result for all possible
q(s) € R¥(s) asin Corollary 4.3.12. Therefore, the result below is much stronger. The
proof is given in a direct way and not via the abstract route that was indicated in the
previous section.
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Theorem 4.4.1 Let q(s) € R¥(s) and M(s) € R**¥(s) be given. RCP(q(s), M(s))
has a solution if and only if there exists a o9 € R such that LCP(q(c), M(0)) has a
solution for all o > oqg. O

We would like to stress that the solvability of RGRs), M (s)) is not completely
characterized by the solvability of LG&(c0), M (c0)) whereg (co) andM (oo) denote
the limits ofg (o) andM (o) for | o |—> oo, if they exist.

Example 4.4.2 Take
q(s) = (—1—} 1" andM(s) = ( - >
s -1 1

Then RCRq(s), M (s)) has no solutions, while LGB (c0), M (c0)) has uncountably
many.
Conversely, RCRy(s), M(s)) with

1+ -1
q(s) = (-1 =1 andM(s) =< j_ls 141 >

admits a solution (note that (o) is a P-matrix for all nonnegative real), although
LCP(g(c0), M(0c0)) is unsolvable. O

O

Before we prove Theorem 4.4.1, we introduce some auxiliary concepts and results.
Consider the equation

w=Mz, z>0 (4.16)

for given vectorw € R¥ and matrixM e R¥*!. The solution set, defined &s= {z >
0| w = Mz}, is a convex polyhedron (i.e. the intersection of finitely many closed
halfspaces).

Definition 4.4.3 A solutionz to (4.16) is said to béasic if M,supp. has full column
rank. O

Remark 4.4.4 By convention, the matrix with no columns has full column rank. In
this way,z = 0 is a basic solution to (4.16) witlh = 0. |

Lemma 4.4.5 If a solution to (4.16) exists, then there exists a basic solution as well.
O

2|f the limits do not exist or are zero, one could perform some scaling on the equations of the RCP. Solv-
ability of RCR¢(s), M (s)) is equivalent to solvability of RCE1(s)q(s), D1(s)M (s) D2(s)) for diagonal
rational matrice®; (s) where the diagonal elements are equal to some (negative, zero or positive) power of
S.
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Proof. See Theorem 2.6.12 in [47]. O

Definition 4.4.6 Letg € R andM e RF*¥ be given. A solutior(u, y) to LCP(q, M)
is basic, if co(u, y) is a basic solutiontg = (—M 4)z,z > 0. O

Lemma 4.4.7 Letq € RF and M € R¥*K be given. If a solution to LCP(q, M) exists,
then there exists a basic solution as well. O

Proof. Let (1, y) be a solution to LCRy, M). Consider the problemp = (—M 1)4,z,

z > 0 with J = supp(col(u, y)). Since this problem has a solution, Lemma 4.4.5
yields that it has a basic solution as well. Since this basic solution uses a subset of the
columns used by c@l, y), itis clear that the complementarity conditions still hold for

the basic solution. O

The last lemma before we can prove Theorem 4.4.1 is the following. We omit
the proof which can be based on the Smith-McMillan form of rational matrices [132,
Thm.2.3].

Lemma 4.4.8 If G(s) is a rational matrix, then the set of . € C for which G ()\) has
dependent columns coincides with the zero set of some polynomial. ]

Proof of Theorem 4.4.1We divide the pairgJ/, K) with J, K C kand/NK = @
in two setsL;,q and.L4., depending on the fact whether the column€gf) (J, K)
are independent ové&(s) or not. By Lemma 4.4.8, there exist polynomials x (s)
satisfying for allx € C, pyx(d) = 0 if and only if Cy ) (J, K) has dependent
columns. Thent;,q and.L., are given by

Lina = {(J,K)|J,K<Ck, JNK =0, ps(s)#0}
Laep = {(J,K)|J,KCk, JNK =0, pjk(s)=0}.

We takeo1 > og (00 as in the formulation of Theorem 4.4.1) such thats larger
than all real zeros of all the polynomials; x (s) that are not identically zero. As
a consequence, if there existgra> o1 such that the real matri€; ) (J, K) has
(in)dependent columns, then the real matix)(J, K) has (in)dependent columns
forall o > o1.

Note that for(J, K) € £inq, We haveg(s) € Cuys)(J, K) (for all s) if and only
if the columns of the matriXg (s) Cu(s)(J, K)) are dependent ov&(s). Hence, we
can apply Lemma 4.4.8 to get polynomialsk (s) satisfying for(J, K) € £;,q and
foroc e R,0 > o1,y k(o) = 0ifand only ifg(o) € Cpy o) (J, K). Since the; k (s)
are polynomials, we can find a regl > o1 (by taking it larger than all real zeros of all
nonzero polynomials; x (s)) with the property that if for somé/, K) € £;,4 there
holdsg (o) € Cu ) (J, K) for certain reab > o2, theng (o) € Cy ) (J, K) for all
o € R. All pairs (J, K) € £;,q for whichr; g (s) = 0 are denoted by{".
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Finally, takeos > o> such that all components of the solutions of

uy(s)
q(s) = Cpus(J, K) ( k() ) (4.17)
for (J, K) € L% do not change sign anymore for> o3. SinceCy ) (J, K) has
independent columns ovi&(s) for (J, K) € £L{7, this solution is unique and rational.
Hencegps > o hasto be taken larger than all real zeros and poles of all nonzero entries
of all the solutions to (4.17) corresponding(th K) € £5%].

Takeo > o03. Sinces > g3 > op, we have by the hypothesis of Theorem 4.4.1
that LCRg(0), M(c)) has a solutiorfu, y) (by Lemma 4.4.7 we may assume that it
is basic), that results in writing

q(0) = Cy oy, If)( ;”, ) (4.18)

I(

for somel C k and colu;, y;¢) > 0. The columns corresponding to indices that are
not contained in supp c@l;, y;c) are omitted resulting in

q(0) = Cpmy(J, K) col(uy, yk) (4.19)

with K € I¢, J € I. Moreover,Cy)(J, K) has full column rank, because the
solution (u, y) is basic. Hence(J, K) € J£;,4. By definition of gy, the fact that
(4.19) is true foro, ando > o, it follows that (J, K) € £{77. This means that
(4.17) has a solution c@l ; (s), yx (s)) for (J, K). Since colu; (o), yx (o)) satisfies
(4.19) andCy ) (J, K) has full column rank, it is clear that dal; (o), yx (o)) =
col(uy, yx) = 0. Since cdlu,(s), yk (s)) does not change sign for > o3, it is
clear that calu, (s), yk(s)) > 0 for all s > o3. By introducingus(s) = 0 and
yievk (8) = 0, (u(s), y(s)) is a solution to RCRy(s), M (s)).

The other way around is easy. (i(s), y(s)) is a solution to RCR((s), M (s))
satisfyingy(o) > 0, u(o) > 0 for all 0 > op, then(u(o), y(o)) is a solution to
LCP(q(0), M(0)) forall o > oyp. O

Next, the question of uniqueness of solutions to RfZP), M (s)) is considered.
We shall actually prove the following fairly general version.

Theorem 4.4.9Let E € RI*k, g(s) € R¥(s) and M(s) € RF¥*K(s) be given. The
following statements are equivalent.

1. Any pair of solutions (u'(s), y'(s)), i = 1,2 to RCP(q(s), M(s)) satisfies
Eul(s) = Eu?(s) forall s.

2. There exists a real number og such that for all o > og any pair of solutions
(u',y)),i =1,2to LCP(q(c), M(0)) satisfies Eut = Eu?.

]
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From this it follows easily that uniqueness of solutions to g8 ), M (o)) for all
sufficiently larges is equivalent to the uniqueness of the solution to RGP, M (s)).

Corollary 4.4.10 Let ¢(s) € R¥(s) and M (s) € R¥**(s) be given.
RCRg(s), M(s)) has at most one solution if and only if there exists a real number og
such that for all 0 > o9 LCP(q(0), M (o)) has at most one solution. O

Proof. Take E = { in Theorem 4.4.9 and note thats) determinesy(s) uniquely in
the RCP and that determines uniquely in the LCP. O

Note that Corollary 4.4.10 is stronger than Corollary 4.3.12, because it treats
uniqueness independently of existence of solutions and moreover, it states a uniqueness
result forseparate rationalk-vectors instead of for all rationalvectors.

Also uniqueness of solutions to RGRs), M (s)) does not follow from uniqueness
properties of solutions to LGB (c0), M (c0)) (provided the limits exist).

Example 4.4.11Take

1
q(s) = (-1 -7 andM(s) = < 1‘|1'E i)

LCP(g(c0), M (00)) has multiple solutions, while RGE(s), M (s)) has only one so-
lution, becauseM (o) is a P-matrix for allo > 0 (see Theorem 4.3.3 and Corol-
lary 4.4.10).

]

O

The remainder of this section is devoted to the proof of Theorem 4.4.9, for which
some preliminary results are needed.

Definition 4.4.12 Let C be a convex set. Thene C is called arextreme point of C,
if for all z%, z2 € C and for allx € [0, 1]

=t + (1—-1)22 P #£72 = 1e{01).

]

Lemma 4.4.13 A solution to (4.16) is basic if and only if it is an extreme point of the
solution set S. ]

Proof. See Theorem 2.6.13 in [47]. O

The following Lemma is known as Goldman’s resolution theorem (Theorem 1
in [74], Theorem 2.6.23 in [47]). The vector B with all components equal to 1 is
denoted by.
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Lemma 4.4.14 The solution set S of (4.16) has a finite number of extreme points,
say {pL, ..., p"}. Define P as the convex hullof the extreme points of S (i.e. P :=
> _qaipi | @i >0, Y/_;e; = 1) and define the cone C := {x > 0 | Mx = 0}.
Then it holds that

S=P+C.

Furthermore, if Y :={z > 0| Mz =0, ez = 1} £ @, then Y has a finite number of
extreme points, say {yL, ..., y'} and C equals pos(yL, ..., y!). Y = @ if and only if
C ={0}. |

Lemma 4.4.15 Let E be a matrix in R/*K, Suppose that (4.16) has (at least) two
solutions 7', i = 1,2 with Ez! #~ Ez2, but that any pair of basic solutions Z;mx’
i =1, 2 satisfies E zl%as =F z,fas. Then there exists an index set I such thatker M,y is
nontrivial, no vectors in ker Mq; have components of opposite sign and this kernel is
spanned by a vector v > 0 with Ev # O (in particular, dimkerM,; = 1). |

Proof. According to Lemma 4.4.14 the solution $etf (4.16) can be written aB 4+ C

with P andC as in Lemma 4.4.14. SincEp! = ... = Ep” andEz} # EZ?, it

is obvious that one of the extreme points¥afas defined in Lemma 4.4.14, must be
outside the kernel of, sayy'. Takel := suppy!. Note that 0+ y! € kerM,; and
thatEyl # 0. Sincey!is an extreme point of (or equivalentlyy! is a basic solution
toMz=0,e'z=1,z>0), kerM,; Nkere; = {0} implying that dimkeiM,; < 1.
Hence, ke, is spanned by! which has no components of opposite sign, because
it is contained iny. O

Remark 4.4.16 If no vectors in a nontrivial subspadehave components of opposite
sign, then its dimension must be equal to one. Indeed, take two nonzero véctofs

andz? > 0 contained inV. Consider;! — az?. Whena increases from zero, all
components must change from nonnegative to nonpositive at the same time, i.e. we
must haver! = az? for somea. O

Lemma 4.4.17 Let E be a matrix in R'*¥, Suppose that LCP(q, M) has (at least)
two solutions (ui, yi), i = 1,2 with Eut * Eu?, but that any pair of basic solutions
(ufms, y,’;as), i = 1, 2 satisfies Eu,%ax = Eu,fas. Then there exist a particular basic
solution (Upas, Ybas) and disjoint index sets J, K such that

* SUPPUpas S J, SUPPYbas € K5
e no vectors in kerCyy(J, K) have components of opposite sign; and

e there is a vector col(z, w) > O withwge = 0 and zjc = 0 such thatcol(zy, wg)
spans kerCy(J, K) and Ez # 0.

O
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Proof. The set of all solutions of LC®&, M) can be written as the union of the solution

sets ofg = (—M Jd)col(u, y), uje = 0, y; = 0,u > 0 andy > O for all index

setsJ C k. Consider an index set whose corresponding system of equalities and
inequalities allows at least two solutions edl, y1), col(x?, y?) with Eu' # Eu? and
proceed as in the proof of Lemma 4.4.15. Note that such index sets must exist, because
otherwise the hypothesis, that multiple solutiom's y'),i = 1, 2to LCRg, M) satisfy

Eul # Eu?, is contradicted. O

Proof of Theorem 4.4.9Suppose multiple solutiong’ (s),y (s)) i =12to
RCRg(s), M(s)) exist satisfyingEul(s) # Eu?(s). Then(u'(o), y(o)),i =12
form different solutions to LCR;(¢), M(0)) with Eul(c) # Eu?(c) forallo € R
sufficiently large.

To prove the converse, we consider the collectiotVofK )-pairs with/ N K = ¢
satisfying

dimR(S)kerR(s)CM(s)(J, K)=1

We denote this sethy. Letn’ X (s) be a polynomial vector spanning k& ) (J, K)
for (J,K) € £1. We defines; € R, such that the components gf X (o) for
(J, K) € £1 do not change sign anymore forc R, o > oy.

Takeos € R, such that for alkJ, K)-pairs withJ, K € k andJ N K = @ the
following is true:

dimkerCuy ) (J, K) = dimg) kefry Cus)(J, K) forallo > os.

We defineog := max g o; with o1, 02 andos as defined in the proof of Theo-
rem 4.4.1. We claim that if there exists a real numbet og with the property that
LCP(¢(c), M(0)) has multiple solutiongu’, y'), i = 1,2 with Eul # Eu?, then
there exist also multiple solutiorig (s), y' (s)),i = 1, 2to RCRq(s), M(s)) with the
propertyEul(c) # Eu?(o).

Lemma 4.4.7 claims the existence of a basic solution to ¢@P), M (0)). If
there exist two (or more) basic solutioqs,, v} ), i = 1,2 with Eu} # Eu?,
the construction of the proof of Theorem 4.4.7 can be used to find two different solutions
to RCPg(s), M(s)). Note that the constructed solutions diffesat o.

If any pair of basic solutiongu’ . yi ), i = 1,2 satisfiesEu} = Eu?,,
then Lemma 4.4.17 guarantees the existence of disjoint index/ s&isand a basic
solution (upas, Ybas) With sSUppuses € J, SUPPyses € K such that ke€ys ) (J, K)
is nontrivial and no vectors in kéhy ) (J, K) have components of opposite sign.
Remark 4.4.16 states that dim &y, (J, K) = 1. The definition obs implies that
dimg s kerr ) Cu(s)(J, K) = 1and the definition of4 implies that the corresponding
null vectorn’-X (s), as defined above, does not change sign anymore beyoi®ince
n’-K (o) spans ke€Cy(»)(J, K), it has no components of opposite sign. Without loss
of generality we may assume that all components are nonnegative resuljih§ in)
having only nonnegative components for o4. The vector polynomiah’-X (s) can
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be splitinits/-partandk -part as calz(s), w(s)). We define calz(s), w(s)) by setting
zy(s) 1= Z(s), zje(s) = 0, wg (s) = w(s) andwge(s) = 0. Moreover, according to
Lemma 4.4.17 we havBz(o) = E.;n7 % (0) # 0.

The construction asinthe proof of Theorem 4.4.7 can be applied to the basic solution
(Upas, Ybas) Of LCP(g (o), M (o)) to find a solution(u(s), y(s)) to RCPg(s), M(s))
with y;(s) = 0 if i & suppypss andu;(s) = 0 if i &€ suppupss. Looking at
the support of cak(s), w(s)), it is observed that we can add a nonnegative multi-
ple of (z(s), w(s)) to the solution(u(s), y(s)) without destroying the complemen-
tarity conditions. Furthermore, since ¢als), w(s)) has only nonnegative compo-
nents fors > o4 the inequality conditions (4.9) remain valid f@® (s), y*(s)) =
(u(s), y(s)) + a(z(s), w(s)), « > 0. Hence, in this way we constructed an infinite
number of solutions to the RC4(), M(s)). Note thatEz(o) # O implies that the
constructed RCP-solutions satidgiy“ (o) # Eu®?(o) if a1 # as. |

The importance of the previously presented theorems is that the existence and
uniqueness of solutions to RCP is related to existence and uniqueness of solutions to
LCPs. A wealth of existence and uniqueness results concerning solutions to LCPs is
already available in the literature (see [47]). These results can be applied to prove
existence and uniqueness results for RCPs as is demonstrated by three classes of RCPs
having a relation to dynamical systems. The relationship between RCP and a class of
dynamical systems with discontinuous dynamics and impulsive motions is treated in
the next section.

4.5 Relation between RCP and linear complementarity
systems

In this section the relation of the RCP Itmear complementarity systems will be
discussed.

4.5.1 Linear complementarity systems

A linear complementarity system (LCS) is governed by the simultaneous equations

x() = Ax(@)+ Bu(t) (4.20a)
y() = Cx()+ Du(t) (4.20b)
O<y@®) L u@®=0 (4.20¢)

The functionsu(r), x(t), y(r) take values ifR*, R” andR*, respectively;A, B, C

andD are constant matrices of appropriate dimensions. Equation (4.20c) implies that
for all  and for every componeint= 1, ... , k at least one of; (1) = 0 andy; (t) =0

must be satisfied. This results in a multimodal system witm@des, where each mode

is characterized by a subskbf k, indicating thaty; (r) = 0 if i € I andu;(r) = 0 if
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i € I¢with I¢ = k\ I. For each such mode the laws of motion are given by Differential
and Algebraic Equations (DAESs). Specifically, in madthey are given by

X = Ax+ Bu (4.21a)

= Cx+ Du (4.21b)
yi = 0,iel (4.21c)
ui = 0,iel. (4.21d)

The mode will vary during the time evolution of the system. The system evolves
in a certain mode as long as the inequality conditions in (4.20c) are satisfied. At the
event of a mode transition, the system may display jumps (re-initialization) of the state
variable. In the next subsection these phenomena will be formalized, which will result
in a mathematically exact solution concept.

4.5.2 Solution concept of LCS

The solution concept of linear complementarity systems is based on a distributional
framework as in [83]. This distributional framework is needed, because we have to be
able to consider “impulsive motions.” To make this plausible, consider a mechanical
systems subject to some unilateral constraint, e.g. a particle moving around in a space
which contains a wall. If the particle hits the wall with a nonzero velocity, a jump (a
very fast motion) occurs in the velocity that can be modeled as the result of a Dirac pulse
appearing in the reaction force exerted by the wall. Since such mechanical systems
can be modeled as LCS, the previous motivates the choice for a distributional set-up
as in [83] from which we recall some concepts below.

The set of distributions defined dh with support on[0, co) is denoted byD’,
(see e.g. [183]). Particular examples of element®éfare the delta distribution (or
“Dirac pulse”) and its derivatives. We denote the delta distributior layd itsr-th
derivative bys"). Linear combinations of these particular distributions will be called

impulsive distributions, that is, a distributioru € D/ is an impulsive distribution,

if it can be written asu = Y!_qu~7s® for scalarsu™, i = 0,...,l. A special

subclass ofD, is the set of regular distributions @/ . These are distributions that
are smooth ori0, o). Formally, a distributioru € D, is smooth on [0, c0), if a
functionuv(r) € C*°(R; R) exists such that

|0 (t<0
“(’)_{ v(t) (¢ > 0).

Note that we use a different font for distributions to distinguish between the distribution
u, vectorsu € R¥, (time-)functions(¢) and rational functions (s).

Definition 4.5.1 [83] An impulsive-smooth distribution is a distributionu € D/, of
the formu = U;;p + Ureg, Whereu;,, is impulsive andl,., is smooth o0, co).
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The class of these distributions is denotedby,. If the regular part of an impulsive-
smooth distribution is of the form

0 (t<0
Ureg (1) = { FeS'H (¢t > 0)

for constant real matrices, G and vectorH of appropriate dimensions, we call the
distribution of Bohl type or a Bohl distribution. O

(4.22)

Given an impulsive-smooth distributian = U;;,,, + Uyee € Cimp, We define the
leading coefficient of its impulsive part by

0, if Uimp =0

u=t if Uimp = Zézo u~ 8@ with 1! # 0. (4.23)

leadu) := {

Definition 4.5.2 We call a scalar-valued impulsive-smooth distributiog C;,,, ini-
tially nonnegative, if

leadv) > 0O, incasev;,, #0
V,eg(t) > 0, forallz € [0, ) for certaine > 0, otherwise

A scalar-valued impulsive-smooth distributienis called initially positive, if v is
initially nonnegative and additionally, if the impulsive pagt,, is equal to zero, it is
required that/,.,(r) > 0O, for allz € (0, ¢) for somes > 0 (note that the interval
is open from the left). An impulsive-smooth distribution ([rj‘mp is called initially
nonnegative (positive), if each of its components is initially nonnegative (posifive).

The initial nonnegativity or positiveness of a Bohl distribution can completely be
characterized by its Laplace transform. This is not the case for general impulsive-
smooth distributions. The simple proof of the following lemma is omitted.

Lemma4.5.3 1. Suppose that the Laplace transform of U € Cf‘mp,
G(s), exists3. If U is initially positive, then there exists a oo € R such that the
Laplace transform satisfies ((o) > O for all real o > o9. For a Bohl distribution

the reverse statement holds as well.

denoted by

2. Suppose thatu € C fm » is of Bohl type and denote its Laplace transform by 0 (s).
There exists a og € R such that the Laplace transtorm ((s) satisfies 0(c) > 0
for all o > oy if and only if U is initially nonnegative.

3. Suppose u(t) is a piecewise continuous function with u(t) = 0,t < O such
that the Laplace transform, denoted by ii(s), exists. Furthermore, assume the
existence of a constant € > 0 such thatu(t) > 0 for allt € [0, €] and u(t) > 0
forallt € (tp,t5) C [0, 8] witht, < ty. Then there exists a og € R such that
i(o) > 0 foralloc > oyg.

O

3we say that the Laplace transform exists, if the Laplace transform can be defined on a nontrivial half
space of the complex plane.
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To show that the reverse of statement 1 and statement 2 is not true for general
impulsive-smooth functions, we consider the following counterexamples.

Example 4.5.4 We define forr € R the functionsf; () € C*°(R; R) as

t<rt

0,
fe@) = { _1 (4.24)

e —tT, >T.

It can be verified that this defines indeed a clags@ffunctions with derivatives equal
to zeroinr = t. A counterexample for the reverse of statementfk {s). The function
— f1(t) shows also that statement 2 cannot be generaliz€g,to O

]

Next, we define the concept of a distributional solution to a system of the form
X=Kx+ Lu,y=Mx + Nuwith K, L, M andN constant matrices of appropriate
dimensions. Let an initial conditiorg (at time instant 0) be given. We replace the
system by its distributional equivalent [83]:

X = KX+ Lu+x0d (4.25a)
y = MX+ Nu, (4.25b)

wherex denotes the distributional derivative xof

Definition 4.5.5 [83] A triple (u, x,y) € D" is a (distributional) solution to
x = Kx 4+ Lu, y = Mx + Nu with initial conditionx(0) = xo, if (u, X, y) satisfies
(4.25) as an equality of distributions. |

In [83], it is shown that for equations of the form (4.25) there is for every C?"

imp
a unique pairx, y) € D;E"“L’) such thaf(u, x, y) is a solution to (4.25) for givemo;

moreover(x,y) € Ci’ﬁj". Hence, given an initial statey, u can be seen as an input,
because it uniquely cfetermin(as, y). An important observation is that a nontrivial
impulsive part ofu may result in a re-initialization (also called “jump” or “impulsive
motion”) of the state. If;,,, = Y"'_qu~"8{ for vectorsu™* € R™, then a jump will
take place according to

l
Xreg(04) 1= liM X, 0o (1) = A'Bu™'. 4.26
reg( +) 110 reg( ) =x0+ g u ( )

Next we will consider equations of the form (4.25) with the additional requirement
thaty = 0.
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Definition 4.5.6 A statexg is said to beconsistent for (K, L, M, N), if there exists a
regular inputu such that

X = KX+ Lu+ xo

0 = MXx+Nu (4.27)

is satisfied. V(K, L, M, N) denotes the set of all consistent states for the system
(K, L, M, N) and is called theonsistent subspace.
a

The next lemma specifies a particular form of the regular inputs satisfying (4.27).

Lemma 4.5.7 Consider (4.27) with K, L, M, N constant matrices of appropriate
dimensions and write V = V(K, L, M, N). There exists a matrix F of appropriate
dimensions such that (K + LF)V C V and (M + NF)V = {0}. O

Proof. See Theorem.20 in [83]. |

The previous lemma shows thét= V (K, L, M, N) can be madeénvariant by
applying a feedback law(t) = Fx(t). By this we mean, that ikg € V, then the
solution of the closed-loop dynamics (i.e. after applying the feedbackiawy)=
Kx(t) + Lu(t) = (K + LF)x(r) with x(0) = xo satisfiesc(r) € V forall r € R,.
Thisis a consequence &K + LF)V C V. Furthermore, sinceM + NF)V = {0}, it
even holds thaM x(¢) + Nu(t) = (M + N F)x(t) = 0. Note that the corresponding
open-loop control function(r) = Fx(t) = Fe'A*8F) x4 is a Bohl function.

After these preliminaries we can define an initial solution to (4.20) given an initial
state (see also Chapter 3).

Definition 4.5.8 We call (u, X, y) € C*™"** an initial solution to (4.20) with initial

imp

statexg, if there exists ad C k such that

1. (u,Xx,y) is asolution to (4.21a)-(4.21b) with initial statgin the distributional
sense;

2. u andy satisfy (4.21c)-(4.21d) as equalities of distributions; and
3. u,y are initially nonnegative.
O

Obviously, an initial solution only satisfies the equations (4.20) “temporarily.” In
case an initial solution has a nontrivial impulsive part, only the re-initialization as given
in (4.26) forms a piece of the global solution. If the initial solutionx, y) is smooth,
the restriction(u, X, y) |0,¢) satisfies the equations (4.20) on the inte{@ak), where
¢ is given by

g:=1inf{t > 0| Upeqi(t) <00ry,q i(t) < 0forsome e k} (4.28)
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Onlyife = oo (u, X, y) forms a global solution to the LCS (4.20).¢lf< oo, the global
solution is continued with a part of a different initial solution corresponding to initial
statex ¢ (¢). Such a definition of a (global) solution to (4.20) based on concatenation
of initial solutions is formalized below. Given a staig we defines(xg) by

$(x0) := {I C k | there exists an initial solutiou, X, y) to (4.20) that
satisfieq4.21) for model}. (4.29)

The set$(xg) denotes the set of possible modes that can be selectedxfronn
Chapter 3 it has been shown that several other mode selection methods yield the same
set of continuation modes (under some mild assumptions). One of them is the RCP.

Definition 4.5.9 A solutionto (4.20) on0, T,), T, > 0 with initial statexg consists of
a 6-tuple(D, t, xe, uc(t), x.(t), y.(t)) whereD is either{0, ... , N} for someN > 0
orN,

T: D — [0, T,)

Xe : D — R”
uc(t): (0, T)\1(D) — R
xe(): (O, T)\1(D) — R"
Ye®): (0, T)\7(D) — R,

that satisfies the following.
1. There exists a functioh: D — 2k := (J | J Ckywith 1(i) € 8(x.(i)).

2. On an intervaka, b) C [0, T,) with a = t(i) < b for certaini € O and
(a,b)NT(D) = B, (uc(t), x:(1), y.(¢)) is smooth and is equal to a smooth initial
solution(u, X, y) in mode/ (i) with initial statex, (i) (i.e. (uc(t), x.(t), y.(t)) =
@ —a),x —a),y —a)) forall ¢t € (a, b)). Furthermoreu.(t) > 0 and
ve(t) > 0 hold for allt € (a, b).

3. @r0=0
(b) If D =Nthensup.p (i) =Te.
4. x,(0) = xo.
5 Ift(i +1) > (i), thenx,(i + 1) = im0 xc(0). If (@ +1) = 7(i), then
there must exist an initial solutiofu, x, y) in mode/ (i) with initial statex, (i)

such thate, (i + 1) = lim; 0 X, (¢) foralli withi € D,i +1e D.

]
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The interpretation of these notions and requirements will briefly be given. The
functionz specifiesthe eventtimes: the times atwhich the active mode changes. The set
1 (i) denotes the active mode betwed) andz (i +1). The triple(x.(t), u.(t), y.(t))
denotes the trajectories in the continuous phases of the complementarity system (as
imposed by item 3 andx, (i) denotes the event state at tim@). Items 3a) and 4
specify the initial conditions. Item(B) requires that the 6-tuple defines a solution on
[0, T,) in case thaT, is an accumulation point of event times. The relation between two
successive event states is described in Base of smooth continuation and in case of
re-initialization. In this definition there is some redundancy allowed in the number of
events (size ofD) and the event times. Given a soluti@®, t, x., u.(t), x.(t), y.(t)),
one could add — without violating the requirements — between any two event times
(i) andt(i + 1) with (i) < t( + 1) an additional event timé& by introducing
x.(T) = x.(7). Similarly, one could also add a void re-initialization, when a regular
initial solution exists from a certain state.

In Chapte 3 a more general solution concept is given. The extensions are twofold.
The solution as in Definition 4.5.9 allows only finitely many re-initializations at one
time instant, while the solution concept in Chapter 3 may have infinitely many re-
initializations as long as the event states converge. However, sufficient conditions
are known that guarantee that at most one re-initialization is required before smooth
continuation is possible, see Chapter 3. These conditions are formulated in terms of
leading column and row coefficient matrices being P-matrices. The second extension is
concerned with possibly continuing a solution after an accumulation point of events (i.e.
the existence of a* < oo such that lim_, o, 7(i) = ™). Using the solution concept
above the largest interval on which a solution can be defingd is*). However, in
Chapter 3 the solution concept includes continuation from an accumulation point, if
the state trajectory.(¢) has a left limit atr*.

In Chapte 3 a method has been proposed to construct analytical solutionsto a LCS
(4.20). This method can be used as a first set-up for simulation tools. The method can
briefly be summarized as follows. Starting from an initial staf@ne constructs an
initial solution (see also next subsection for the relation to RCP). If the initial solution
is smooth, there exists an interd, ) with ¢ > 0 as in (4.28) such that all the
equations in (4.20) are satisfied. To determim@e has to detect when the inequalities
u(t) > 0 andy(z) > 0 are violated. In this way a smooth piege (¢), x.(7), y.(t)) is
constructed o0, ¢). Fromx.(¢) one must find a new initial solution.

If the initial solution corresponding teg has a nontrivial impulsive part, the re-
initialized state according to (4.26) must be computed. Next one determines a new
initial solution with the re-initialized state as new initial condition and one considers
the two possibilities (impulsive or smooth initial solution) again. This cycle is repeated
till a solution is constructed on the desired inteM@&lT,).

Currently numerical simulation techniques based on time-stepping methods as in
[121] (electrical circuits) and [192] (mechanical systems with impacts and friction) are
under study.
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4.5.3 Relation between existence and unigueness of solutions
to RCP and LCS

A special form of RCRy (s), M(s)) arises when
q(s) :==C(sd — A) txpand M(s) :=C(sd — A" *B+D (4.30)

for A e R™" B € R"*k C e Rk*" D e Rk andxg € R”. We denote this case of
RCP by RCPXp) assuming tha#, B, C, D are clear from the context.

We generalize a result presented in Chapter 3. In Chapter 3 the following theo-
rem was proven under an additional constraint on the separate mode dynamics (4.21)
implying that all initial solutions are automatically Bohl distributions. The theorem
below expresses that solvability of the RCP is related to existenastffl solution.

Note that this is a local result, since it does not claim existence of a global solution as
in Definition 4.5.9.

Theorem 4.5.10 The following statements are equivalent.
1. The equations (4.20) have an initial solution for initial state xg.
2. The equations (4.20) have an initial solution for initial state xo of Bohl type.
3. RCP(xp) has a solution.

Furthermore, there is a one-to-one correspondence between initial solutions to (4.20)
of Bohl type and solutions to RCP(xg). More specifically, (U, X, Y) is an initial solution
to (4.20) of Bohl type if and only if its Laplace transform (Q(s), X(s), Y (s)) is such
that (O(s), Y (s)) is a solution to RCP(xg) and

R(s) = (s4 — A)"2xo + (s4 — A)"LBAU(s). (4.31)

The initial Bohl solution is smooth if and only if the corresponding solution to RCP(xq)
is strictly proper. ]

The equivalence between 2 and 3 is proven in Theorén2 3ogether with the
one-to-one correspondence between initial solutions of Bohl type with initial gfate
and solutions to RCR() as described above. Evidently, statement 2 implies statement
1. The converse implication is far from trivial and will be a consequence of the proof
of Theorem 4.5.14.

Of course, one may wonder whether a similar statement as in Theorem 4.5.10 can
be made about uniqueness. The next example shows that this is not the case.

Example 4.5.11 Consider the complementarity system (4.20) with

a=(50)r=(11):e=(512)»=(55)
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The corresponding RCRY{) with xo = (0,0) " has a unique solution(s) = y(s) =

(0,0)T for all s. However, we can construct uncountably many different initial solu-
tions (note that these cannot be Bohl due to the one-to-one correspondence between
initial solutions of Bohl type and solutions to the RCP). Forzalk- 0 the functions

u1(t) = f:(t), u2(t) = —fz(¢t) andyi(t) = y2(t) = 0 constitute an initial solution
to (4.20) with initial statg0, 0) T, where f, (1) are the functions introduced in Exam-
ple 4.5.4.
m]

a

This example demonstrates that multiple initial solutions may exist in certain situa-
tions, although there is only one Bohl initial solution (or equivalently, only one solution
to the corresponding RCP). However, we can introduce an equivalence relation on the
space of impulsive-smooth distributions such that all initial solutions belong to the
same equivalence class, in case there is only one initial solution of Bohl type.

We introduce the following notation. Consider the distributigns g;,,, +9,.¢ €
D, h = Nimp + Nreg € DE With Gimp, Nimp iMpulsive andg,.,, hy., piecewise
continuous. These distributions could be callegulsive-piecewise continuous. For
ane > 0 we write

g |(O,£): h |(0,s) if greg |[O,s): hreg |[O,£) .

Similarly, we write
g |[0,s)= h |[O,€) if greg |(0,8)= hreg |(O,s) andgimp = himp~

Definition 4.5.12 Let g, h be twon‘mp-functions. We shall say that is equivalent
toh, g ~ h, if and only if there exists am > 0 such thag |jg,s)= h lj0,s). This
is an equivalence relation and the equivalence classes are gatledd We say that
two initial solutions(u?, xt, y1), (U2, x2, y?) are in the same germ or areunique up
to germ equivalence if col(ul, x1, yl) ~ col(u?, x2, y2). O

This definition extends an equivalence relation@t-functions and the corre-
sponding equivalence classes (also called germs) as used in differential geometry, see
e.g. [21]. The following lemma states that the Bohl distributions can be embedded in
the space of germs.

Lemma 4.5.13 Each germ contains at most one Bohl distribution. O

Proof. Bohl functions are real-analytic. Henag,|j0,sy= h [0,s) impliesg = h for
two Bohl distributiongg, h. O

The set of Bohl distributions can be embedded (using the above lemma) in the set
of germs inC;,,,. However, not all germs contain a Bohl distribution as can be seen
from the equivalence class containinig(¢) (defined in Example 4.5.4).
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The uniqueness result that we are after is formulated as follows. The proof is given
later in this section.

Theorem 4.5.14 Let E € R!** be given. The following statements are equivalent.

1. The relation Eul ~ Eu? holds for any pair of initial solutions (u/,x/,y/),
j =1, 2 to (4.20) with initial state xg.

2. The relation Eul(s) = Eu?(s) holds for any pair of solutions (u’(s), y/ (s)),
j =12 toRCRx0).

]

Remark 4.5.15 Consider a linear complementarity system (4.20) with parameters
(A, B, C, D). Suppose that ket C kerB. Then it is evident, that statement 1 in
Theorem 4.5.14 implies that for any pair of initial solutiaus, x/,y/), j = 1,2 to
(4.20) with initial statexg, alsox! ~ x2 is true. If in addition, ke < kerD, then
alsoy! ~ y? holds. O

An immediate corollary is the following (takE equal to the identity matrix).

Theorem 4.5.16 All initial solutions to (4.20) with initial state xo are unique up to
germ equivalence if and only if RCP(xg) has a unique solution. O

Remark 4.5.17 Returning to example 4.5.11, it is obvious that all the indicated initial
solutions are contained in one germ with as a representative the initial solution of Bohl
type (as stated in Theorem 4.5.16). O

One may wonder if each germ of initial solutions contains a Bohl initial solution.
The above theorem implies that this is true (due to the one-to-one correspondence
between Bohl initial solutions and solutions to RCP), when there is only one Bohl
initial solution. However, the following counterexample shows that the collection of
germs of initial solutions can not be identified by the Bohl initial solutions in general.

Example 4.5.18 Consider the complementarity system (4.20) with

A= (90)m=(F ) ie=(20)0=(89)

For initial statexo = (0, 0) " the functionu1(r) = u2(r) = fo(r) (see Example 4.5.4),
y1(t) = y2(¢) = 0 is an initial solution. However, this function is not equivalent to a
Bohl distribution as noted before. O

To prove Theorem 4.5.14 one technical result is needed. It is possible that the
Laplace transform of an initial solution does not exist. The next lemma shows that the
initial solution can be modified for large time-values such that the Laplace transform
exists and satisfies the conditions of RCP except the rationality.
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Lemma 4.5.19 If there exists an initial solution (U, X, Y) to (4.20) with initial state
X0, then there exists an impulsive-piecewise continuous distribution (U, X, y) and an
€ > 0 such that

1. (G, X, V) is Laplace transformable with Laplace transform (0 (s), X(s), ¥ (s));

2' ([]a X? Y) |[O,€)= (u7 X5 y) |[0,€);
3. The relations (with q(s) and M (s) as in (4.30))

y(s) =q(s) + M(s)l(s) and y (s) LG (s) (4.32)

hold for all s € C and there exists a og € R such that for all o > og we have
y(0) =0, a(o) = 0.

O

Proof. Let (u, X, y) be an initial solution to (4.20). Farsuch thau;,,,; = 0 define
! =inf{r > 0 U, (r) < O} and definerl.y similarly if y;,,.; = 0. Note that the
definedz" and riy are strictly positive due to initial nonnegativity afandy. Take
e > 0 such that is smaller than all defined” andz .

We introduce the index set§ K by

Ji={i€k|u ljoag=0} K:={ickly;loe=0}.

We defineV := V(A, Bsjc, Cke, Dk jc) (See Definition 4.5.6). It is clear that
Xreg(t) € Vfort € (0, €) and hence,q;(€) = limsge X,00 (1) € V. We now take a
feedback lawF as in 2 of Lemma 4.5.7 making the subspatévariant under the
closed-loop dynamics = (A + B, ;< F)& (note the discussion after Lemma 4.5.7).

We introduce a new distributiol by G = U;,,, + G (note that the impulsive
part is unchanged) with

ureg,j(t), t e [O, €]
Ureg,j(1) =10, t>eandjeJ
Fjd&, t>eandj € J¢,

wherez (r) isthe solutiont@ (1) = (A+ B.yc F)E(r) with initial conditioné (€) = x (¢).
Note thatt(¢) is a Bohl function.

The existence of the Laplace transforms denotedly), X (s), ¥ (s)) is easily
established, becauseis at most exponentially increasing. Furthermore, the second
statement in the formulation of the lemma follows by construction.

Takingy as the corresponding output of (4.20a)-(4.20b) with initial skateit
is obvious that the first part of (4.32) is satisfied for all That the second part of
(4.32) holds for alls follows from the construction which is such thag = 0 and
yx = 0. Note that the union of the index setsand K is equal tok because of the
complementarity satisfied by the initial soluticm, x, y). It is clear that for alf with
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Gimp,i # 0 the Laplace transform satisfiés(o) > 0 for sufficiently larges € R.
Indeed, the impulsive pafi;,, ; is equal tou;,, ;, which has a positive leading
coefficient. In caséi,,,; = 0 the definitions ok andJ imply that for alli € J¢
Ure,i(t) = Oforallz € [0, €] and there exists a nonempty interval, t¢) < [0, €]
such thatu,., ; (1) > 0 fort e (1, t7). Applying statement 3 of Lemma 4.5.3 yields
((o) > 0 for all o sufficiently large. Similar remarks can be madeyar). )

Proof of Theorem 4.5.14If RCP(xq) has multiple solutiongu’ (s), y/(s)), j =
1, 2 with Eul(s) # Eu?(s), the inverse Laplace transforms result in initial solutions
(u’/,x’,y7), j = 1, 2 of Bohl type such thaEu! and Eu? are different. According
to Lemma 4.5.13 this implies tha&tu® and Eu? are contained in different germs.

Suppose there exist initial solutioast, x1, y1), (u2, x2, y2) with Eul andEu?in
different germs. According to the previous lemma there exigt ar0 and impulsive-
piecewise continuous distributiorid’, X/, /), j = 1, 2 satisfying the conditions
1 — 3 of Lemma 4.5.19 with respect ta/, x/, y/).

Two cases can be distinguished: eithewy, ~# EuZ  or Euf == EUZ
and Eu}eg(t) * Eufeg(t) for somer € (0, ¢). In the latter case the continuity of
both functions implies thaEu?,, (1) # EuZ, () for all 1 € (1.17) < [0, €] for
certainy, # tr. Hence, the same holds for the related impulsive-piecewise continuous
distributionsti! andGi®. It is clear that the Laplace transforms of these impulsive-
piecewise continuous distributions, denoted(By(s), X/ (s),y/(s)), j = 1,2 are
not rational in general and thug/(s), ¥/ (s)) do not form solutions to RCRy).
However, sincél’ (s), ¥/ (s)), j = 1, 2 satisfy (4.8) for alsk and (4.9) for alb > oy,

(07 (0),¥7(0)), j = 1, 2 satisfy LCRq(c), M(c)) with g(s) andM (s) as in (4.30).

We intend to invoke Theorem 4.4.9 to find multiple solutigns(s), y/(s)), j =
1,2 to RCRxp). Suppose that the conditions of this theorem are not satisfied, i.e.
assume that there exists @< R such that for alb > o9

E0Y(o) — EG%(0) = 0. (4.33)
We reconsider the two cases above. In the first case wemﬁ#gp #* Eﬂizmp. Itis
clear that this contradicts (4.33). Similarly, in the second caseltiﬁ-ﬂfmp = Eul?mp)
(4.33) becomes

reg reg

/oo[Eul (1) — EG2, (1)]e 'dt =0
0

for all o > op. Since in the second case the regular parts differ on the interval
(tp, tr), the above equation cannot hold for all> og. Hence, the conditions of
Theorem 4.4.9 are satisfied and multiple solutionss), y/ (s)), j = 1, 2 to RCRxg)

with Eul(s) # Eu?(s) do exist. O

Remark 4.5.20 The proof of Theorem 4.5.10 can easily be derived from the proof
above. Similarly, we can construct a solution to @& ), M (o)) for all sufficiently
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large o by taking the Laplace transform of the corresponding impulsive-piecewise
continuous distribution satisfying the conditions of Lemma 4.5.19. Instead of invoking
Theorem 4.4.9, one has to use Theorem 4.4.1 to prove the relation between existence
of initial solutions and the existence of solutions to the corresponding RCP. [

The following corollary shows how the equivalence relation for initial solutions
can be used to establish ‘global’ uniqueness of the global solution. The proof is based
on the fact that only the ‘nonnegative part’ of the initial solution returns in the global
solution.

Theorem 4.5.21Let T, > 0 and E € R'*k be such that kerE C kerB with B as
in (4.20). Suppose that Eul(s) = Euz(s) for all initial states xo and any pair of
solutions (u’ (s), y/(s)), j = 1,2 to RCP(xq). Then each pair of global solutions
(D7, o, x), ul @), x} (1), y. (1)), j = 1,2 0n[0, T,) to (4.20) for equal initial state
satisfies Eul(t) = Eu?(t) and x1(t) = x2(t) for allt € [0, T,) witht ¢ t3(D') U
t2(D?). If in addition, ker E C ker D with D as in (4.20), then yX(t) = y2(z) for all
t €[0,T,) witht & t3(DY) U 12(D?). O

The relevance of the assumption keC ker B is mentioned in Remark 4.5.15 and
will also become clear in the proof. Situations in which Beis nontrivial occur for
instance in the mechanical systems treated in the next section.

Proof. The proof is based on the following observations. According to the hypoth-
esis of the theorem, Theorem 4.5.14 and Remark 4.5.15, we must have that any pair of
initial solutions(u’, x/, y/), j = 1, 2 with the same initial state, satisfigsil ~ Eu?
andx! ~ x2. This will be called thesimilarity property in the proof. Secondly, note
that for a global solution as in Definition 4.5.Q4.(t + 1), x.(t + 1), y.(t + 1)) for
somef ¢ (D) is equal to a smooth initial solution with initial statg(f) on a closed
interval of positive length with left end-point zero.

Define

r*:=inf{t € [0, T,) \ (z}(DY) UT2(D?)) | Eul(t) # Eu?(r) or x1(r) # x(1))

with the convention inf = co. In caser* = oo, we are finished, because then the
claim of the theorem is true. Hence, suppose: co. Without loss of generality we
may assume that no void re-initializations occur meaning tigt = (i + 1) and
x.(i) = x.(i +1). Itis clear that in these case& + 1) can be removed from the set
of event times without essentially changing the global solution.

We can distinguish three cases.

1. t* e tH( DY) N 2(D?). Let ji, and ji ., be the minimal and maximal integer
jin D', respectively, such that (j) = t* fori = 1,2. In case* = 0, itis
clear thate2(jl. ) = x2(j2,). If t* > 0, Definition 4.5.9 (item 5 and the
definition of* imply thatx2(jL. ) = lim g+ x2(6) = limpe x2(0) = x2(j2;).
The definition of re-initializations (item.pand the similarity property yield by
inductionthat X (jL. +r) = x2(j2;,+r) forall0 < r < min(ia— it iZax—



118 The Rational Complementarity Problem

j2. . Since no v0|d re- |n|t|aI|zations occur, the similarity property implies that
Tln .

Jax.~ Jtin = ]max j2i,- Hence, for both global solutions we have that
T (]max~|— >+t (]max) = t* with the same initial statel(JmaX) = xZ(JmaX)
Recall the way thatu’.(t), x (t) yc(t)) is defined on(t’ (jmax) T (]max+ 1)

as a piece of an initial solution (see itemd? Definition 4.5.9). According to

the similarity property, it is then clear that

Eul(t) = Eu?(r) andx(r) = x?(t)
forall r € [r*, t* + ¢) for somes > 0. This contradicts the definition of.

2. t* € 1 DY)\ 12(D?) (orr* € t2(D?) \ r1(DY)). Note that* > 0, because 0
is always an event time. Lgtbe the smallest integer i®! such thatrl(])

t*. According to Definition 4.5. 9x () = I|m,T,1(j)x (r) = |Im,T,*x ) =
x2(t*). Sincer* ¢ t2(D?), W2(t + t*), x2(t + 1), y2(¢ + %)) is equal to a
smooth initial solution with initial stateg(j) on a closed interval of positive
length with left end-point equal to zero. The similarity property implies that the
state of any other initial solution fromel( j) must be equivalent to the state of

this smooth one. This implies that(j + 1) > 71(}), because otherwise a void
re-initialization would take place. Due to (again) the similarity property,

Eul(t) = Eu?(r) andxl(r) = x?(1)
forall r € [¢*, t* + ¢) for somes > 0. This contradicts the definition of.

3. t* ¢ t1(DY) U t2(D?). Note thatr* > 0. Both(ul (r + 1), x! (t + %), yl (t +
t*)), j = 1, 2 are equal to smooth initial solutions with the same initial state
xcl(t*) = xcz(t*) on a closed interval with positive length and left end-point zero.
The similarity property guarantees

Eul(t) = Eu?(r) andxl(r) = x?(1)
forall r € [t*, t* + ¢) for somes > 0. This contradicts the definition of.

Hence* = oo and thus the proof is complete.
The case in which additionally két € ker D holds can be proven analogously.
The similarity property includes then algd ~ y? as in Remark 4.5.15. O

Particular choices of lead to uniqueness of the complete global solution or the
state trajectory of the global solution.

Definition 4.5.22 We say that (4. 20) has theuque flow part property, if every pair

of global solutions(D/, t/, x}, ul(t), x! (1), y. (1)), j = 1,2 to (4.20) on an ar-

bitrary time- mtervaI[O T,) W|th arbitrary initial statexg SatISerSul(t) 2(t)
xX(1) = x?(t) andyX(r) = y2(t) for all t € [0, T,) with ¢ ¢ tl(i)l) U zz(:oz)



4.6. Well-posedness results 119

We say that (4.20) has thenique state part property, if any pair of global solu-
tions (D7, t/, x, ul(t), x. (1), y.(t)), j = 1,2 to (4.20) on an arbitrary interval
[0, T,) with arbitrary initial statexp satisfiesx!(r) = x2(¢) for all + € [0, T,) with
t & tHDY) U T3(D?). O

Corollary 4.5.23 Consider a linear complementarity system given by the quadruple
(A’ B’ C’ D)'

e Suppose that Bul(s) = Bu?(s) is true for any pair of solutions (u’ (s), y/ (s)),
Jj =1, 2to RCP(xg) for all initial states xg. Then the LCS (4.20) has the unique
State part property.

 Suppose that ul(s) = u?(s) is true for any pair of solutions (u’(s), y/(s)),
J =1, 2 to RCP(xp) for all initial states xg. Then the LCS (4.20) has the unique
flow part property.

O

4.6 Well-posedness results

By combining the results of the sections 4.4 and 4.5, existence and uniqueness of initial
solutions can be related to solvability properties of parameterized sets of LCPs. This
will now be exploited to obtain well-posedness results for linear mechanical systems
subject to unilateral constraints, linear relay systems and electrical networks containing
ideal diodes. Establishing (unique) solvability of the LCPs can be a nontrivial task in
certain situations, as we will see.

4.6.1 Well-posedness results of linear mechanical systems
We consider linear mechanical systems given by
Mg+ DG+ Kq =0, (4.34)

whereg denotes the vector of generalized coordinates. MoreaWedenotes the
generalized mass matrix (or inertia matrix), which is assumed to be positive definite,
D denotes the damping matrix aRdthe stiffness matrix. Suppose now that the system
is subject to frictionless unilateral constraints given by

Fqg>0 (4.35)

with F some matrix of appropriate dimensions. Furthermore, we assume that impacts
are purely inelastic. Then (4.34) is replaced by

MG+ Dg+Kqg=Fu (4.36)



120 The Rational Complementarity Problem

together with complementarity conditions @andFg. F "« are the constraint forces
andu are the multipliers corresponding to the unilateral constraints. This formulation
can be cast into a linear complementarity system by introducing the state veetor
col(g, ¢) resulting in

. 0 I 0
x:( -1k —M‘lD)x+<M1FT )u (4.37a)
A B
y=(F Ox (4.37b)
——
C

together with the complementarity conditions (4.20c) on the reaction foered the
displacemeny. Note that theB-matrix has full column rank if and only if has full

row rank; hence, if the unilateral constraints are dependeng kenontrivial. This is

for instance the case if an equality constraint is described by two inequalities in (4.35).
Note that such a dependence was taken into account in Theorem 4.5.21.

Of course, the linear setting chosen here is quite restrictive in comparison with
recentadvances in the field of nonlinear mechanical systems with inequality constraints
[72,131,192]. In fact, results as in Theorem 4.6.6 below were proven already in
[124,142] for nonlinear mechanical systems by differentiation of the relevant system'’s
variables. The purpose of this section is merely an illustration of the general theory
developed in this chapter. We will show that Theorem 4.6.6 can be obtained quite
easily by using the RCP.

RCP() for a linear mechanical system as above is equal to RGRP,(M (s)) with

M(s):=C(sd — A B =F(?M +sD+K)F" (4.38a)
q(s) == C(sd — A)"Yxg = F(s?M +sD + K) " [(sM + D)qo + Mgo] (4.38b)

with col(go, go) = xo. To prove solvability of the corresponding LGR¢), M (o))
for sufficiently larges € R, we use the following lemma from [46].

Lemma4.6.1 [46] IfG = NPN T for some positive definite (not necessarily sym-
metric) matrix P and some matrix N and ¢ € Im G, then the problem

y=c+Gu,0<ylu=>0

has solutions. If (ut, y1) and (u?, y?) are two solutions, then y* = y2 and Guy = Guy.
|

We also need the following.



4.6. Well-posedness results 121

Lemma 4.6.2 Let P € R¥** and N € R**k be matrices with P positive definite (but
not necessarily symmetric). Then the following holds:

kerNPNT = kerNT
IMNPNT = ImN=ImNP.

O

Proof. If NPNTv = 0, thenv' NPN Tv = 0 is true implying thatv "v = 0. This
proves the first identity above, because the converse is trivial. The second statement
follows by duality. O

Remark 4.6.3 Note that all matrices; = NPNT for some matrixN and some
positive definite matrixP are nonnegative definite (but not necessarily symmetric).
However, the converse statement that all nonnegative matrices can be written in the
L2 ) Indeed
o 1 ) '
if G=NPNT,then Lemma 4.6.2 implies that kit = kerG = {0}. However, for
v = col(1, 1) we havev " Gv = 0 and hence (see proof of Lemma 4.6\2) v is equal
to 0, which contradicts the triviality of the kernel pf' . O

above form, is not true. A counterexample is providediby= (

O

Theorem 4.6.4 RCP(q(s), M(s)) with q(s) and M(s) as in (4.38) (or equivalently
RCP(xq) with the matrices A, B, C as in (4.37)) has for each xq a solution. O

Proof. Obviously, we have for sufficiently largethat(¢2M +o D + K)~Lis positive
definite, becaus# is positive definite. Accordingto Lemma4.6.1 and Theorem 4.4.1,
left to prove is that for sufficiently large, ¢(o) as in (4.38b) belongs to I (o).
However, this is immediate from Lemma 4.6.2, because

g@) eIMF@?’M+6D+K)*=ImMF06°’M+0oD+K)'F' =ImM(o)
(4.39)

for sufficiently largeo . O

Theorem 4.6.5 Consider a linear mechanical system of the form (4.37) with initial
state xg. The corresponding RCP(xg) may have multiple solutions, say (ul(s), yl(s))
and (u?(s), y2(s)). However, these solutions satisfy Bul(s) = Bu?(s). O

Proof. Takeog such thatR(c) := (62M + oD + .K)*l is positive definite for all
o > op. Suppose that there exist two solutians, y'),i = 1,2to LCRg (o), M(0))
for someo > op. According to Lemma 4.6.1, we have

M(o)ut = M(0)u?(s). (4.40)
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Lemma 4.6.2 states that &) = kerFR(c)F " = kerF " holds for allo > oo.
Hence,F T (u® — u?) = 0. The form of the matrix3 as in (4.37) now implies that
Bu' = Bu®. Invoking Theorem 4.4.9 completes the proof. O

For linear mechanical systems the following well-posedness result follows from
Theorem 4.6.4, Theorem 4.6.5, Theorem 4.5.10 and Corollary 4.5.23.

Theorem 4.6.6 Consider a constrained mechanical system given by (4.37) and (4.20c).
For each initial state xq there exists an initial solution. Furthermore, the constrained
mechanical system has the unique state part property (as defined in Definition 4.5.22).

|

For the case ofndependent unilateral constraints (i.eF" has full row rank), it has
already been proven in Chapter3, that after at most one nonsmooth initial solution, a
smooth initial solution occurs, i.e. for each initial state there exists an0 such
that a solution in the sense of Definition 4.5.9 existg@re) with t(1) > 7(0) or
7(2) > t(1) = 7(0). ltisalso shown thatthe initial solutions with possible jumps agree
with the jump rules as proposed by Moreau in the case of inelastic collisions [139, 144].

4.6.2 Well-posedness of linear relay systems
In this subsection, we consider a system given by

%) Ax(t) + Bu(t) (4.41a)
y@®) = Cx(@)+ Du(r) (4.41b)

with u(r) € R¥, x(r) € R", y(r) € RF and A, B, C, D are matrices of appropriate
dimensions. Each paiw;, y;) is connected by an ideal relay (or Coulomb friction
characteristic) with a relation as given in figure 4.1 (note the minus sign in fren}.of
The vectorsl; andds € R in this figure are constant vectors with

d1>0,d>>0, di+dp > 0. (4.42)

Several approaches are known that cast the relay/Coulomb friction characteris-
tic into a complementarity description by introducing several auxiliary variables, see
e.g. [112, 123, 160]. In [123] a corresponding rational complementarity problem
RCPg(s), M(s)) has been formulated with

B Gls) -G

M) = (—G‘l(s) NN ) (4.432)
(G T(s)x0 + 1ds

q(s) = < G_l(S)T(S)xo-i—%dz ), (443b)

wherexyg is the initial condition of (4.41) and
T(s) = C(sd—A)t
G(s) := C(sd—A7B+D.
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Y:

—1 - (dy),

Figure 4.1: The-th relay characteristic.

We assume thaf (s) is invertible as a rational matrix. Similarly as for a standard
LCS, the RCP{(s), M (s)) has a solution if and only if the system (4.41) with initial
conditionxg has an initial solution. All initial solutions corresponding to the same
initial state are unique up to germ equivalence if and only if this RCP admits at most
one solution.

We consider an LCR( M) with M andq of the following structure.

G—l _G—l
M = <_G_1 G_l ) (444a)
_ -G lv+dp
g = ( Gotut d ) (4.44b)

whereG is an invertible matrixp is some vector and; andd- are vectors satisfying
(4.42).

The assumptions in the following theorem do not reqiréo be a P-matrix. Ac-
cording to Theorem 4.3.3 this implies that LGP(/) does not have a unique solution
forall arbitrary vectorg. In[123] the special structure gfandM in (4.44) is exploited
to prove the following result.

Theorem 4.6.7 [123] If G is a P-matrix, then the LCP(q, M) with g and M as in
(4.44) has a unique solution for each xg and each d1, do satistying (4.42). O

As a corollary of the theorems 4.4.1 and 4.4.9, we get the following statement.

Lemma 4.6.8 If there exists a og € R such that G (o) is a P-matrix for all o > oy,
then RCP(q(s), M(s)) with q(s) and M(s) as in (4.43) has a unique solution for all
X0- O
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As a consequence of Theorem 4.5.10, Theorem 4.5.16, and Corollary 4.5.23, we
get the main result of this subsection.

Theorem 4.6.9 Consider the linear relay system given by (4.41) and k ideal relay
characteristics. If G(c') := C(o 4 — A)"1B + D of (4.41) is a P-matrix for all o > og
for some og € R, then for all xg there exist initial solutions of the relay system (4.41)
with initial state xo, and all these initial solutions are unique up to germ equivalence.
Furthermore, the linear relay system has the unique flow part property (as defined in
Definition 4.5.22). ([

In [123], it has been shown that all initial solutions are regular distributions and
hence the state trajectary(r) of the global solution as in Definition 4.5.9 is continuous
in the sense that lim. ) x.(t) = lim; . x.(t). Between event times.(¢) is even
smooth.

4.6.3 Well-posedness of dissipative systems with complemen-
tarity conditions

Let us consider a linear complementarity system (4.20), in which the dynamical system
given by (4.20a)-(4.20Db) idissipative in the following sense.

Definition 4.6.10 [206] The systen{A, B, C, D) given by (4.20a)-(4.20b) with sup-
ply ratex "y is said to belissipative, if there exists anonnegative functisn R* — R,
such that for alkg < 1, and all locally square integrable functioasgz), x(z), y(¢))
from R to R+ satisfying (4.20a)-(4.20b) the inequality

5

1
S(x(10)) + / u' ()y(@t)dt > S(x(t1))

fo

holds. A functionS satisfying the conditions above is calledtarage function. [

The above inequality is called thé#issipation inequality. \WWe shall also use the
assumption of minimality of the system description, which is standard in the literature
on dissipative dynamical systems, see e.g. [206]. The tfigleB, C) in (4.20a)-
(4.20Db) is calledninimal, if it is controllable and observable. In algebraic terms this
means that

rankB AB ... A" 1By =nandrankC"T CTAT ... cT(ATY" ) =n. (4.45)
We state the following results from [206].

Theorem 4.6.11 [206] Consider the system (A, B, C, D) as in (4.20a)-(4.20b) and
assume that (A, B, C) is minimal. Then (A, B, C, D) is dissipative with respect to
the supply rate u' y if and only if the transfer matrix M(s) := C(sd — A)"1B + D
is positive real i.e. the poles of the entries of M (s) have nonpositive real parts and
M(s) + M*(s) > O for all s with Res > 0. O
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Theorem 4.6.12 [206] Consider the system (A, B, C, D) as in (4.20a)-(4.20b) and
assume that (A, B, C) is minimal. The system is dissipative with respect to the supply
rate u'y if and only if there exists a symmetric positive definite matrix K such that
S(x) = x " Kx defines a storage function. O

Now we are in a position to prove the main result of this subsection.

Theorem 4.6.13 If the linear complementarity system given by (4.20) is such that
(A, B, C, D) is dissipative with respect to the supply rateu " y and the triple (A, B, C)
is minimal, then the corresponding RCP(xo) has for each xg a solution. RCP(xg) may
have multiple solutions. However, we have Bul(s) = Buz(s) for all pairs of solutions
(u/(s), ¥/ (s)), j = 1, 2 to RCP(xp). O

Proof. Since M (s) is positive real,M (o) is positive semi-definite for each nonneg-
ative realo. According to [47, Thm. 3.1.2] this implies that if the LOP(c 4 —
A)~Ixg, M(0)) is feasible (see Section 4.3) for a definition), then it is solvable. So,
if we can show that for ab > 0 LCP(C (o4 — A) 1xg, M(0)) is feasible, then we
proved according to Theorem 4.4.1 that R&gPhas a solution.

Suppose that there existgra> 0 such that LCRC (o4 — A) " 1xg, M (o)) is not
feasible. This means that the set of inequalities C(ocd — A)~1xg + M(o)u > 0,
u > 0 does not have a solutione R¥, u € R*. Rewriting this in the standard form
used in Farkas’lemma [135] yields that

(=M (o) 1)( z ) =C(od - A)xo, ( i ) >0

does not have a solution. Then, Farkas’ lemma [135] implies that there exists a vector
ug such that

0 < up (4.46)
0 > ulM(); (4.47)
0 > uiClod—A) 1. (4.48)

Observe that the following trajectories

ut) = uge” (4.49)

x(t) = (64 —A")"1CTuge”’ (4.50)

y©) = M (0)uge” (4.51)
form a solution of

i) = A'x@)+CTu®

y@#) = B'x®)+ D u@).

Note that the system with parametérs™, CT, BT, D) results in the transfer
matrix M " (s). Furthermore, note tha ™, C ", BT) is minimal, becauséA, B, C)
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is minimal and thai T (s) is positive real, becaus¥ (s) is positive real. Hence, the
system(AT,CT, BT, D) is dissipative according to Theorem 4.6.11.

Substituting (4.49)-(4.51) in the dissipation inequalityaf , C", BT, DT), we
getforrg < 11

t
S(x(t)) + f 1u§ M (0)uge®'dt > S(x(11)), (4.52)

o

where we takeS(x) = x " Kx as a storage function fqid ", CT, BT, DT) with K
symmetric and positive definite as in Theorem 4.6.12. Note@MT(J)uo = 0due
to the fact thatV " (o) is positive semi-definite and (4.46)-(4.47). Hence, the integral
in (4.52) is zero resulting in & S(x(r1)) < S(x(70)). Since lim,_, _ x(t0) = 0 (see
(4.50) and recall that > 0), we getx " (r1)Kx(r1) = S(x(r1)) = O forallr; € R.
But this means that (1) = 0 for all 11 € R, becauseX is positive definite. Since
(04 — AT) isinvertible for everys > 0, (4.50) impliesC "ug = 0 which contradicts
(4.48). This proves the existence part of the theorem.

To prove the uniqueness part, we use similar reasoning as for the existence part.
Suppose LCRC (o 4 — A) " Lxp, M(0)) has for some > 0 multiple solutiongu?, y1)
and (12, y2). According to [47, Thm.3.1.7], then we must have th&t' (o) +
M (0)](ut—u?) = 0. Observing thai (1) = e (ul —u?), x(t) = (64— A) " 1But -
u?)e®’, y(t) = M(o)(ut — u?)e" are trajectories of the systefd, B, C, D), we can
conclude analogously as above by using the dissipation inequalitg f&, C, D) that
B(u! — u?) = 0. According to Theorem 4.4.9 this implies that any pair of solutions to
RCP(o) (1’ (s), ¥/ (s)), j = 1, 2 satisfiesBul(s) = Bu?(s). O

The main theorem of this subsection is now a consequence of Theorem 4.5.10 and
Theorem 4.5.23.

Theorem 4.6.14 A linear complementarity system (4.20) with (A, B, C, D) dissipa-
tive with respect to the supply rate u'y and (A, B, C) minimal, has for each initial
state xo an initial solution. Moreover the corresponding LCS has the unique state part
property (as defined in Definition 4.5.22). (]

An example of a linear complementarity system with, B, C, D) dissipative
with respect to the supply raie’ y is a linear electrical network consisting of resis-
tors, capacitors, inductors, gyrators, transformerskaideéal diodes. To model such a
network as a complementarity system, we first extract the diodes and replace them by
ports with two terminals. Associated with these two terminals are two variables: the
current entering one terminal and leaving the other and the voltage across these termi-
nals. The resulting multiport network can be described by a state space representation
(A, B, C, D) [3] with input/output ¢/y) variables representing the port variables. For
thei-th port, we have that either; is the current entering the port andthe voltage
across the port or vice versa. To include the ideal diodes in the electrical network, we
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add the ideal diode characteristics to the port variables. These are (with a sign change
with respect to the usual conventions in circuit theory)

0 < y(t) Lu()>0. (4.53)

Together with the(A, B, C, D)-system this constitutes an example of the systems
considered in this subsection.

4.7 Conclusions

The main results in this chapter can be split in two categories. The first category
deals with the existence and uniqueness of solutions to the RCP. Both existence and
unigueness are completely characterized in terms of properties of corresponding pa-
rameterized LCPs for large parameter values. The proofs rely on convexity theory and
properties of rational functions. Since a wealth of theoretical and numerical results is
known for LCPs, this provides many methods to answer solvability issues of RCPs.

The second part of the chapter has shown the relation of the RCP to a class of hybrid
dynamical systems: the linear complementarity class. A relation has been established
between the existence of initial solutions to a linear complementarity system and the
existence of solutions to the RCP. It appears that a similar relation for uniqueness is less
trivial, because an example shows that it is possible that multiple initial solutions exist
for a fixed initial state, although there is only one solution to the corresponding RCP.
This has led to the introduction of an equivalence relation among the initial solutions. In
terms of this equivalence relation, a uniqueness relation between solutions of RCP and
initial solutions has been stated. The results on initial solutions have been translated
to the global solution of a complementarity system.

The obtained results have been exploited to prove existence and uniqueness results
of physical processes like mechanical systems subject to unilateral constraints, dissi-
pative systems with complementarity conditions like electrical networks with diodes,
and systems with relays and/or Coulomb friction. The set of examples presented here
gives a flavor of the systems that can be modeled as complementarity systems and
indicates the relevance of the complementarity class and the results presented here.

The proofs of the well-posedness results that we have obtained are constructive in
nature, in the sense that they present specific algorithms which determine the status
(“active” or “inactive”) of all complementarity conditions given an initial condition.

In other words, these algorithms solve the “mode selection problem”. Algorithms of
this type are important in the@mulation of hybrid systems. In this chapter we have

not considered the numerical issues related to mode selection problems; this is an
important subject for further research.
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5.3 Dynamics in a given mode well-posedness

5.6 Conclusions

This chapter is based on the paper [84], which has been submitted for publication.
A preliminary version [36] of this chapter has been presented at the Conference on
Decision and Control 1999 in Phoenix (USA). Kanat Camlibel acted as one of my
co-authors in these papers, and these papers are also part of his PhD-work.

5.1 Introduction

Nowadays switches like thyristors and diodes are used in electrical networks for a
great variety of applications in both power engineering and signal processing. For the
simulation of the transient behavior of such networks the switches are often modeled
ideally [13,136,154,197,203]. Itis well-known that ideal modeling causes the network
model to be of a mixed discrete and continuous nature. In particular, the circuit evolves
through multiple topologies (modes) depending on the (discrete) states of the diodes.
The mode transitions are triggered by inequalities and may result in discontinuities and
Dirac impulses in the network’s variables, see e.g. [56, 136, 146,154,175, 197, 203].
Several numerical methods have been proposed to deal with these phenomena and
simulation of circuits with nonsmooth characteristics is well established by now [13,
20,41,42,63,120,121,136,172].

However, little attention has been paid to the question if and in what sense the
computed time functions converge to the true solution of the network model. The
simulation methods can be distinguished in two categories depending on whether or
not the software attempts to find the exact times at which events take place. The
convergence of “event tracking” methods might be inferred from a combination of
standard results on the convergence of numerical algorithms for root finding and for
simulation of smooth dynamical systems. For “time stepping” methods, which are a
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popular alternative to event tracking methods in a number of applications [20,120,172],
the issue of convergence is less clear. Itis the objective of this chapter and of chapter 7
to provide a rigorous basis for the use of time stepping methods in the simulation of
internally switched electrical circuits.

Before we are able to prove consistency of a numerical routine, we have to establish
whatis meant by a transient “true solution” of a dynamical network with ideal diodes. In
this chapter we provide a mathematical framework that allows the precise formulation
of a solution concept for these continuous/discrete networks. The framework will be
borrowed from the theory of linear complementarity systems [92, 93,123,177, 179].
These systems can be seen as dynamical extensions é@h#he complementarity
problem [47], which (together with a number of variants) has been used extensively in
the study of piecewise-linear electrical networks [20,53,63,111,120,121,191, 201].

The definition of true solutions is coupled to the question of existence and unique-
ness of solutions of the network model (called well-posedness). Much effort has been
invested in considering existence and uniqueness of solutiomgio(DC) models of
electrical networks [40, 45, 69, 70, 75, 150, 152, 165, 166, 173, 174]. However, studies
of the dynamic equivalent are rare. The only papers known to the authors dealing with
existence and uniqueness of (dynamic) RLC-networks are [58, 153]. Since an ideal
diode cannot be reformulated as a current or voltage-controlled resistor, the obtained
results in [58, 153] do not cover the networks considered here.

The main purposes of the chapter are the following.

(i) Define a mathematically precise solution concept for linear passive networks with
diodes.

(ii) Prove (global) existence and unigueness of solutions.

(i) Establish regularity properties of the solutions. In particular, it will be rigorously
proven that derivatives of Dirac impulses do not occur (even for inconsistent initial
states) and Dirac impulses occur only at the initial time. Moreover, it will turn out
that the set of switching times is a right-isolated set, meaning that for all time instants
there exists a positive length time interval in which the diodes do not change their state.
Chapter 7 will use these results to prove consistency of a transient simulation technique
based on time-stepping.

The outline of the chapter is as follows. In Section 5.2 linear passive networks
with diodes will be reformulated as linear complementarity systems. In Section 5.3,
we describe the evolution of the network model within a given mode (i.e. with a
fixed state of the diodes). Next, an extension of the linear complementarity problem
will be introduced, which will play an important role in the proof of well-posedness.
In Section 5.5 the solution concept is introduced. Finally, the proof of global well-
posedness is presented.

The following notations will be in force.N denotes the set of natural numbers
{0,1,2,...}, R the real numbersR, the nonnegative real numbers (including zero)
andC the complex numbers. For a positive integéidenotesthe s¢t, 2, ... ,I}. Ifa
is a (column) vector wittk components, we denote itsh componentby;. M T is the
transpose of the matri € C"*" andM* denotes the complex conjugate transpose.
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Amatrix M € C"*" is called nonnegative definite if Ré Mx = %x*(M+M*)x >0
forallx € C™. Thisis denoted bys > 0. In case strictinequality holds for all nonzero
vectorsx, we call the matrix positive definite and writ¢ > 0. By 4 we denote the
identity matrix of any dimension. GiveW ¢ R**! and two subsets € k andJ C I,
the (1, J)-submatrix ofM is defined as; ; := (Mij)icr,jes. In CaseJ = I, we also
write My,. If I = k, the notationM,; is sometimes used.

By R(s) we denote the field of real rational functions in one variablé(s) €
R¥*L(s) means that/ (s) is ak x [ matrix with entries inR(s). A rational vector or
matrix is called (strictly) proper, if for all entries the degree of the numerator is smaller
than or equal to (strictly smaller than) the degree of the denominator.

A vectoru € RF is called nonnegative, and we wriie > 0, if u; > 0 for all
i € k and positive § > 0), if u; > 0 for alli € k. If two vectorsu, y € R¥ are
orthogonal, i.ex "y = 0, we writex_Ly. We writeu (s) Ly(s) for two rational vectors
u(s), y(s) € R¥(s), if for all i at least one ofi;(s) = 0 andy; (s) = 0 is satisfied.

The set of arbitrarily often differentiable functions frdkto R™ is denoted by
C®(R; R™). £’§(to, 1) denotes the set of all measurable functiorfsom (1, 11) to

R* for which the integrayt;1 lv(z)||2d7 is finite.

5.2 Linear passive networks with ideal diodes

Linear electrical networks consisting of (linear) resistors, inductors, capacitors, gyra-
tors, transformers (RLCGT) and ideal diodes can be described in a complementarity
formulation as mentioned in e.g. [20, 121]. Indeed, the RLCGT-network can be de-
scribed by the state space model

x(1)
y(@)

Ax(t) + Bu(r) (5.1a)
Cx(t) + Du(t) (5.1b)

with A € R™", B € Rk C e R**" and D e R¥*k matrices of appropriate
dimensions[3]. The state variabl€¢) usually represents the voltages across capacitors
and currents through inductors at timeThe pair(u;, y;) denotes the voltage-current
variables at the connections to the diodes, i.e.

up ==V, yi=1oru; =1, yy= -V,

whereV; andl; are the voltage across and current through ttrediode, respectively.
The ideal diode characteristics are given by Figure 5.1 and described by the relations

Vi <0, I; >0, {V;=00rI; =0}. (5.2)

The top branch of the characteristic corresponds to the conducting mode and the left
branch to the blocking mode.
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Figure 5.1: The ideal diode characteristic.

By suitable substitutions the following system description is obtained.

x(@®) = Ax@) + Bu(t) (5.3a)
y(@) = Cx(t)+ Du(t) (5.3b)
O<y@®) L u@ =>0. (5.3¢)

In this formulationr € R, denotes the time variable(r) the state, and(r) and
y(t) the complementarity variables at time The system (5.3) is called Enear
complementarity system as introduced in [177] and further studied in [92,93,123,179].
We use the notation LGR, B, C, D) to indicate the system given by (5.3). Note that
(5.3c¢) is equivalent to

yi®) =0, u;(t) >0, {yi(t) =0o0ru;() =0}

foralli € k.

Since (5.3a)-(5.3b) is a model for the RLCGT-multiport network consisting of
resistors, capacitors, inductors, gyrators and transformers, the quagdu@eC, D)
has special properties (see [3]). To be precise, the square sydtel C, D) is
passive (or in the terms of [206§issipative with respect to the supply rate' y) as
defined below.

Definition 5.2.1 [206] A system(A, B, C, D) given by (5.1) is callecpassive, or
dissipative with respect to the supply rate' y, if there exists a nonnegative function
V :R" — Ry, called astorage function, such that for ally < 71 and all time functions
(u, x,y) € L5 (19, 11) satisfying (5.1) the following inequality holds:

15

1
V(x(io)) + / WT(@Oy(@dt = V().

fo

]

The above inequality is called théissipation inequality. The storage function
represents a notion of “stored energy” in the network.

A standing technical assumption throughout the remainder of the chapter will be
the following.
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Assumption 5.2.2 B has full column rank andA, B, C) is a minimal representation,
i.e. the matrice$B AB ... A" 1Bland[CT ATCT...(AT)""1CT] have full rank.
|

The minimality of the system descriptiai, B, C) is standard in the literature
on dissipative dynamical systems, see e.g. [206]. The following lemma gives several
equivalent characterizations for passivity.

Proposition 5.2.3 [206] Consider a system (A, B, C, D) with (A, B, C) a minimal
representation. The following statements are equivalent.

* (A, B,C, D) is passive.

e The transfer matrix G(s) := C(sd — A) 1B+ D is positive reali.e. x*[G (L) +
G*(A)]x > O for all complex vectors x and all . € C with Re A > 0 and A no
eigenvalue of A.

e The matrix inequalities

—ATK —KA —KB+CT
< —BTK+C D+DT )20 (5-42)

and

K=K">0 (5.4b)

have a solution K .

Moreover, in case (A, B, C, D) is passive, all solutions to the linear matrix inequalities
(5.4) are positive definite and K is a solution to (5.4a) if and only if V (x) = %xTKx
defines a storage function of the system (A, B, C, D). O

5.3 Dynamics in a given mode

Equation (5.3c) implies that for alland forevery =1, ... ,ku;(t) =0ory;(t) =0

must be satisfied (diode is conducting or blocking). This results in a multimodal system
with 2 modes, where each mode is characterized by a subsiet, indicating that

yi(t) =0ifi € I andu;(r) = 0if i € I¢ with I° = k \ 1. For each such mode (also
called “topology,” “configuration,” or “discrete state”) the laws of motion are given by
differential and algebraic equations (DAESs). Specifically, in mbtteey are given by

X = Ax+ Bu (5.5a)
y = Cx+ Du (5.5b)
yi = 0, iel (5.5¢)

wi = 0,ielf. (5.5d)
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Hence, a mode complies with the circuit, where the states of the diodes are fixed and
replaced by short and open connections.

The mode will vary during the time evolution of the system (diodes go from con-
ducting to blocking or vice versa). The system evolves in a certain mode as long
as the inequality conditions in (5.3c) are satisfied. At the event of a mode transi-
tion, the system may display jumps of the state variableJumping phenomena
are well-known in the theory of unilaterally constrained mechanical systems [31],
where at impacts the velocities of the colliding bodies change instantaneously. These
discontinuous and impulsive motions are also observed in electrical networks (see
e.g. [56, 136, 146, 154, 175, 197, 203]) and consequently, a distributional framework
will be needed to obtain a mathematically precise solution concept. We restrict our-
selves to the Dirac distribution denoteddbgnd its derivatives, whe?) denotes the
i-th (distributional) derivative of.

Definition 5.3.1 [83] An impulsive-smooth distribution is a distributioru of the form
U = Ujmp + Ureq, Where

* U;np is a linear combination of and its derivatives, i.e.
I

Uimp = Z u_ié(i)

i=0
for vectorsu ' ¢ R¥,i =0,...,/and

* U, is an arbitrarily often differentiable function frof@, co) to R* such that
(m) d"Ureg

Ureg (04) = lim; o —% (¢) is defined and finite foralh =0, 1,2, ....

The class of these distributions is denote(ﬂj%,. For a distributioru ei.‘mp, Ujmp IS
called the impulsive part andg.., is called the smooth part. In casg,, = 0 we call
u a regular or smooth distribution. If the Laplace transform of an impulsive-smooth
distribution is rational, we call the distribution 8bhl type or a Bohl distribution. For
a smooth Bohl distribution, we will use the tewh! function. |

Lemma 5.3.2 Consider the matrices A € R"™", B € R"*¥, C € R**" and D e RF*k
such that Assumption 5.2.2 is satisfied and (A, B, C, D) represents a passive system.
Then the following holds.

1. ForallI C k and for all initial states xq, there exists a unique solution (U, X,Y) €

Cf;{;wk satisfying (the dynamics for mode I given by)
= AX + Bu + xo8 (5.6a)
= Cx+ Du (5.6b)
yi = 0,iel (5.6¢)
u = 0,iel (5.6d)

in the distributional sense. We denote this solution by (u*0-! x*o.1 y*o.ly,
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2. For all modes I there exist matrices F! and K'! such that the smooth parts
w, x,y) == (%, x3%" vy of (uo ! x¥o! yxo.l for arbitrary initial state

xo are Bohl functions and satisty

x = Flx (5.7)
u = Klx (5.8)
y = Cx+ Du. (5.9
The matrices F! and K' only depend on the mode I and not on the particular
X0 at hand.
]
Proof.

1. The existence and uniqueness of a solution for (5.6) for all initial stejes
equivalent to the transfer matri%;; := Co(sd — A)~1B.; + D;; being invertible

as a rational matrix [83, Prop. 3.23, Thm. 3.24, Thm. 3.26] (see also Lemma 3.3.3
in the thesis). This can also be seen from (5.14)-(5.15) below. Hence, suppose that
detG;(s) = 0. Thenthere exists arational vectgs) # 0 suchthaG,;(s)v(s) = 0.

Takeo > 0 such thab (o) # 0 ando 4 — A is invertible. Defina: as

__Jo ifi &1
A R
The triple
u(t) = e’ (5.10)
x(t) = (64 — A)"LBie”! (5.11)
y() = G(o)ite” (5.12)

satisfies the system equations (5.1), whém@) = C(sd — A)"1B + D. Since
(A, B, C, D) is passive, there existsi > 0 such that the dissipation inequality
1
x| (to) K x(to) + / u' (Oy@)dt > x " (t1)Kx(t1) (5.13)
10
holds for allrg andz; with 11 > 1o. It can be verified that T (1) y(t) = ¢ "' G(0)ii =
e?'v(0) " G1(0)v(o) = O for allz. By letting o tend to—oo, (5.13) results in

0> x'(r)Kx(t1)

for all r1. Due toK > 0, this implies thak (1) = 0 for all r1. From (5.11) it follows
that Bz = 0. SinceB is of full column rank,z = 0 and hence also(c) = 0. We
reached a contradiction and hence proved the first statement.

2. This statement follows from [83, Thm. 3.10]. O
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Remark 5.3.3 From the proof of Lemma 5.3.2 it can be inferred that there exists
aop € R such that for allb > og the principal minors ofG (o) are positive, i.e.
detG;;(c) > Oforall I C k. Interms of [47, Def. 3.3.1 (o) is a P-matrix for

all sufficiently larges. This is most easily seen from the positive realnes§ 6f),
which implies thatG (o) is nonnegative definite for att > 0. Since a nonnegative
definite matrix has only nonnegative principal minors [47, p. 153] an@ gek) #= 0

(as shown in the proof of Lemma 5.3.2), the statement follows. |

The solutions(u*o-!, x*o./ y~o.1y haverational Laplace transforms, denoted by
(0% 1 (5), R*0-1 (5, y*0-1 (5)), which satisfy

S)?xo,l(s) — AﬁxO’I(S) + Bljxo’l(s) + x0 (5148)
yxo,l(s) = 01 (5) + DOY (5) (5.14b)
Y?O’I(S) =0 (5.14c)
') = o. (5.14d)

We introduceG(s) = C(sd —A)~1B + D andR(s) = C(sd — A)~L. SinceG;(s) is
invertible as a rational matrix (see proof of Lemma 5.3.2), the equations (5.14) can be
explicitly solved. This yields that the Laplace transfor@®-! (s), <01 (s), 0/ (s))

are given by

07%'(s) = =G} ()R1e(s)x0 (5.15a)
0’ () = 0 (5.15b)
£901(s) = (s4—A)Bxo+ (s4 — A) LB (s) (5.15c)
Y12 (s) = [Rica(s) = Grer()G1(s)R1e(s)Ix0 (5.15d)
vyl = o (5.15€)

Hence, the solutions of the mode dynamics (5.6) are one-to-one related (by the Laplace
transform and its inverse) to solutions satisfying (5.14). On the basis of this relation,
we can prove that only Dirac impulses (and not its derivatives) show up in passive
electrical networks with diodes.

Theorem 5.3.4 Consider matrices A € R"™", B € R"k C € R¥*" and D € R¥*k
such that Assumption 5.2.2 is satisfied and (A, B, C, D) represents a passive system.
Then for each xo € R" and I C k the Laplace transform 0*%! (s) is proper. ]

Proof. Denote(*o-/ (s) by u(s) for brevity. The triple
i(t) = u(o)e’’ (5.16)

() = (04 — A" Bu(o)e”! (5.17)
y(t) = G(o)u(o)e’ (5.18)
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satisfies (5.1) for ab € R such that 4 — A is nonsingular. It follows from passivity
that there exists & > 0 such that for all; andz with 71 > 19

15
T (1) Ki(n) — %" (to) KX (1) < / 1»2T<t)&(r>dr. (5.19)

to

By substituting (5.16)-(5.18) into the dissipation inequality (5.19), one obtains
1
u'(@)B (0l —A) " TK(od— A Bu(o) < Z—MT(G)G(G)M(G). (5.20)
(o}
SinceK > 0, B has full column rank, an 4 — A)~L s strictly proper, there exists
ana > 0 such that
%nu(o)uz <u'(@)B" (04— A" TK(@d— A Bu(o) (5.21)
o
for all sufficiently larges. We know from (5.14) that T (s) y(s) = 0, wherey(s) :=
g0l = C(sd — A)~Ixo + G(s)u(s). Hence, the right-hand side of (5.20) satisfies
1 1
—u"(0)Go)u(o) = ——u'(6)C(cd — A)"Lxg
20 20

1 -1
25 1€ (@ L = A)xollulo)]

p
< ﬁllu(o)llllmll (5.22)
The lastinequality follows from the existence g & OsuchthafC(c4—A) || < g
for all sufficiently larges. Thus, (5.20), (5.21) and (5.22) yield

A

(@)l = 21l (5.23)
for all sufficiently largeo. Henceu(s) must be proper. O

The fact that solutions of linear passive networks with ideal diodes do not contain
derivatives of Dirac impulses is widely believed true, but the authors are not aware of
any previous rigorous proof. The framework proposed here makes it possible to prove
this intuition.

To summarize the discussion so far, it has been shown that instead of considering
impulsive-smooth distributions as the solution space within a mode, we can restrict
ourselves to Bohl distributions with impulsive part containing only Dirac impulses and
not its derivatives (i.e. Bohl distributions wiglroper Laplace transforms).

Consider a solution to (5.6) for modend initial staterp. Animportant observation
is that a nontrivial impulsive part af“o-/ will result in a re-initialization (jump) of the
state. Ifu;,,, = %8, then a jump will take place according to

Xreg(O4) 1= Iti?g) Xreg (1) = x0 + Bu. (5.24)

The proof can be found in [83].
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5.4 Rational complementarity problem

In the previous section the dynamics within a mode (i.e. with a fixed state of the diodes)
has been considered, while the inequality conditions have been neglected. However,
a solution(u*o-!, x~o.1 y¥o.1y within a mode (5.6) will only be valid on an “initial”
interval due to a change of mode (diode going from conducting to blocking or vice
versa) triggered by the inequality constraints. Therefore, we would like to express some
kind of “local nonnegativity.” We call a (smooth) Bohl functiennitially nonnegative

if there exists am > 0 such thav(r) > O for allr € [0, ¢). Note that a Bohl function

v is initially nonnegative if and only if there existsag € R such that its Laplace
transformv(c) > O for all 0 > op. Hence, there is a connection between small
time values for time functions and large values for the indeterminatehe Laplace
transform. This fact is closely related to the well-known initial value theorem (see
e.g. [59]). The definition of initial nonnegativity for Bohl distributions will be based

on this observation (see also Chapters 3 and 4).

Definition 5.4.1 We call a Bohl distributiorv initially nonnegative, if its Laplace
transformv (s) satisfiesi (o) > 0 for all sufficiently large reat . O

Remark 5.4.2 To relate the definition to the time domain, note that a scalar-valued
Bohl distributionv without derivatives of the Dirac impulse (i.€;,,, = v98 for some
0 € R) is initially nonnegative if and only if

1. 9> 0, or
2. 1% = 0 and there exists an> 0 such thab,.¢(r) > O for all ¢ € [0, ¢).

]

Definition 5.4.3 We call a Bohl distributior(u, X, y) € CX*"** an initial solution to

imp

(5.3) with initial statexg, if there exists ad C k such that

1. (u,x,y) satisfies (5.6) for modé and initial statexg in the distributional sense
(ie. (u,x,y) = (U x*/ yxo.ly) and

2. u,y are initially nonnegative.

O

Example 5.4.4 Consider the system(r) = u(z), y(r) = x(¢t) together with (5.3c).

This represents a system consisting of a capacitor connected to a diode. The currentin
the network is equal ta and the voltage across the capacitor is equal to x. For

initial statex(0) = xo = 1, (u, X, y) with u = 0 (no current) ang () = x(t) = 1 for

all r € R is an initial solution. This corresponds to the case that the diode is always
blocking and there is no (nonzero) current in the network. To demonstrate that the
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distributional framework is needed, consider initial stege= —1 for which (u, x, y)

withu = §, x(t) = y(¢) = 0,7 > 0 is the unique initial solution. This corresponds

to an instantaneous discharge of the capacitor at time instant 0. Note that a state jump
occurs at time 0 from-1 to P;3;(—1) = 0. O

We emphasize that an initial solution only satisfies the equations (5.3) in the fol-
lowing temporary sense. In case aninitial solution has a nontrivial impulsive part, only
the re-initialization as given in (5.24) forms a piece of the “global solution.” If the
initial solution (u, x, y) is smooth, the largest interval on whi¢h, x, y) satisfies the
equations (5.3) is equal {0, ¢), whereg is given by

g :=1iNf{t > 0| Upegi(t) <00y, e (t) <O for some € kj}. (5.25)

Example 5.4.5 Consider the network depicted in Figure 5.2 with=2Q, R, = 1€,

L = 1H andC = 1F. We introduce the variables; as the voltage across the
capacitor,xp the current through the inductoru the voltage across the diode and
the current through the diode. The system is governed by the equations

X1 = x2
X2 = —x1—2x2+u
y = x2+4u

together with the complementarity conditions (5.3c). For initial conditig®) = —1,

~] 75

Figure 5.2: A simple network.

x2(0) = 2, it can be verified that the unique initial solution (in the conducting mode)
isgivenbyu = 0,x1(¢) = (t — De™',y(t) = X2(t) = (2—1t)e~ !, ¢t > 0. This initial
solution forms a part of the (global) solution on the intefi@ale) = [0, 2). The time

t = 2isdetermined by the violation of the inequality constrai@aj > 0 corresponding

to the current through the diode becoming negative. This causes the diode to go from
conducting to blocking. To determine the next part of the global solution, we have
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to find a continuation from initial state(2) = (¢=2,0)", i.e. determining an initial
solution with initial statege=2, 0) T (after a suitable shift of the time axis). O

As a solution within a mode exists and is unique given an initial state, it still might
be possible that there is more than one initial solution. Since theré grér® number
of diodes) modes, the maximum number of initial solutions is equal tarBe other
extreme is that there is no initial solution at all, i.e. no solution within a mode satisfies
the initial nonnegativity conditions. We will start our investigation of well-posedness
for linear passive complementarity systems by studying existence and uniqueness of
initial solutions. An important tool in existence and uniqueness of initial solutions is
the rational complementarity problem (RCP).

Definition 5.4.6 (Rational complementarity problem)Let the vectoryg € R" and
matricesA € R"*", B € R™k C e R and D e R¥*k be given. Therational
complementarity problem RCP(y, A, B, C, D) is the problem of finding rational-
vectorsu(s) € R¥(s) andy(s) € R¥(s) such that

1. foralls e C

y(s) = C(sd — A) " Lxo+ [C(sd — A) 1B + Dlu(s) andu(s) L y(s),
(5.26)

and
2. there exists &g € R satisfying for allo > o9

y(o) >0 andu(o) > 0. (5.27)

Any pair of rational vectorsu(s), y(s)) satisfying the above conditions is said to be
a solution to RCPgo, A, B, C, D). If A, B, C and D are clear from the context, we
also write RCRxp) for brevity. O

From the definition of initial nonnegativity and (5.14), the following important
relation is clear from Chapter 3.

Theorem 5.4.7 Consider the matrices A € R"™" B € R"™* C e R**" and D ¢
R¥*k and assume that all modes of LCS(A, B, C, D) are autonomous. Then the
following statements hold.

e All initial solutions are of Bohl type.

e There is a one-to-one correspondence between initial solutions to (5.3) and so-
Iutions to RCP(xg). More specifically, (U, X, Y) is an initial solution to (5.3) if
and only if its Laplace transform (Q(s), X (s), Y (s)) is such that (Q(s), Y (s)) is a
solution to RCP(xq) and

R(s) = (s4 — A)"Ixo + (s4 — A)"LBA(s). (5.28)
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 The following statements are equivalent.

1. There exists a unique initial solution to LCS(A, B, C, D) for initial state
XQ.

2. RCP(x0) has a unique solution.

* The initial solution is smooth if and only if the corresponding solution to RCP(xg)
is strictly proper. Similarly, the initial solution has an impulsive part containing
only Dirac distributions (and not its derivatives) if and only if the corresponding
solution to RCP(xg) is proper.

]

As a consequence, studying existence and uniqueness of initial solutions is equiva-
lent to studying existence and uniqueness of solutions to RCPs. In Chapter 4 necessary
and sufficient conditions for existence and uniqueness of solutions to RCPs have been
presentedinterms of families bhear complementarity problems (cf. Definition 5.4.10
below). Based on this relation and the literature on linear complementarity problems
the following result has been proven in Chapter 4.

Theorem 5.4.8 Consider matrices A € R, B € R"*k C e R¥*" and D e Rk>k
such that Assumption 5.2.2 is satisfied and (A, B, C, D) represents a passive system.
Then RCP(xg) has a unique solution for all xg. ([l

Theorem 5.4.7 yields now the following corollary.

Theorem 5.4.9 Consider matrices A € R"™", B € R"*k C € R¥*" and D € R¥*k
such that Assumption 5.2.2 is satisfied and (A, B, C, D) represents a passive system.

From each initial state xg there exists exactly one initial solution to LCS(A, B, C, D).
O

According to Theorem 5.4.7 there exists a one-to-one relation between initial solu-
tions and solutions to RCP. Properties of the solutions to RCP (e.g. strict properness)
translate directly to properties of initial solutions. In the next theorem we will therefore
study the solutions to RCPs. We need the following concepts to formulate the theorem.

Definition 5.4.10 Let a real vectoy € R and a real matrix e R¥** pe given.
LCP(¢q, M) is the problem of finding a real vectore R¥ such thatO< z (g +Mz) >
0 or show that no suchexists. O

For an extensive survey on LCPs, we refer to [47]. The set of all solutidas
LCP(g, M) will be denoted by SOlg, M).

Remark 5.4.11 If (u(s), y(s)) is a solution to RCE, A, B, C, D), thenu(o) is
a solution to LCRC (o4 — A)~1xg, G(0)) for all sufficiently large (real)y, where
G(s)=C(sd —A)~1B+ D. O
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Remark 5.4.12 We shall employ the following standard observation on LCP-solutions
several times. It; € SOL(¢;, M;) withi € {1, 2} then

(z1 — 22) ' ((q1 + M1z1) — (g2 + M2z2))
= —21 (g2 + M222) — 23 (g1 + M1z1) <O

Finally, adual cone is defined as follows [47].

Definition 5.4.13 Let @ be a nonempty set iR*. The dual cone of @, denoted by
Q*, is defined as the set

Q" ={weR|w'v>0foralvea@l.

O

Theorem 5.4.14 Consider matrices A € R"™" B € Rk, C € R and D €
R¥*k such that Assumption 5.2.2 is satisfied and (A, B, C, D) represents a passive
system. Denote the solution set of LCP(0, D) by @ := SOL(0, D). Furthermore, let
(Uxo(5), yxo(s)) be the (unique) solution to RC P (xq). The following assertions hold:

1. Forall xg € R", C(xg + Bu®) € @* where u® = lim,_, Uxo (8).
2. uyxy(s) is strictly proper if and only if Cxg € @*.
3 limy o uxy(s) € Q.
O

Proof.
I: Inviewof Remark 5.4.11 and Remark 5.4.12, we have for eazl® := SOL(0, D)
that

(ttxy (@) — V) T (C(0d — A)"Ixg + G(0)uyy(0) — Dv) <0

for all sufficiently larges. SinceD > 0 ((5.4a) yieldsD + DT > 0) andG(c) =
C(ocd — A)"1B + D, we obtain

(ttrg(0) = v) T (C(ad — A) "I+ C(0d — A)LBuyy(0)) <0 (5.29)
for all sufficiently larges. Multiplying this relation byo and lettingo tend to infinity
give

w® = v)T(Cxo+CBu® <0

Sinceq is a cone, we have forall > 0 and allv € @

w® —2v)T(Cxp+CBu®) <0
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and hence,
2" (Cxo+ CBu®) > u®T (Cxo + CBuO).

It follows thatv T (Cxg + CBu®) > 0 for all v € @ and thusC (xg + Bu®) € @*.

2: “only if”: Suppose that the solutiofu,,(s), yx,(s)) to RCRxp) is such thaii (s)
is strictly proper. According to statemehtCxo € @*, becausa® = 0.

“if": Suppose thatCxg € @*. We know thatu,(s) is proper. Take the power series
expansion oft, (s) around infinity as

Uxo(s) = u® +uls™1 4+ uls 2

+o (5.30)
By substituting (5.30) into
1440(8) V() = o () (C (s — A)"Lxo + G (s)ux(5)) = O,
we obtain by considering the coefficients corresponding @ands 1
W'Dl =0 (5.31)
u®TCxo + u’T Dut + u " DU + 1T CBU® =0 (5.32)

Since(uy, (s), yx,(s)) is the solution to RCRo), «° > 0 andDu® > 0. Together with
(5.31), this gives® = lim;_ ux,(s) € @ (this proves statemer#). The relation
(5.31) also implies

(D+DHu®=0 (5.33)

According to Theorem 5.2.3, passivity of the system implies the existence of a sym-
metric K > 0 such that

[ATK—l—KA KB-CT } -

B'K-C —(D+D") (5:34)

Premultiplying (5.34) by(yz" u°T) and postmultiplying bty z" u9T)T for arbitrary
z € R* andy € R, yields (use (5.33))
y?z"(ATK + KA)z+2yz (KB —CTu® <0

Considering this expression as an inequality for a quadratic form, ipields that
z (KB — CTu® < 0. Sincez is arbitrary, we obtain

(KB—CchHu®=0 (5.35)
Now, (5.32) and (5.33) give

u®TCxg+u’TCBu® =0 (5.36)
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On the other hand, from (5.35), we obtai" C Bu® = u°T BT K Bu®. Sinceu® € @
andCxg € @*, (5.36) gives

0> —um—Cxo =u""CcBu® = u"" BTk Bu® >0

Finally, positive definiteness ok and the full column rank o8 imply u® = 0,
i.e.ux,(s) is strictly proper.

3: This has already been shown in the proof of staterdent O
Theorem 5.4.14 has several immediate consequences.

Definition 5.4.15 A statexq is calledregularfor LCS(A, B, C, D), if the correspond-
ing initial solution is smooth. The collection of regular states is denotegtby [

Since strictly proper Laplace transforms correspond to smooth Bohl distributions
(i.e. Bohl functions), statemer®tin Theorem 5.4.14 gives a characterization of the
regular statesxg € R if and only if Cxg € @* with @ = SOL(0, D). As we shall
see, this characterization plays a key role in the proof of global existence of solutions
as the set of such initial states will be proven to be invariant under the dynamics.

According to [47, Cor. 3.8.10 and Thm 3.1.7 (c)] and becaDse 0 one has
Cxp € @* if and only if LCP(Cxp, D) is solvable. Hence, a test for deciding the
regularity of an initial state consist of determining whether or not a certain LCP has a
solution. In[13]itis stated that a well-designed circuit does not contain Dirac impulses.
As a consequence, the characterizatiomRoforms a verification of the synthesis of
the network containing diodes.

To give an idea about the structure of the cdtieand R, a few examples are in
order.

Example 5.4.16 Consider the following situations.
@ 1f D =0, then@ = R and@* = RX. Hence,R = {xo € R" | Cxg > 0}.

(b)) If D = <2 _01>, then@ = {(Z;) | u1 > Oanduz = 0}. Consequently,

Q* = {@;) | y1 > 0} and thusR = {xp € R" | C1ex0 > O}.

(c) If D is positive definite, it follows tha® = {0}, which implies that?* = R¥ and
thusR = R”. O

A direct implication of the statementsand2 in Theorem 5.4.14 is that, if smooth
continuation is not possible fag, it is possible after one re-initialization. Indeed, by
(5.24) the state after re-initialization is equabép+ Bu?, if the impulsive part of the
(unique) initial solution is equal 1°5. According to the fact that the Laplace transform
of an initial solution is a solution to the corresponding RCP (which is automatically
proper), it follows that lim_, o u.,(s) = uY is indeed the coefficient determining the
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impulsive part. Sinc€ (xo + Bu®) € @*, it follows from statemeng® thatxg + Bu®
is a regular state. Hence, from + Bu® there exists a smooth initial solution. To
summarize this discussion, we formulate a local existence result.

Theorem 5.4.17 Consider matrices A € R"*", B € Rk C € R¥*" and D € Rk*k
such that Assumption 5.2.2 is satisfied and (A, B, C, D) represents a passive system.
For all initial states xg, there exists a unique local solution. To be specific, for all xg
there exists a unique Bohl distribution (u, x, y) defined on [0, ) for some ¢ > 0 such
that

1. There exists an initial solution (U, X, ¥) such that
Wimps Ximps Yimp) = Uimp, Ximp, Yimp)
with U;pp = u9s for some u® € R,
2. x(0+) = xo + Bu®, and

3. forallt € (0,¢)

t
X0 = x(04) + / [Ax(x) + Bu(o)lde
0

Cx(t) + Du(t)
u(t)Ly() > 0.

y(®)
0

IA

5.5 Solution concept and global well-posedness

In the Chapters 3 ah4 a (global) solution concept has been introduced that is based
on concatenation of initial solutions. In principle, this allows impulses at any mode
transition time (necessary for e.g. unilaterally constrained mechanical systems). In the
context of linear passive electrical networks with diodes, such a general notion of solu-
tion will not be needed. In fact, the solution concept as formulated in Theorem 5.4.17
will be extended such that mode changes are possible. This will be achieved by drop-
ping the Bohl requirement and allowing, functions as regular parts. The function
space.Ls(0, T') consists of the distributions of the form = u;,, + U,.,, Where

Uimp = u® with ug € R andu,., € £2(0, T).

Definition 5.5.1 Consider matriced € R"*", B € R"*k C € R**" andD e Rk*k
such that Assumption 5.2.2 is satisfied aAd B, C, D) represents a passive system.
Let a time horizorl” > 0 and initial statexo be given. (u, x, y) € LSO, T) is
called a solution to LC&, B, C, D) on[0, T, if
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1. There exists an initial solutiou, X, y) such that
Wimp» Ximps Yimp) = Wimp, Ximp> Yimp)
With U, = u%8 for someu® € R,
2. x(0+) = xo + Bu®, and

3. foralmost alk € (0, T)

t
x(t) = x(0+)+/[Ax(r)+Bu(r)]dr
0

Cx(t) + Du(t)
u()Ly@) > 0.

y (@)
0

IA

O

We have already proven local well-posedness (Theorem 5.4.17). The question
arises whether global well-posedness is also guaranteed.

5.5.1 Global existence

We now come to the main existence result of this chapter.

Theorem 5.5.2 Consider matrices A € R"", B € R"*k C ¢ R¥*" and D € Rk*k
such that Assumption 5.2.2 is satisfied and (A, B, C, D) represents a passive system.
Then, for all initial states xg and all T > O the system LCS(A, B, C, D) has a solution
on [0, T in the sense of Definition 5.5.1. O

Proof. The construction of a solution will be based on concatenation of initial solutions.
Theorem 5.4.17 implies that a solutidm, x, y) exists on[0, t1) (taker; as large as
possible, i.e. equal te as in (5.25)) from initial statep. Note thatx(0+) € R

and that(u, x, y) is part of a smooth initial solution with initial statg0+). Since

t — (u, x, y)( + p) forms a smooth initial solution for any € (0, ¢), we have that
x(p) € Rforall p € (0, ¢). Since(u, x, y) is a Bohl function, the limit liny, x (1) =

x(¢) exists. The closedness&f(follows from statemen2 in Theorem 5.4.14) implies
thatx(e) € R. Due to local existence of solutions an@) € R, there exists a smooth
continuation (a smooth initial solution) from(¢) that defines a solution of®, o)

with 72 > t1. This construction can be repeated as long as the limjtlim(z) exists,
where[0, 7) is the time-interval on which a solution has been generated so far. The
reason that a global solution (¢8, 7']) does not exist might be that the intervals of
continuationz;, 7;4.1) are getting smaller and smaller such thatlimg, t; = t* < T

and limy4.= x(¢) does not exist. To complete the proof we will show the existence of
the latter limit in any circumstances.
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Suppose the maximal interval on which a solutienx, y) can be defined i®, *),
" < T. According to Lemma 5.3.2 there is at most exponential grovth: (F/ x)
between mode changes. Sinds continuous or0, t*), this implies thak is bounded
(sayllx(®)|| < M for allt € [0, %)) On an intervals, t) C [0, t*) where(u, x, y) is
governed by the dynamios= F’x of model, the following estimate holds

x(6) — x()]| = leF Dx(s) — x| <cr [t —s | x| <M |t —s |
(5.37)

I
ey

Note that the matrix function — is bounded (by;) on [0, t*). Hence, for
(s, 1) € [0, t™) with x possibly evolving through several modes we get from (5.37)
that

x(#) —x()Il =M maxcy [r—s].
Ick

This implies thatx is Lipschitz continuous o0, 7*) and thus also uniformly con-
tinuous. A standard result in mathematical analysis [169, ex. 4.13] states'that
lim 4o+ x(¢) exists. From the construction above it can be derived:tlgte R for

all ¢ € [0, t*) and hencex* € R, which implies that smooth continuation is possible
(local existence) fromx* beyondtr*. This contradicts the definition af*. Hence,
existence of a solution g, 7] is guaranteed. |

5.5.2 Uniqueness

It can easily be seen that the solutions obtained by the construction in Theorem 5.5.2
must be unique, because the initial solutions are unique (see Chapter 4). However, it
might be possible that a different construction yields other solutions. The following
theorem states that this is not the case.

Theorem 5.5.3 Consider matrices A € R"™", B € R"*k C e R¥*" and D e Rk>k
such that Assumption 5.2.2 is satisfied and (A, B, C, D) represents a passive system.
Then for all initial states xg and all final times T > O there exists at most one solution
(u,x,y) € LSO, T to LCS(A, B, C, D) in the sense of Definition 5.5.1. [

Proof. Suppose that two solutioris, x, y) and(u’, x’, y") exist in the sense of Defini-
tion 5.5.1. According to Corollary 5.4.9 there exists exactly one initial solution from
the initial statexg. This implies that the impulsive parts @f, x, y) and («/, x’, y')
must be the same and moreover, that the re-initialization frgmust be unique such
thatx(0+) = x’(0+). Clearly,(u —u’, x — x’, y — y’) satisfies (5.1) from initial state

0. The dissipation inequality yields

t
/0 [u(®) — o' 1 [y() — ¥ (0)ldr >
[x(t) — x' (O] K[x (1) — x'(1)]
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for all ¢ € (0, 00). From the fact thai, ', y, y’ are nonnegative almost everywhere
and the complementarity @, y) and(«’, y"), we obtain

t
/0 [u(e) — o' (1 [y(r) — y'(0)ldr < 0.

Hence,
[x(r) —x' (O] K[x(1) — x'()] <0

forall # € (0, 00). SinceK > 0, we obtainx(r) = x/(¢) for all r. SinceB is of full
column rank, this gives = u’ andy = y’ almost everywhere. O

Since the global solution is unique, the solution must be equal to the one constructed
in the proof of Theorem 5.5.2. This characterizes the nature of solutions to linear
passive complementarity systems. Between mode changes the trajectories are of Bohl
type and thus real-analytic. Moreover, the §ebf mode transition times is right-
isolated, meaning that for atl € € there exists aw > 0 such tha{z,t +a) N & is
empty.

Remark 5.5.4 Note that the uniqueness of solutions to @SB, C, D) would not
be lost, if jumps are allowed for time instants > O satisfying itemI and 2 of
Definition 5.5.1. The reason is the invariance of the regular st&tethat implies
thatx(r) € R forallr € (0, T. a

Remark 5.5.5 Since the set of mode transition tim&ds right-isolated, there do no
exist left-accumulation pointsf mode transition times. However, we cannot exclude
the existence of right-accumulation points in general on the basis of this chapter. Using
aresultin[94]itcan be proventhat for alinear passive network with one diode satisfying
assumption 5.2.2 anB = 0 also right-accumulations do not occur. |

5.6 Conclusions

Linear passive electrical circuits with ideal diodes have been studied in the context
of linear complementarity systems, with the aim of establishing a rigorous base for
the analysis of numerical methods for the transient simulation of switched electrical
networks. Chapter 7 will deal with the question whether the solutions approximated by
atime-stepping method [20,120,172] converge as a function of time to the true solution
of the network model. To answer such a question, one needs of course a definition of
what should be understood by the transient true solution. This question has been dealt
with in this chapter and formal proofs were given for the existence and uniqueness of

1A point t is called a left-accumulation point & C R, if there exists a sequende; }; <y such that
7 >t andlim;_, »7; = 7. Aright-accumulation point is defined by changing™into “ <”.
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solutions. Moreover, several regularity properties of the solutions have been proven of
which Chapter 7 will benefit. In particular, it has been shown that derivatives of Dirac
impulses do not occur, Dirac impulses happen only at the initial time instant and the
set of regular states has been exactly characterized.

Networks with internally triggered switches have discrete as well as continuous
characteristics. From this point of view, the chapter proposes a systematic modeling
framework and a precise notion of solution for a class of networks of such a mixed
nature. Systems consisting of continuous dynamics (differential equations) and switch-
ing logic are sometimes called “hybrid systems” and receive currently much attention
from both control theorists [7,145] and computer scientists [162]. Hybrid systems are
encountered in various research programs ranging from switching controllers, unilat-
erally constrained mechanical systems, piecewise linear systems, switched electrical
networks to hydraulic systems with valves. Since the underlying problems for these
systems are essentially the same, all these research programs may benefit from a general
theory as is currently being developed for complementarity systems.
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6

Projected dynamical systems in a
complementarity formalism

6.1 Introduction 6.4 Projected dynamical systems
6.2 Projected dynamical systems as complementarity systems
6.3 Complementarity systems 6.5 Proof of the main result

6.6 Conclusions

This chapter is based on the report [86], which has been submitted for publication
in Operations Research Letters.

6.1 Introduction

In this chapter, we connect two classes of discontinuous dynamical systems. One is
the class oprojected dynamical systems introduced by Dupuis and Nagurney [62] and
further developed in [147]. These systems are described by differential equations of
the form

X(t) = g (x (@), —F(x(1))), (6.1)

whereF is a vector field,K is a closed convex set, aly is a projection operator
that prevents the solution from moving outside the constrainksétf. section 6.2
below for a precise definition). These systems are used for studying the behavior
of oligopolistic markets, urban transportation networks, traffic networks, international
trade, agricultural and energy markets (spatial price equilibria). Their stationary points
can be characterized by means of variational inequalities; one may therefore say that
projected dynamical systems provide a dynamic extension of variational inequalities.
We shall compare projected dynamical systems withiplementarity systems,
which may be considered as dynamical extensions of complementarity problems(cf.
section 6.3). Applications of complementarity systems include (see Chapter 2) elec-
trical networks with diodes, mechanical systems subject to unilateral constraints or
Coulomb friction, control systems with relays, saturation characteristics or deadzones,
variable structure systems, dynamical systems with static piecewise linear relations, hy-
draulic systems with one-way valves and optimal control problems with state or control
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constraints. Complementarity systems are nonsmooth dynamical systems; they switch
between several dynamical regimes and may show impulsive motions resulting in dis-
continuities of some system variables. Since complementarity systems are subject
to both continuous dynamics and discrete switching, one may also consider them as
a subclass ofiybrid dynamical systems [7,162]. Because of the nonsmoothness of
trajectories, the formulation of a solution concept for complementarity systems is non-
trivial (see [92,177,179]). Questions of (local) existence and uniqueness of solutions
have been studied under various assumptions in [37,92,93,123,177,179].

It is well known that variational inequalities and complementarity problems are
closely related; see for instance [79]. Itis therefore reasonable to expect that projected
dynamical systems and complementarity systems are also related. In this chapter we
show that there is indeed a natural relationship. Specializing to the stationary points,
we obtain as a corollary the classical result which states that, under mild conditions,
variational inequalities may be rewritten as mixed nonlinear complementarity prob-
lems [79, Prop.2.2]. Moreover, we obtain a proof of existence and unigueness of
solutions of projected dynamical systems that is independent of the original proof by
Dupuis and Nagurney [62] and in particular does not use the Skorokhod problem [188].
Complementarity systems have already been used extensively in the engineering lit-
erature (see for instance [124, 160, 179]) and the establishment of a relation between
the domains of projected dynamical systems and of complementarity systems makes
it possible to compare and transfer analytic and computational techniques between the
two.

The following notational conventions and terminology will be used.isfa positive
integerk denotes the s¢, ... , k}. Foranindex set C k, we denote its complement
with respectta by 7€ := {i e k | i ¢ I}. The cardinality of a set will be denoted by
|7]. A vectoru € R¥ is said to be nonnegative (nonpositive}jf> 0 (u; < 0) for all
i € k, and in this case we write > 0 (x < 0). Given a matrixV R¥*! and subsets
I C kandJ C I, we denote the submatrif;;);c;, jes by M;;. In casel = k we
write M, rather thanM; ;, and similarly if / = [ we useM;,. The transpose of a
matrix M is denoted by ". In the Euclidean spadg* the standard inner product is
denoted by(-, -) and foru, v € R* we writeu_Lv if (u,v) = u'v = 0. We denote
the restriction of a functiorf : [0, T] — R to an interval(a, b) € [0, T1 by fl@,b)-

A function f : R" — RP” will be said to be real-analytic and convex if its component
functionsf; : R" — R are real-analytic and convex.

6.2 Projected dynamical systems

In this section we recall the definition of projected dynamical systems (PDS) [62,147].
The defining ingredients are a closed convexisewhich usually corresponds to the
constraint set of a particular application, and a vector flelddhose domain contains

K. The projected dynamics is described by the equatigGh = —F(x(z)) on the
interior of K, but on the boundary a modification is applied to prevent the solution



6.3. Complementarity systems 153

from leaving the constraint set.
To be more precise, let a closed and convexiset R” be given. The cone of
inward normals at € K is defined by

nx)={y | {y,x —k) <0forallk € K}. (6.2)

Note thatn(x) = {0}, whenx is contained in the interior oK. Givenx € K and
v € R", define the projection of the vectorat x with respect tak by

MgGx,v) =v— (v,n"(x))n*(x), (6.3a)
where

n*(x) earg max (v, —n). (6.3b)
nen(x), |lnfl<1
Note thatllg (x, v) is well-defined even thougti (x) may not be uniquely specified by
(6.3b). Theprojected dynamical system PDS(F, K) corresponding to a closed convex
setK and a vector field” on K is defined by

x(t) = Mg (x(@), —=F(x(1))). (6.4)

The ordinary differential equation (6.4) has a discontinuous right hand side and is
therefore not covered by the standard theory of differential equations. The following
notion of solution is proposed in [147].

Definition 6.2.1 [147]An absolutely continuous functian: [0, T] — K is asolution
to PDSE, K) on [0, T] with initial statexg € K if x(0) = xg and (6.4) holds almost
everywhere irff0, T'].

The definition (6.3) of the projection operaldk is convenient for the development
below. An alternative definition is the following one. Foke K andv € R" define

Pg(x +8v) — x

; (6.5)

e, = fm
wherePk is the projection operator that assigns to each vectoiR” the vector ink

that is closest ta in the Euclidean nornj - || (i. e. Pxx = arg min,c ||x —&||). It has

been proven in [61] that the formulations in (6.3) and (6.5) are equivalent Whisn
convex and compact with nonempty interior. In [62] the same result is stated under the
assumption thak is a convex polyhedron (i. e. an intersection of finitely many closed
half-spaces). |

6.3 Complementarity systems

A complementarity system may be specified (in “semi-explicit affine form”, see [177])
by functionsf : R" — R”, g; : R" — R" andh : R* — R”. The defining equations
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for the complementarity system corresponding’t@; andh are

X)) = fx0)+ 208 (x(0)u;(t) (6.6a)
y(@) = h(x()) (6.6b)
O<y@® Lu@=>0 (6.6¢)

The relation (6.6c) implies that for allat least one of the equalities(z) = 0 and
v; (t) = 0 must be satisfied. Hence, for all timethere exists an index sétsuch that
u;(t) =0,i ¢ Jandy;(r) = 0,i € J. Inthe engineering literature this index set is
sometimes called thactive index set, mode or discrete state of the system at time.

The mode may change during the time evolution of the system. The times at which
this happens are calledrent times.

In general a complementarity system may not have a continuous solution, even
when the defining functiong, ¢ andh are smooth, and so one needs to introduce
larger function spaces to define solutions (cf. [92,93,177,179]). Although the solution
concept below is not the most general one, it suffices for the purpose of the chapter.
We need the notion afight-isolated sets. A subsef of R is said to be right-isolated
if for eacht € & there exists an > 0 such thatz,t +¢)N & = 7.

Definition 6.3.1 A continuous functiorx : [0, T] — R" is called asolution to (6.6)
with initial statexg on the intervalO, 7], if x(0) = xg and there exist a right-isolated
seté C [0, T] and two functions: : [0, T] — RP?, y : [0, T] — R” such that for any
interval (a, b) C [0, T] with (a, b) N & = ¢ the following conditions hold:

1. the restriction(u, x, y)|«,») is real-analytic and satisfies (6.6a—6.6b) forrad
(a,b);

2. there exists an index sétC p such thattjc(r) = 0, y;(t) = 0,u;(¢t) > 0 and
yye(t) > 0forallz € (a, b).

O

This definition allows solutions that exhibit accumulations of event times (“Zeno
solutions”). Sinces is right-isolated, such accumulations only take place forward in
time. Note that a similar restriction is not present in Def. 6.2.1.

By considering several types of dynamics in (6.6a—6.6b), one may define several
classes of complementarity systems suchmar complementarity systems [92,177]
and Hamiltonian complementarity systems [177]. For the purpose of this chapter
we shall be particularly interested gradient-type complementarity systems; these
systems are related to theadient systems that have been studied in [176]. To specify
a gradient-type complementarity system, take functibnsR” — R" andh : R" —

R?”. Letthe gradients of the component functidnér) of 4 (x) be denoted by i; (x)
(taken to be row-vectors) and |&t(x) denote the matrix whoseth row is equal to
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Vh;(x) (i.e. the Jacobian matrix @fatx). The gradient-type complementarity system
GTCS(F, h) is given by the equations (6.6):

i) = —F () + X[ Vhi@)] ui (1) (6.7a)
y(©) = hx@) (6.7b)
0 <yl u@ =0 (6.7¢)

which is a special case of (6.6). Equation (6.7a) can compactly be written in terms of
the JacobiarH of i as

x(1) = —F @)+ [Hx@)] u@). (6.8)

The above definition makes implicit use of the standard inner produif’ pbut it

would also be possible to use a coordinate-free treatment as in [176]. There is a closer
analogy with the gradient systems studied by Van der Schaft when in (6.7) the function
F is defined as the gradient of some potential function. In that case (6.7) is referred to
as agradient complementarity system.

6.4 Projected dynamical systems as complementarity
systems

In this section we consider projected dynamical systems specified by a vector field
F and a convex sek’, and we provide conditions under which these systems can be
rewritten as gradient-type complementarity systems. It will be assumed that the convex
setK can be represented by means of finitely many inequalities.

Assumption 6.4.1 The setkK allows a representation in the form
K = {xeR"|h(x)>0) (6.9)
whereh : R" — RP” is real-analytic and convex. ]
If h representX as in (6.9), we define for € K theactive index set I (x) as
I(x):=1{i € p|hi(x)=0}. (6.10)

To prevent technical complications that would obscure the main line of reasoning, we
shall use the following constraint qualification in conjunction with Assumption 6.4.1.

Assumption 6.4.2 Forh as in (6.9) andd the Jacobian af, the matrixHj ) (x) has
full row rank for allx € K. O

Concerning the vector fieldf, we shall use the following assumptions.
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Assumption 6.4.3 The vector fieldF is real-analytic. |

Assumption 6.4.4 There exists a constaBte R such that satisfies the linear growth
condition

IF(x)| < B+ ||x]|) forall x € K. (6.11)

O

Assumption 6.4.5 There exists a constaat € R such that
(—F(x)+ F(y),x —y) < C|lx — y||> forallx,y € K. (6.12)

]

Remark 6.4.6 Assumption 6.4.1 implies tha is convex and closed. A characteri-
zation of K as in (6.9) is possible in all applications of projected dynamical systems
mentioned in [147]. In[62] itis even assumed tiais a convex polyhedron. Assump-
tions 6.4.4 and 6.4.5 are used in [147] to prove existence and uniqueness of solutions
to the projected dynamical system specifiedbgndK . |

The following theorem is the main result of this chapter. The theorem will be proved
in the next section.

Theorem 6.4.7 Let a set K € R”", a vector field F : R" — R" and a function
h : R" — RP? be given such that Assumptions 6.4.1-6.4.5 are satisfied. For all initial
states xo € K, both the projected dynamical system PDS(F, K ) and the gradient-
type complementarity system GTCS(F, h) have a unique solution defined on [0, c0).
Moreover, these solutions coincide. |

Remark 6.4.8 It will follow from the proof given below that without Assumption 6.4.4
the theorem still holds, except that the solutions are not guaranteed to ejdstoi

To be specific, suppose thit, 71) is the maximal interval on which a solution can
be defined for PD&, K). Similarly, let[0, T») be the maximal interval for which
GTCSF, h) admits a solution. Theh := Ty = T> > 0, both solutions are unique on
[0, T), and the solutions are equal to each other. O

Remark 6.4.9 The constraint qualification Assumption 6.4.2 is introduced here for
simplicity. In the literature on complementarity systems, weaker assumptions have
been used. Specifically, Lotstedt [124] uses the condition that the Jacobian matrix
H (x) should have locallyonstant row rank to prove the existence and uniqueness of
solutions to equations representing unilaterally constrained mechanical systéms.
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Remark 6.4.10 Theorem 6.4.7 provides some additional information about the solu-
tions to PDSF, K). Under the assumptions of the theorem, solutions to projected
dynamical system are real-analytic on the open intervals belonging to a set of the form
[0, 00) \ €. Moreover, the exceptional set (the set of event tingeis)a right-isolated

set. (]

Remark 6.4.11 It follows in particular that, under the conditions of Theorem 6.4.7,
the stationary points of the projected dynamical system PDE( coincide with
those of the gradient-type complementarity system GTFCH). WhenKk is a convex
polyhedron, the stationary poini®f PDS(F, K) are given by the variational inequality
[147, Lemma 1]

(Fx),x—X) > 0 VxeK. (6.13)

The stationary points of GTCS(F, &) are given by the mixed nonlinear complemen-
tarity problem

0= —F@+ X7 (VhiE) Tu; (6.14a)
y = h(x) (6.14b)
O<ylu=0. (6.14¢)

In this way we recover the well-known result (see for instance [79, Prop. 2.2]) that,
under a suitable constraint qualification, variational inequalities may be rewritten as
mixed nonlinear complementarity problems. O

6.5 Proof of the main result

We start with a characterization of the projectibry in terms of a minimization
problem. The proof will be given below on the basis of a duality argument.

Theorem 6.5.1 Let K C R” be of the form (6.9) for a real-analytic and convex function
h:R" — RP. Forallx € K andv € R", we have

Mg (x,v) =arg min [[w — v (6.15)
weW (x)

where W (x) is the “cone of admissible velocities” given by
W) = {weR" | Vhi(x)w > 0foralli € I(x)}. (6.16)
]

The duality result that we use to prove Theorem 6.5.1 is stated in Prop. 6.5.2 below.
The notatiorCC is used to denote the polar cone (see e. g. [168, p. 121]) otaseR”:

CO={(xeR"|(x,y) <Oforally € C}. (6.17)
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Proposition 6.5.2 Let W C R”" be a closed convex cone with nonempty interior and
letv € R" be given. Define w* by

w* = arg min|w — v|| (6.18)
weW

and let z* be such that

¥ e arg max (v,z). (6.19)
zeW0, |zll<1
Then

w* =v— (v, z%)z". (6.20)
O

Proof. We apply the Fenchel duality theorem [127, p.201] to the convex function
f(w) := ||lw—v| defined orC := R" and the concave functigfn(w) := 0 defined on

D := W. One easily computes (cf. for instance [168, Section 12]) that the conjugate
sets ofC andD areC* = {z € R" | ||z|| < 1} andD* = —W?©, and that the conjugate
functions of f andg are given byf*(z) = (v, z) forz € C*andg*(z) = 0forz € D*.

From the Fenchel duality theorem, we therefore have

min lw—v|= max (v,z). (6.21)

wew zeW9, ||z[<1
Now, suppose first that minw ||lw — v| > O; then|z*| = 1. In this case, there
exists a real number > 0 such thatw* — v = —az* [127, p. 136]. We have
—a = —|laz*| = —|lw* —v|| = —(v, z*) by (6.21); this proves (6.20). Next,
suppose that mifew |lw — v|| = 0. Thenv € W and hencew* = v. We have
max.cwo . <1(v, 2) = 0, so that(v, z*) = 0 and consequently equation (6.20) is also
correct in this case. O

Remark 6.5.3 The proof implies thafw*, z*) = 0. Together with the conditions
w* € W, z* € WO, andv = w* + (v, z*)z*, this shows thatv, z*)z* is actually the
projectionPy,ov of v onto the conév® [141, p. 238]. |

Proof of Theorem 6.5.1Fix an arbitraryx € K. From [168, Cor.23.7.1, 23.8.1]
it follows that the cone of inward normals &f atx, denoted by:(x), and the cone of
inward normals of¥ (x) at 0, denoted by w ) (0) satisfy

n(x) =nw© ={y eR" |y = Y [Vhi(x)]" for certaini; > 0}. (6.22)
iel(x)
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By definition of the cone of inward normals and the polar cone (see (6.2) and (6.17)),
nwx(0) is equal to—W(x)°. Hence,n(x) = —W(x)°%. The claim now follows
immediately by applying Prop. 6.5.2 W = W (x) and using thaW® = —n(x). O

Nextwe establish a connectionto alinear complementarity problem (LCP). See [47]
for an extensive treatment of LCPs.

Theorem 6.5.4 Let a subset K of R" be of the form (6.9) for a real-analytic and convex
function h : R" — RP. Fixx € K. Let H be the Jacobian matrix of h at x, and let
I :=1(x) ={i | hij(x) = 0} be the active index set. Then we have

Mg(x,v) = v+ Hu (6.23a)

where the vectoru € R!! solves the LCP
0 < ul Hyov+ H, [Hi u > 0. (6.23b)
]

Proof. By Theorem 6.5.1, the vectdiig (x, v) is the projection ofv onto the cone
W (x) defined in (6.16). In terms of the notation introduced in the statement of the
theorem, we have

W) = {weR"| Hiqw > 0}. (6.24)

The fact that the projection onto this cone can be found from (6.23) is well-known; one
may for instance use the Kuhn-Tucker conditions. An alternative approach is to use
the result by Moreau [141] which states that in order to compute the projection of a
vectorv in a Hilbert space on a closed coig it is enough to findv andw? such that
v=w+wl weW,we WP andw L w°; the projectionPy v is then given byw.

In our caseW (x) is given by (6.24) so that the polar coié’ (x) can be written as

Wox) = {w®eR" | w® = —[H.]" u for someu > 0O}. (6.25)
Therefore the three conditions of the LCP (6.23b) are exactly the conditions that ensure,
by Moreau’s theorem, thdi  (x, v) is given by (6.23). Note in particular that the

condition[H;e]Tu L v+ H/ uis equivalentta: L Hyov + H, [Hie] u. O

The discussion so far may be summarized as follows.

Corollary 6.5.5 A function x : [0, T] — R" is a solution to the projected dynamical
system (6.4) if and only if there exists a locally integrable function u : [0, T] — R?
such that, with I (x) the active index set as in (6.10) and H (x) the Jacobian matrix of
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h atx € K, one has for almost all t € [0, T]:

K1) = —Fx(®) + [Hraye O 1y (0 (6.26a)
Uiy =0 (6.26Db)

0 < urany(®) L —Higupex®))F(x(t)) +

Hiye O Hi (e (XN ur ooy (1) = 0.
(6.26c)

O

In the proof of the main theorem we shall use the following result, which can easily
be derived from Theorem 3.2 in [179]. The quoted theorem gives a local existence and
unigueness result for complementarity systems of the form (6.6).

Theorem 6.5.6 Let real-analytic functions F : R" — R" andh : R" — R” be given.
Take xo € R" such that h(xp) > 0. If Assumption 6.4.2 is satisfied, then there exists
an & > 0 such that GTCS(F, h) has a solution x on [0, &) with initial condition xg.
Moreover, this solution is unique. O

Proof. Definel = I(xp) as in (6.10) and apply Theorem 3.2 in [179] to the system
GTCS(F. hp), ie. k(1) = —F(x(1)) + [Hyo (x(1)] Tus (1) and 0< hy (x (1)) Lus () >
Owith I = I(xg) . Sinceh;(xg) > 0fori ¢ I(xp), itis clear that continuous solutions
to GTCSF, hy) with initial statexg are solutions to GTCE, i) for sufficiently small

t, and vice versa.

Note thatH;.(xo)[He(x0)]" is positive definite due to Assumption 6.4.2 and
hence, is also a P-matrix4. has only positive principal minors) [47, Thm. 3.1.6 and
Thm. 3.3.7]. Consequently, Theorem 3.2 in [179] applies to GFCE;) and the
result follows. O

Now we are in a position to prove the main result of this chapter.

Proof of Theorem 6.4.7Takexg € K. According to Theorem 6.5.6 there exists a
real-analytic triple(u, x, y) that satisfies (6.7) of0, ¢). In particular, there exists an
index set/ C p suchthaty;(t) = 0 anduj<(r) = O forallz € [0, ¢).

We now want to show that the trajectarythat has been defined in this way on
[0, ¢) is also a solution to PD${, K) on [0, ¢). It is immediately clear that (6.26a) is
satisfied because it is just another way of writing (6.8). Far K, definel (x) as in
(6.10). From the fact that; (r) = 0 on[O0, ¢) it follows thatJ C I(x(¢)) fort € [0, ¢).
Thereforel (x(¢))¢ € J¢ and soux ) (t) = 0 fort € [0,¢). Hence, (6.26b) is
satisfied. It remains to show thaj () (¢) satisfies the LCP (6.26c) d@, ¢). Itis
clear from (6.7c) that the inequality (1)) (r) > 0O is satisfied o0, ¢). Fort € [0, ¢),
we have

0 = Js(t) = —Hye(x()F(x(1)) + Hya(x () [Hyo(x ()] 1y (1) (6.27)
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Dropping all arguments now to lighten the notation, we have figm= 0 andJ C I
that

(HpJJHi ) Tup)y = Hy[Hyel uy. (6.28)

Since obviously(H . F); = Hy.F, it follows from (6.27) and fromt ;. = 0O that the
orthogonality condition in (6.26¢) holds. The final inequality in (6.26c¢) follows by
expressing; (¢t) similarly to (6.27), and noting tha (r) > 0 wheneve;(r) =0 (i. e.
wheneveli € I(x(¢))), because otherwise the inequalityz) > 0 on[O0, ¢) would be
violated.

If the limit lim 4, x () =: x(¢) exists, the existence of a solution to (6.7) starting
fromx(e) on[e, e +¢1) for somes; > 0O follows from Theorem 6.5.6. Hence, we have
a solution(x, u, y) to (6.7) on[0, ¢ + 1) in the sense of Definition 6.3.1. In the same
way as above, it can be shown thais a solution of PD&F, K) on [0, ¢ + &1).

We now have to show that actually a solution to GTES{) can be constructed
on all of [0, c0). In principle it might happen that the above construction only leads to
a solution on some interv0, T') with T < oco. To proceed by contradiction, assume
that we are in such a situation. The following estimates hold far0< 7'

Ol < ol + /0 Ik (6(0), —F(x(0)) d
t
< Jxoll + /0 |Fx(o)ldr
<

t
\xoll + BT + B /O lx()ldx.

The second step follows easily from the definitionfof (see [147, Eq. (2.19)]) and

the third inequality is a consequence of (6.11). Using Gronwall's lemma we see from
this thatx (-) is bounded on0, T); say|x(¢)|| < M fort € [0, T) for some constant

M > 0. It follows in particular that no “finite escape time” can occur. Moreover, it
follows that the solutiorx is Lipschitz continuous and hence uniformly continuous on
[0, T). Indeed, for O< r < s < T we have

A

x(®) —x(II = / Tk (x(7), —F(x(7))lldt
t

IA

/ FGe(o)dT
t

IA

B/‘ A+ x(2)IhdT
t
B+ M)(s —1).

IA

By a standard result in analysis (see for instance [169, Exc. 4.13]) this implies that
the limit x(7) := lim;7 x(¢) exists. Since by continuity argumeriiéx(7)) > 0,
continuation is possible beyorfd according to Theorem 6.5.6, and we have reached
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a contradiction. Therefore, it follows that there is a unique solution of the gradient-
type complementarity system GTQS(:) on [0, co) which is also a solution of the
projected dynamical system POS(K). The uniqueness of solutions to PDSK)
follows from Assumption 6.4.5 as in [147, p. 33]. O

Remark 6.5.7 The existence of solutions to PDS(K) on [0, co) is shown in [147]

by a method based on the Skorokhod Problem [188]. The proof above provides an al-
ternative argument. In fact the proof shows that Assumptions 6.4.1-6.4.3 are sufficient
for local existence of solutions to PDE, K). With the additional Assumption 6.4.4,

one can prove existence @iy co). The argument to prove uniqueness uses Assump-
tion 6.4.5 and is essentially due to Filippov [67]. a

6.6 Conclusions

We have shown that, under mild conditions, projected dynamical systems can be rewrit-
ten as gradient-type complementarity systems. This result may be looked at as a
dynamic version of the well known fact that, under suitable conditions, variational in-
equalities may be rewritten as mixed nonlinear complementarity problems. The class
of gradient-type complementarity systems is a subclass of the class of complementarity
systems which has received a considerable amount of attention in the engineering and
applied physics literature. The establishment of a connection between the domains of
projected dynamical systems and complementarity systems facilitates the transfer of
techniques from one domain to the other. As an interesting bonus, we have obtained
a new, and in the authors’ opinion more direct, proof for the existence of solutions to
projected dynamical systems.
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Consistency of a time-stepping method

7.1 Introduction 7.5 Conclusions

7.2 Preliminaries 7.6 Proofs

7.3 The backward Euler 7.7 Appendix: LCS with low
time-stepping method leading row coefficients

7.4 Main results for passive LCS

This chapter is mainly based on the paper [35], which is submitted for publication.
Kanat Camlibel acted as one of my co-authors in this paper, and this chapter is also
part of his PhD-work. In the appendix of this chapter, we added a treatise on the
use of time-stepping methods for linear complementarity system with low leading row
coefficients. This appendix does not appear in the paper [35], but is closely related to
the material of [35].

7.1 Introduction

This chapter continues the work presented in Chapter 5 in the direction of transient
simulation of electrical networks with ideal diodes. In particular, we will be inter-
ested in the time-stepping method that is based on the well-known backward Euler
integration routine [71], which has already been applied for the numerical approxi-
mation of electrical networks [20, 120, 121] and unilaterally constrained mechanical
systems[125,140,155,192,194]. The advantages of the method are thatit s straightfor-
ward to implement and many algorithms (e.g. Lemke’s algorithm [47], Katzenelson’s
algorithm [109] and others [121]) are available to solve the one-step problems consist-
ing of linear complementarity problems (LCPs).

In[120] the use of a time-stepping method based on backward Euler (or higher order
linear multistep integration methods [71] like the trapezoidal rule) has been proposed
also for the class of general linear complementarity systems, i.e. linear time-invariant
dynamical systems coupled with ideal diode characteristics (complementarity condi-
tions). By an example (cf. Example 7.3.3 below), it will be shown that the method
is not suited for any arbitrary linear complementarity system. This example indicates,
that although the method has proven itself in practice, one should not indiscriminately
apply it to general dynamical systems with mixed continuous and discrete dynamics.
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A justification of the numerical scheme in the sense of showing convergence of the ap-
proximating time functions to a true solution of the dynamical system seems required
considering the example mentioned above. The importance of such a rigorous vali-
dation is also stressed by considering the problems that might occur due to changing
configurations of the network, the possibility of Dirac impulses and the discontinuities
of the system’s variables.

Convergence problems of time-stepping methods for mechanical systems subject
to unilateral constraints or friction have been studied by Stewart [192,193]. He shows
that for a broad class of nonlinear constrained mechanical systems there always exists
some sequence of approximating time functions that converge to a true solution of the
mechanical model. However, the convergence of the complete sequence has not been
shown in [192,193]. The conditions used in [192, 193] (oriented towards mechanical
systems) do not cover electrical networks containing ideal diodes, which will be the
subject of this chapter. Specifically, we will show that for the class of linear electrical
passive circuits with ideal diodes, the ‘backward Euler time-stepping method’ is con-
sistent. Consistency indicates that for any arbitrary (so not only a special sequence)
sequence of time steps, which tends to zero, the corresponding approximations con-
verge to the true transient solution of the network model. Using the same arguments,
we will also show that the real transient solutions depend continuously on the initial
states. Of course, this is a covenient property for simulation, since small numerical
erros will not have a large influence on the outcome of the algorithm.

Although the results are written down for networks containing ideal diodes (inter-
nally controlled switches) only, externally controlled switches can easily be included
without destroying the convergence proof. The results presented here form a justifica-
tion of the ‘backward Euler time-stepping scheme’ in the field of switched electrical
networks.

The outline of the chapter is as follows. In section 7.2 the preliminaries on linear
complementarity systems and passivity are stated. The time-stepping method that will
be studied is introduced in section 7.3. Moreover, a fairly general result on consistency
of the numerical method is formulated for linear complementarity systems. In the next
section, this result is applied to linear passive complementarity systems, i.e. passive
linear systems coupled to ideal diode characteristics. The continuous dependence
of solution trajectories on the initial states is mentioned in section 7.4 as well. The
conclusions follow in section 7.5. The proofs of the results can be found in section 7.6,
after which an additional consistency result is given in the appendix of this chapter.
Specifically, for a class of LCS with leading row coefficients equal to zero or one, the
existence is proven of a (special) sequence of time steps for which the corresponding
approximations converge to a true solution of the model. The proof is based on the
fairly general result presented in section 7.3.

Throughout the chapteR (R") denotes the set ofiftuples of) real numbers and
R the set of nonnegative real numbers,Re. = [0, o). Foranyx, y e R",x Ly
meansthat "y = 0. Inequalities for vectors are always meant to hold componentwise.
The Euclidean and maximum norm of a vectore R” will be denoted byjx|:=
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N xl.2 and||x || := Maxcj |x;|, respectively. For a positive integern denotes
the set{l, 2,...,n}. For a real number € R, we use the notatiofir] to denote
the smallest integer larger than or equaktoThe set of real matrices with rows
andm columns is denoted bR™*™. For anyA € R™", J C n, andK C m, Ak
denotes the submatrix obtained by taking the rows corresponding to the elements of
J and columns corresponding to the elementXof If / = n (K = m), we also
write A,k (Aye,). ForanyA € R™™ |A|:= sup,=1 [l Ax|l denotes the matrix
norm induced by the Euclidean vector norm. A square matrig R"™*" is said to
be nonnegative (positive) definiteif’ Ax > 0 (x T Ax > 0) for all 0 # x € R”.
We write o (A) for the set of eigenvalues of and p(A) := maX.eq(4) |A| for the
spectral radius ofi. By the symmetric part ofi, we mean the matri>§(A +AT).
The identity matrix is denoted b, The set ofi-tuples of square integrable functions
on (to, t1) is denoted byL5 (1, t1). The notatior(x, y) denotes the inner product of
x,y € L5(to, 1), i.€. {x,y) = f[;le(t)y(t)dt. The norm ont5(1g, 11) is defined
by x| = (x,x)2. Moreover,x|q denotes the restriction of to the intervals.
We say that the sequende,} C L5(fo, t1) converges (weakly converges) to x if
iMoo Xk — x] = 0 (iMoo (xx — x,y) = Oforally e L£5(t0, 11)). The matrix
triple (A, B, C) with A € R™", B ¢ R™" andC € R™" is said to beninimal, when
rank[B. AB --- A" lB]=nandran{C’ cTAT ... cT@A")" 1] =n

7.2 Preliminaries

We begin by briefly recalling théinear complementarity problem (LCP) of mathe-
matical programming. For an extensive survey on the problem, the reader is referred
to [47].

Problem 7.2.1 (LCP(g, M)) Giveng € R" andM < R™" find z € R" such that

z>0
qg+Mz>0
2 (g4 Mz)=0

d

We say that solves LCP(g, M) if z satisfies (7.1). The set of all solutions of LGP{1)

will be denoted by SOly, M). Sometimes we also say thét, w) is a solution

to LCP(g, M), whenz satisfies (7.1) andv = ¢ + Mz. Note that the so-called
complementarity conditions (7.1) are similar to the ideal diode characteristi®,

i > 0,andiv = 0. Not surprisingly, the linear complementarity problem plays a major
role in the analysis of the networks with ideal diodes. Indeed, as discussed in chapter 5,
linear networks with ideal diodes can be modeled as linear complementarity systems,
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which are dynamical versions of the linear complementarity problem, of the form

x(t) = Ax(t) + Bu(r) (7.2a)
y(t) = Cx(t) + Du(t) (7.2b)
O<u() Ly =0, (7.2¢c)

whereu(r) € R™, x(t) € R", y(¢t) € R™ andA, B, C,andD are matrices of appropriate
dimensions. We denote (7.2) by LCS B, C, D) and associate tA, B, C, D) the
transfer matrixG(s) = C(sI — A)"'B + D.

Before precisely defining the solution concept of @SB, C, D), we need to
mention several spaces of functions and distributions, which play a crucial role in
the sequel. The spac® denotes the space of Bohl functions, i.e. functions having
rational Laplace transforms. The spaBg consists of the distributions of the form
U = Wimp + Ureg, WhEreu;,,, = uoéd is called theimpulisive part with uo € R and
ureg € B is called theregular part. A distributionu € Bj is said to beinitially
nonnegative, if its Laplace transforni (s) satisfiesi(o) > 0 for all sufficiently large
o € R. In a similar fashion, the spacé; (0, t) consists of the distributions of the
formu = u;pmp + ureg Whereu;,,, = ugé is called theimpulsive part with ug € R and
Ureg € £,(0, 1) is called theregular part. We say that the sequence of distributions
{ugd + uk,} C £5(0, 7) converges (weakly) tagd + u,,,, if {ug} converges targ
and{u,,} converges (weakly) to,, in £ sense.

Next, we remind the notion ahitial solution which has a considerable importance
in the analysis of linear complementarity systems.

reg’

Definition 7.2.2 (u, x, y) € 85" is aninitial solution' of LCS(A, B, C, D) with
initial statexg, if there exists an index sét C m such that

x = Ax + Bu + xoé

y=Cx+ Du
up = Oifi eJ
yvi=0ifi gJ
hold in the distributional sense, andandy are initially nonnegative. |

It can be shown that there is a one-to-one relation between the initial solutions to
LCS(A, B, C, D) with initial statexg and theproper solutions of the so-calleditional
complementarity problem.

Problem 7.2.3 (RCPko, A, B, C, D)) Givenxg € R" and (A, B, C, D) with A €
R™" B ¢ R™" C ¢ R™" andD < R™", findi(s) € R™(s) andy(s) € R™(s)

INote that the definition of initial solutions as formulated here is more restrictive than the one used in
chapter 5 as it only allows the Dirac distribution in its impulsive part and not its derivatives. However, this
notion of initial solution suffices for the purposes of the chapter. Note that in chapter 5 it is proven, that the
notion as stated here is not restrictive for passive LCS satisfying a full rank and a minimality condition.
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such that
$(s) = C(sI — A) Lxo + [C(s] — A) 1B + Dli(s)
iu(s) L y(s)
foralls € C andu(o) > 0 andy(o) > O for all sufficiently larger € R. O

The following proposition states the above mentioned one-to-one relation, which is
given by the Laplace transform and its inverse. This connection indicates the relevance
of the rational complementarity problem to the study of LCS.

Proposition 7.2.4 (u, x, y) is an initial solution of LCS(A, B, C, D) with initial state
xo if and only if its Laplace transform (i (s), X(s), y(s)) is such that (ii(s), y(s)) is a
proper solution of RCP(xo, A, B, C, D) andx(s) = (sI — A)"Yxo+ (s — A)"1Bii(s).

|

Now, we can give a precise definition of what is meant by a (global) solution of
LCS(A, B, C, D).

Definition 7.2.5 We call the triple(u, x, y) € ch"+”+'" (0, 7) a (global) solution to
LCS(A, B, C, D) on|[0, =] with initial statex, if

1. There exists an initial solutiofa, x, y) such that

(Mimp7 ximp’ yimp) = (”_timp’ )Eimp’ yimp)

2. The equations

X = Ax + Bu + xoé
y=Cx+ Du

hold in the distributional sense.
3. Foralmostall € [0, 7], 0 < tty¢e(t) L yreg(t) = 0.
O

Notice that the above definition is just a restatement of the one given in chapter 5
in terms of distributions.

The first item in the definition 7.2.5 imposes a relation between the impulsive part
and the rest of the solution. In the following example, we illustrate the necessity of
such a connection.

Example 7.2.6 Consider the simple circuit depicted in the figure 7.1. By denoting the
voltage across the capacitor and the diodebgndv,, respectively and the current
through the diode by;, one can obtain circuit equations as O
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Figure 7.1:
Ve = —iyg
Vd = V¢

O0>vy Lig>0.

It can be rewritten in the form of a linear complementarity system as

X=u (7.3a)

y=x (7.3b)

O<uly=>0, (7.3c)

whereu = iy, x = —v,, andy = —v,. For the initial statexg = —1, the triple

(u, x,y) = (a8,a—1,a—1) with a > 1 satisfies the last two items of definition 7.2.5.
However, from a physical point of viey:§, a — 1, a — 1) is only a solution for initial
statexp = —1 in casez = 1, since this is the only situation complying with the circuit
under study (an instantaneous and complete discharge of the capacitor). Note that
(u, x,y) = (8,0, 0) is indeed the unique initial solution.

In the sequel, we confine ourselves to linear passive complementarity systems. To
be reasonably self-contained, we shall quickly review the notion of passivity and its
characterizations in terms of the state representation and the transfer matrix of the
system.

Definition 7.2.7 [206] The system{A, B, C, D) given by (7.2a)-(7.2b) is said to be
passive (dissipative with respect to the supply rate u' y) if there exists a function
V :R" — Ry, calledstorage function, such that

5

1
V(x(10)) +/ ul (y()dt =V (x(t1))

fo

holds for allzo and#1 with 11 > 1o, and all (u, x,y) € L5+ (to, 1) satisfying
(7.28)-(7.2b). O
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We state a well-known theorem on passive systems which is sometimes called the
positive real lemma.

Lemma 7.2.8 [206] Assume that (A, B, C) is minimal. Then the following statements
are equivalent:

1. (A, B, C, D) is passive.

2. The matrix inequalities

T T
K:KTEOand[A K+KA KB-C }50

B'K-C —(D+D")
have a solution.

3. G(s) is positive real, i.e., G(A) + G'(L) > O0forallx € C withx & o(A) and
Re 1 > 0.

Moreover, if (A, B, C, D) is passive all solutions K of the linear matrix inequalities
in item 2 are positive definite. (]

Throughout the chapter, we will frequently use the following assumption.

Assumption 7.2.9 (A, B, C) is aminimal representation amis of full column rank.
O

The proof of the following theorem can be found in chapter 5 and deals with the
existence and uniqueness of solutions to linear passive complementarity systems.

Theorem 7.2.10 Suppose that (A, B, C, D) is such that assumption 7.2.9 holds and
(A, B, C, D) is passive. Lett > 0 be given. For each xo, there exists a unique solution
(u,x,y) € £g1+”+m (0, 7) of LCS(A, B, C, D) on [0, t] with initial state xg. O

7.3 The backward Euler time-stepping method

For the numerical approximation of the solutions of switched electrical networks the
following time-stepping scheme has been used frequently [20,120, 121]. For LCS the
method consists of discretizing the system description by applying the well known
backward Euler integration routine and imposing the complementarity conditions at
every time step. This comes down to the computationfgfluyz’ﬂ, and )QH given

x,’c’ through the linear complementarity problem given by

h h
X0 — X
% = AX!' 1 + BU!, (7.4a)
Yier=CXi1+ DUy (7.4b)

o<y, Llu,,>0 (7.4¢)
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Hereo,’j denotes the value at tliéh step of the corresponding variable for the fixed step
sizeh > 0. Based on this scheme, one can construct approximations of the transient
response of a LCS by applying the algorithm below.

Algorithm 7.3.1 ({ul'}, {x"}, {y?'})) =Approx. (A, B, C, D, t, h, xo)

1. Ny =131

2. Xﬁl = X0

3. ki=-1

4. solve theone-step problem

Y1 =CU —hA) X +[D+hC(I —hA) T BIU,,
O<UlyLlyi120

for the variables j;|+1 and )/,ZH

5. X! 1= —hA)X! + h(I —hA)TIBU!
6. k:=k+1

7. ifk < N, goto 4

8. stop.

O

The one-step problem is given by a linear complementarity problem in step 4. In
general, the LCP may have multiple solutions or may have no solution at all. We shall
proceed by assuming unigue solvability of the problem. The assumption is introduced
here for reasons of generality. Later on we will prove that the assumption is implied
by passivity.

Assumption 7.3.2 For all sufficiently small: > 0, LCPEC(I — hA) 1%, G(h™ 1))
has a unique solution for afl, whereG (h 1) is given byhC(I — hA)"*B+ D. O

This assumption implies that for all sufficiently small> 0, algorithm 7.3.1
generates an output, which is unique. Hence, for a given initial sge@d step size
h > 0 (sufficiently small), we can define the approximatioms, x”, y") given by

uph,, = hugs (7.5a)
Xy = hXg8 (7.5b)
Vhup = 1Y (7.5¢)
g (1) = U
Xl (1) =X } whenever! — 1)h <t < I, (7.5d)

MOESY
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where ¢, x! and yf, k = 0,1,..., N, have been obtained from algorithm 7.3.1.
The most important goal of the chapter is to prove that for a passive system these
approximations converge in a suitable sense to the actual solution of the system. This
will be called consistency of the numerical method. In the following example, we
illustrate algorithm 7.3.1 is not always consistent even if assumption 7.3.2 holds.

Example 7.3.3 Consider the linear complementarity system (consisting of a triple
integrator with complementarity conditions)

X1 = Xx2
X2 = X3
X3=1u
y=x1
O<uly=>0

with the initial statexg = (0 —1 O)T. It can be easily calculated thdt—hA) 1 =
2

(é%}i,l) andG(h~1) = h3. By solving the one-step problem for= —1 (x", =

©0-10")

we get(ul, yi) = (h=2,0). Hence, § = (0 0 h~1)'. Fork = 0, the one-step
problem
v =n+ndl
O<ul Lyl >0,
yields (u?, y") = (0,h) and % = ((h 1 h‘l))T. By repeating the calculations, it

can be verified that algorithm 7.3.1 yieldg', y?) = (0, ““X1p) for k # 0. Itis clear
from (7.5d) that

(N =Dh (Nw — DNy,
Iyl = ( lyfy, —p 2 dDY? = == ———p%?
(

=0 Y%
Np—2)h 2

whenevemwv;, > 2. Thereforeyfeg is far from being convergent and even not bounded
ash converges to zero. O

This example indicates that one should be cautious in applying a time-stepping
method to LCS. A verification of a numerical scheme in the sense of showing con-
sistency is consequently needed. The following theorem states conditions that imply
consistency.
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Theorem 7.3.4 Consider LCS(A, B, C, D) such that assumption 7.3.2 holds. Let
7 > 0and xg € R” be given. Also let (u”, x", y") be given by (7.5) via algorithm
7.3.1. Suppose that there exists o > 0 such that for all sufficiently small h

|

h
lhugll < a and ||ureg <a.

Then, we have the following statements:

1. There exists a unique initial solution of LCS(A, B, C, D) with initial state xg in
the sense of definition 7.2.2.

2. The triple {(uf.’mp, xi’ﬁnp, yl.hmp)} converges to (timp, 0, Yimp), when h tends to

zero. Moreover, (jmp, Yimp) is of the form (uod, yod) with ug, yo € R™ such
that (u;mp, 0, yimp) is equal to the impulsive part of the unique initial solution
corresponding to initial state xg.

3. Let {hi} converge to zero. Suppose that D is nonnegative definite. Then,
(a) There exists a subsequence {hy,} < {hy} such that ({uh"l 1, {yhkl D con-
verges weakly to some (u, y) and {xhkl } converges to some x .
(b) (u, x,y) is asolution of LCS(A, B, C, D) on [0, t] with initial state xo.

(c) If the solution (u, x, y) is unique for initial state xg in the sense of defini-
tion 7.2.5, then the complete sequence ({u"*y, {y"}) converges weakly to
(u,y) and {x"*} converges to x .

O

Proof. See section 7.6.

7.4 Main results for passive LCS

We now show that the conditions of theorem 7.3.4 are satisfisfied in the case of passive
linear complementarity systems so that the following result holds.

Theorem 7.4.1 Consider the LCS(A, B, C, D) such that assumption 7.2.9 holds and
(A, B, C, D) ispassive. Lett > 0andxg € R" be given. Let (u, x, y) be the solution
of LCS(A, B, C, D) on [0, t] with the initial state xg. Also let (uh, x, yh) be given
by (7.5) via algorithm 7.3.1. Then, ({u"}, "D converges weakly to (u, y) and {x"}
converges to x as the step size h tends zero. ]

Proof. See section 7.6. O

The above theorem assumes exact computations. In implementing the backward
Euler time-stepping method numerical errors will of course be introduced. To give
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some justification that also in the case of (small) numerical errors the method is still
suitable, we study the issue of the dependence of the solution trajectories on the initial
conditions. For general LCS such a property does not hold (see e.g. example 3.8.3in
chapter 3). However, in the special case of linear passive complementarity systems,
the continuous dependence holds. To formulate this in a mathematically precise way,
we have to introduce some nomenclature. Zeéte a Hilbert space. We say that

T : R" — J is continuous (weakly continuous), if continuity is considered with
respect to the strong (weak) topology & In other words[ is continuous (weakly
continuous), if for all convergent (weakly convergent) sequefig@s{7 x; } converges
(weakly converges) t@ (limy_ o0 xx).

Theorem 7.4.2 Consider the LCS(A, B, C, D) such that assumption 7.2.9 holds and
(A, B,C, D) is passive. Let t > 0 be given. Define the operators xg +—> (u, y)
and xo — x, where (u, x,y) is the solution of LCS(A, B, C, D) on [0, t] with the
initial state xg. The operators xo — (u,y) and xo — x are weakly continuous and
continuous, respectively. O

Proof. See section 7.6. O

7.5 Conclusions

In this chapter, we studied the consistency of a time-stepping method based on the
backward Euler integration routine. The method has already proven itself in practice
for the transient simulation of piecewise linear electrical circuits and constrained me-
chanical systems. However, one cannot indiscriminately apply this method for general
classes of discontinuous systems as shown by an example in this chapter. The main
result of the chapter is therefore concerned with presenting a rigorous proof of the
consistency of the backward Euler time-stepping method for a class of linear comple-
mentarity systems, to wit linear passive electrical networks with ideal diodes. In spite
of the mixed continuous and discrete behaviour of the circuit, the possibility of Dirac
impulses occurring at the initial time, and the fact that the time-stepping method does
not try to locate the event times exactly, we have shown the convergence of the approx-
imations to the actual transient solution of the network model. Using almost the same
arguments, we have also proven the continuous dependence of the true transient solu-
tions on the initial state. For simulation of linear passive networks with ideal diodes,
this has the important consequence that numerical errors do not have a large influence
on the outcomes of the approximation method. These results provide a justification for
the use of time-stepping methods.

Of course, it would be interesting to generalize these results to other systems of
a mixed continuous and discrete nature. In particular, we are currently studying the
consistency of the backward Euler method for dynamical systems with relay switches
and other subclasses of linear complementarity systems. For many system where the
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backward Euler time-stepping scheme does not generate proper output (like the triple
integrator), it is useful to consider extensions of the time-stepping algorithm that are
consistent.

7.6 Proofs

7.6.1 Preliminaries

For ease of reference, we recall some standard results on weakly convergent sequences.

Lemma 7.6.1 [209] The following statements hold in every Hilbert space J€.
1. Every bounded sequence has a weakly convergent subsequence.

2. If all weakly convergent subsequences of a bounded sequence have the same
weak limit, then the sequence itself converges weakly to this limit.

3. Assume that {v;} C F converges weakly to v and {wr} C F converges to w.
Then

(a) There exists « > 0 such that ||vg|| < « for allk and ||v] < «.

(b) {Svx} converges weakly to Sv whenever S : # — J is a continuous
linear operator.

(©) {{vk, wg)} converges to (v, w).
O

In the following lemma, we state some results for the matrix invefse hA) 1.

Lemma 7.6.2 Let A € R™". The following statements hold:

LI —hA)Y <
of J(A+AT).

1 h for all h with Lh < 1 where A is the largest eigenvalue

2. There exists an o > 0 such that ||(I — hA)™Y|| < « for all sufficiently small h.

3. If {ryhy} converges tot then {(I — hy A) ™"} converges to ¢! uniformly int on
any bounded interval.

]

Proof. 1: By the Wazewski inequality (see e.g. [207, theorem 8Jid}!|| < ' for
all + wherea is the largest eigenvalue (%f(A + AT). Theorem 1.5.3 in [156] gives
now the desired inequality.
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2: It can easily be verified by using item 1 that
1 1

(I —hA)| < 1 a

—

whenevenh <o < 1.
3: This follows from [156, theorem 3.5.3]. O

7.6.2 Proof of theorem 7.3.4 item 1 and 2

For proving theorem 7.3.4, we start by considering the itérasd 2, which are con-
cerned with the existence and uniqueness of initial solutions and the convergence of
the impulsive parts of the approximations to the impulsive part of this initial solution.
Note that the latter is needed to show that the limit of the approximations exists and
satisfies definition 7.2.5 iterh

We shall use the following proposition which establishes the relation between the
solutions of the one-step problem and the solutions of the rational complementarity
problem.

Proposition 7.6.3 Consider matrices A € R™" | B € R™" C € R™" and D € R™*™"
such that assumption 7.3.2 holds. We have the following statements for all xg € R".

1. RCP(xg, A, B, C, D) has a unique solution.

2. For all sufficiently small h,
ah™ty = huj
arp—1 h
$(h~Y = hyg

where (u(s), y(s)) is the solution of RCP(xg, A, B, C, D) and x(s) = (sI —
A)"Ixg+ (sI — A)71Bi(s).

]

Proof.

1: Observe the basic fact that if LCR(M) is solvable, then LCR{g, M) is also solv-

able for anye > 0. As a consequence, assumption 7.3.2 implies together with the
identitys (I —hA)~1 = (h—11 — A)~ that for all sufficiently smalk, LCP(C (h 11 —
A)~Ixg, G(h~1)) has a unique solution. From theorem 4.4.1 and corollary 4.4.10 in
chapter 4, we can conclude that R&R(A, B, C, D) has a unique solution.

2: Let (i1 (s), ¥(s)) be the solution of RCRf, A, B, C, D). It can be easily seen that
a(h~1) solves LCRC(h~1I — A)~1xo, G(h~1)) for all sufficiently smalliz. Note
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that if z is a solution of LCP{, M), thenaz is a solution of LCR¢q, M) for « > 0.

Thereforeh~1i(h—1) solves LCPC (I — hA)~1xo, G(h~1)) for all sufficiently small
h due to the identitys=1(h~11 — A)~1 = (1 — hA)~L. Stated differently, for all
sufficiently smallk

ath™) = hul (7.6a)
(Y = hx} (7.6b)
$(hY = hyb, (7.6¢)
wherez(s) = (sI — A) " Lxo + (sI — A)~1Bi(s). O

Proof of theorem 7.3.4 items 1 and 2

1: From propositon 7.6.3 item 1, it is known that RG§(A, B, C, D) is uniquely
solvable. Let(ii(s), y(s)) denote this unique solution arids) = (s — A) 1xg +
(sI—A)"1Bi(s). Since||hug || is bounded for sufficiently small by the hypothesis of
the theoremy (s) is proper due to proposition 7.6.3 item 2. It follows thét) is strictly
proper andy(s) is proper. Clearly, propositon 7.2.4 implies that the inverse Laplace
transform of(ii(s), X (s), y(s)) is the unique initial solution of LC&, B, C, D) with
initial statexo.

2: Let (a(s), x(s), y(s)) be the Laplace transform of the unique initial solution of
LCS(A, B, C, D) with initial statexp. Proposition 7.2.4 implies thai(s) and y(s)
are proper and (s) is strictly proper. Then, the impulsive part of the initial solu-

tion (Uimp, Ximp, Yimp) iS Of the form (ueé, 0, yod) whereug = lim,_, o #t(s) and
yo = lims_ o y(s). Itis clear from (7.5a)-(7.5¢) and proposition 7.6.3 item 2 that
(uflmp, xihmp, yihmp) converges tau;my, 0, yimp) ash tends zero. O

7.6.3 Order complementarity problem

In this subsection, an infinite dimensional version of the LCP will be considered. This

so-calledorder complementarity problem (OCP) has strong relations to (the regular

parts of) the solutions of LCS on one hand. On the other, it is possible to embed the

discretizations obtained from the backward Euler time-stepping method in the OCP.
To be specific, we briefly recall OCP for the function spatg0, v). More details

on the OCP can be found in [22].

Problem 7.6.4 (OCP(q,T)) Giveng € £5(0,7t) andT : L5 (0,7) — £L5(0, 1),
find z € £5(0, 7) such that

z2(t)=0 (7.7a)
q()+ (Tz)(1) =0 (7.7b)
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for almost allr € [0, ] and

(z,q+Tz) =0. (7.7¢c)
O

If z satisfies (7.7), we say thatsolvesOC P (g, T). In this case, we sometimes also
state thatz, w) solvesOCP(q, T), wherew = g + Tz.

Note that the conditions given in item 3 of definition 7.2.5 may be equivalently
written as

Upeg(t) = 0 (7.8a)
Vreg) = 0 (7.8b)

for almost allr € [0, ] and
(Uyegs Vyeg) = 0. (7.8c)

Hence, by associating the operaigj g c,p) defined by

t
(Tia..c.oyw)(t) = Du(t) + / Ce "™ Bu(s)ds
0

to LCS(A, B, C, D), the solutions of LC&4, B, C, D) can be identified with the
solutions of certain OCPs in the following manner.

Proposition 7.6.5 The following statements hold.

1. If (u, x,y) € L5(0, ) is a solution of LCS(A, B, C, D) on [0, ] with initial
state xo, then Upeq is the solution of OCP(CeA'tho,,], T(a,B,c,p)), Where

xar = x0 + Buo and u;p = uod.

2. Ifu € L£5((0, 1)) isasolution ofOCP(CeA'xollo,rl, T(A,B,c,D)), then (u, x, y)
is a solution of LCS(A, B, C, D) on [0, t] with initial state xo where

x = e*xolj0,e] + Tia.B.1.0)1
y=Cx + Du.

7.6.4 The time-stepping method in an OCP formulation

The approximations of (7.5) by the backward Euler time-stepping scheme can also
be formulated as the solutions of certaC Ps. To formalize this, we introduce the

operatorsCy, : R™r — R™Ni, Dy : R™Ni — R™Ni Ry, o £2(0,7) — RN,
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On : R™Nn 5 R*Ni and P}{ : RN ££(O, 7) for givent > 0 andh with
Ny = [t/h].

cC 0 0 D 0 0
- 0 C 0 B 0 D 0

Ch = Dy =1 .
0 0 C 0 0 D

Jo u(s)ds

1 u(s)ds

Ryu = fh ( )
f&h_l)h u(s)ds
(I —hA)"1B 0 0
(I —hA)~2B (I-hA)1B ... 0
h -— . .
(I—ha)"MB (I—-hA)Mtp ... (1 —hA)1B

(PIW)(t) =W g=p7 if t € [l = Dh,Ih) forl =1,2,..., Ny

For ease of reference, we summarize some of the properties of these operators,
which will be needed in the the sequel. Without loss of generality , we can assume that
Nyh = .

Proposition 7.6.6 Let v, w € RN and x € R"M:. The following statements hold.
1. RyP;'V=\V.
2. v > 0ifand only if P;"v(t) > O for (almost) all t € [0, T].
3. (P, P"w) = hvTw.
4. DP/"v = P/" DyV.

5. CPIx = P/"Cyx.

Proof. Evident from the definitions oP/, R;,, C; and D,. O

It can easily be seen théiy, §;) solves LCPCy &y, Dy + C, Qr), where

u? yi (I —hA)~IX)
) v ) (I —hA) 2
Up=1| . [.¥n=]| . |, andq, = .

uy, Y, (I —hA)~Nixh
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Indeed, LCPC,&y, D, + C1,Q;) is pieced together fronV,, one-step problems of
algorithm 7.3.1 step 4. The following lemma will complete the puzzle by formulating
the approximations as solutions 6fC Ps and showing convergence properties of
solutions to a family of OCPs.

Lemma 7.6.7 Let T, = P} Qn Ry, and q;, = P}'Gy,. The following statements hold.

1. For all sufficiently small h, (uﬁ‘eg, yf’eg) as given by (7.5) solves OCP(Cq,, D+
CT)).
2. {q;,(:)} converges to e (xo + Bug) with ug as in item 2 of theorem 7.3.4 as h
tends zero.
3. {T}:ufeg — T(A,B,],O)Mfeg} converges to 0 as h tends zero.
|
Proof.
1: Since(Uy, ¥) solves LCPC&y, Dy + Cr Q1), We have
i, >0 (7.10a)
Vi = Chlh + (Dn + Ch Q)T > 0 (7.10b)
0, yn = 0. (7.10c)

Note thaiuﬁ’eg = Py andyf’eg = P"y, dueto (7.5) and the definition &%". Hence,
(7.10a) and (7.10b) together with proposition 7.6.6 item 2 implies that

ut,, (1) = 0 andy,, (1) > 0 for (almost) alk € [0, 7], (7.11)

reg
while proposition 7.6.6 items 1, 4 and 5 yield
)’:lffg = Pkmylc
= Pénéqu + P{"bkﬁk + PkmékaRkP]:nflk
= Cq; + (D + CT)ulk,. (7.12)
Moreover, we have that

(U)o Yiog) = (P} Tn, PY'S1)

= h Uy Jn
~0 (7.13)

from proposition 7.6.6 item 3, and (7.10c). Clearly, (7.11), (7.12) and (7.13) imply
that (ul’,,. y!,,) solvesOCP(Cq;,, D + CT}).

r
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2: Note that from algorithm 7.3.1 step 5 we have
Xt i= (I —hA) xo + h(I — hA) " BUJ. (7.14)

Leti(s) be the solution of RCRg, A, B, C, D) andug = lim_, » it(s). As shown in
the proof of theorem 7.3.4 item Bug converges tag ash tends zero. Then, (7.14)
implies that

{xt} converges tap + Buo (7.15)
ash tends zero. Note that
gy (@) = (I — hA)~T/ Il
Hence, from the triangle inequality we get
lgs () = e* (xo + Buo)|
< (I = hA) T Mxg — el + e x§ — e (xo + Buo) |

T
< (/0 (T — hA)T/MT AT )12 )Y 2) x| +

T
+ (/0 le (1 )2 ||xf — (xo + Buo)|l.

Since{[t/h1h} converges ta ash tends zero, lemma 7.6.2 item 3 and (7.15) reveal
that the right hand side converges to zero.
3: Note that

1
(Tyufe) 1) = ) (I —hA)" =PV BUy
p=1
1 ph
— f (I —hA)~ =D Byl ds
p=1 (p=Dh
and also that

t
eA(’_s)Bu?,ds —G—f eA(’_S)Bu;’ds
(I-Dh

ph

-1
(T(A.B.1O U ) (1) = Z
oo

with [ = [t/ h]. By exploiting the triangle inequality, we get

I(Tyul, ) (1) = (Ta. 810 U ) D] <

/0 i
> . 11 — A~ T/M=IS/IHD _ A=D1 Ul s (7.16)
p=1 (p—
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since(p — 1)h < s < ph givesp = [s/h]. Clearly, {([t/h] — [s/h] + Dh}
converges ta — s ash tends zero. We already know from the hypothesis nln@m

is bounded forp # 0. Therefore, from lemma 7.6.2 item 3 we can conclude that the
right hand side converges to zero uniformlytion any bounded interval. It follows
that{7T,u",, — T(A,B,],O)ufeg} converges to zero itf2(0, ) ash tends zero. O

reg

7.6.5 Convergence of solutions to order complementarity prob-
lems

From the previous subsection, it is obvious that the convergence problem for the time-
stepping method can be reduced to convergence of the solutions of a sequence of
OCPs. The following theorem provides a general framework in which we shall prove
the convergence of the regular parts of the approximations obtained by the backward
Euler time-stepping method. Before stating the theorem, we need to define the concept
of compact operators.

Definition 7.6.8 Let # be a Hilbert spaceT : # — J# is said to be aompact
operator, if for any weakly convergent sequen¢e,} C #, {Tux} is a (strongly)
convergent sequence. O

Theorem 7.6.9Let T : L£5(0,7) — £L5(0, T) be a compact operator and let S :
L3(0,7) = L5(0, 1) be a linear continuous nonnegative definite (i.e. (v, Sv) >
0 forallv € £5(0, t)) operator. Suppose that there exist sequences {q;} and {T;}
such that {q;} converges to q and OC P(qi, S + Ty) is solvable for all k. Let z; be
a solution of OCP (qi, S + Ty). If {zx} converges weakly to z and {Tyzy — Tz}
converges to zero then z solves OCP(q, S+ T). (|

Proof. In order to prove the theorem, one should show thathich is the weak limit
of {zx}, satisfies

z(t) =0 (7.17a)
gt)+((S+T)z2)(r) =0 (7.17b)

for almost allr € [0, t] and
(z,g+(S+T)z) =0. (7.17¢)

Sincez; solvesOC P (g, S + Ty), we have

7% () =0 (7.18a)
gk (@) + ((S + Ti)zi) (1) = 0 (7.18Db)
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for almost allr € [0, ] and

(Zhs g + (S + T)zx) =0 (7.18c)

for all k. Now, (7.17a) follows from (7.18a) and the weak closedness of the et
v(t) > 0 for almost allr € [0, 7]} (see [170, theorem 3.12]. Lemma 7.6.1 item 3b and
definition 7.6.8 imply that

{Szx} converges weakly t§z (7.19a)
and

{Tz;} converges td'z. (7.19b)
As a consequence of (7.19b), we have
{Trzx} converges td'z (7.19¢)

since{Tyzr — Tzx} converges to zero by assumption. The equations (7.19a), (7.19c)
and the convergence &gy} imply that{gx + (S + Ti)zx} converges weakly tg +
(S+T)z. Hence, (7.17b) follows from (7.18b) and the weak closednegs o () >

0 for almost allr € [0, t]}. Now, it remains to show that (7.17c) holds. Equation
(7.18c) gives

(zk» Szk) = — {2k, gk + Tizk).

The convergence dfy;} and the weak convergence{af,}, together with (7.19c) and
lemma 7.6.1 item 3c, imply that

(zk» Szi) —(zks g + Trzx) = —(z2,q + Tz).

lim = lim
k— o0 k— o0

We also have from (7.17a) and (7.17b) that

(z, g+ (S+T)z) = 0.

Thus,
(z2,82) 2 —(z, 9+ Tz) = k”—>moo<Zk’ Szk)- (7.20)
The nonnegative definiteness$fmplies
(zk —2,8(zk —2)) = 0. (7.21)

Since lim— o (z, Szk) = liMg 0 (zk, Sz) = (z, Sz) due to the fact thdk } converges
weakly toz and lemma 7.6.1 items 3b and 3c, we get

lim (zx, Szx) > (z, Sz) (7.22)
k— 00
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by lettingk tend to infinity in (7.21). Together with (7.20), this yields
lim (zx, Szx) = (z, Sz). (7.23)
k— 00

Combining (7.23), (7.19c), the convergence{gf} to ¢ and lemma 7.6.1 item 3c
results in

k|LmOO(Zk, g + (S +Tzx) = (2,9 + (S + T)z). (7.24)

Finally, (7.17c) follows from (7.24) and (7.18c). O

7.6.6 Completing the proof of theorem 7.3.4

The proofs of item 1 and 2 in theorem 7.3.4 have already been shown. The remaining
items will be proven in this subsection.

Proofs for items 3a, 3b and 3c of theorem 7.3.4a: The convergence of impulsive
parts has already been shown in the proof of item 2. Hence, we must show that the claim
about the regular parts holds. By the hypothesis of the theorem, we knou\uﬂ;gt

is bounded for sufficiently small. According to lemma 7.6.1 item 1, the existence

by o
of a weakly convergent subsequence{w{fé’g}, say{uriffg}, is clear. Letx,,, denote

the weak limit of this subsequence, and aISOqLe;{tand T};k be defined as in lemma
7.6.7. Sincel(4,p,1,0) IS a compact operator (see e.g. [170, exercise 4.15]), it follows

_ h
from definition 7.6.8 tha{T(A,B,,,o)u,ng} converges (strongly) 0A,B,1,0Uy - Then,
lemma 7.6.7 item 3 implies that

{Thk ureg} converges tdia, 5,1,0)l - (7.25)
Note that
Xy = ah, + T, urth (7.263)
and
yfeg = Cqj,, + (D + CT}, u f’g’g. (7.26Db)

Itis clear from lemma 7.6.7 item 2, (7.26a) and (7.25) {héig} converges ta

. h
A (xo + Buo)ljo,71 + T(A,B,1,0)l - Smce{Du,ﬁ’g} converges weakly t®u,.,, due
to lemma 7.6.1 item 3b, it follows from lemma 7.6.7 item 2, (7.26b) and (7.25) that
h
{yrey} converges weakly t9,,, := Ce?"(xo + Buo)lj0,r] + T(A.8.C.D)lreq-
3b: Item 2 of Theorem 7.3.4 (see also the proof) states the convergence of the triple

hy
(ulmp’ lmp’ ytmp) to

reg *—

(uimp’ 0, yim,,) = (104, 0, yoé) = (l'_‘imps )Eimpv yimp)s (727)
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where(u, x, y) € £;"+"+m is the unique initial solution for initial statey. Hence,
we also have thaﬁimp = Du,.mp due tox;,,, = 0. Let us define in the framework of
theorem 7.6.9

* T =Ta,B,c0:
. S=D,
s g = Cq,’lkl, and
* T =CT; .
It can be checked that
» T is compact ( [170, exercise 4.15]),
» S is nonnegative definite (by the hypothesis> 0),
* {g/} converges t@e” (xg + Buo)|[o,r] (from lemma 7.6.7 item 2)

* OCP(q;, S+ T)) is solvable (from lemma 7.6.7 item 1), and

. {Tlufﬁlg - Tuf'gjq} converges to zero (from lemma 7.6.7 item 3).
Then, theorem 7.6.9 implies thqteg solvesOC P(Ce? (xo+ Buo)lio,z1, T(A,B,c,D))-
Due to proposition 7.6.5 item ..., X,,, ¥y..) iS @ solution of LC$A, B, C, D) on
[0, 7] with the initial statexg + Bug (With ug as in (7.27)), where

Xpeg = e (xo + Buo)ljo,r) + T(aA,B,1,0Uyeg

yreg = ereg + Dureg'
Equivalently,

Xreg = AXpoq + Bty + (x0 + Bug)d (7.28a)
Yreg = CXypq + Dit g, (7.28b)

holds in the distributional sense and

0=<t,(t) L y,0e(t) =0 (7.28c)

for almost alls € [0, t]. Sinceu;,up = uo0d, yimp = Dutjmp andx;,,, = 0, (7.28a) and
(7.28b) yield

X = Ax + Bu + xoé (7.29a)
y=Cx + Du (7.29b)
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Clearly, (7.27), (7.29) and (7.28c) imply th@t, x, y) isa solutionof LC®%A, B, C, D)
on [0, ] with initial statexg.
4: We have already proven that the complete sequence of the impulsive parts
(uf‘,;p, xi@’;p, yf‘,fw) converges. Note that the sequence of regular pmffj§, xf‘ekg, yf‘el‘g
is bounded by assumption. Moreover, following the proof of item 3 above, it is clear

. hl‘l hkl hkl .
that every converging subsequen@g,g, x-¢, yreg) CONVerges to a solution of the

LCS(A, B, C, D) with initial statexg + Bug. Since this solution is unique, every
converging subsequence of the bounded sequence of regular parts has the same limit.
Applying theorem 7.6.1 item 2 completes the proof. O

7.6.7 Some results on LCPs

We will present in this subsection some results on LCPs, that will be needed to prove
the main result (theorem 7.4.1) for linear passive complementarity systems.
Proposition 7.6.10 Let M € R™" be a positive definite matrix and z; the unique
solution of LCP(g;, M) fori = 1, 2. Then,
3/2
n(M)

llza — zall < llg1 — g2l

where (M) denotes the smallest eigenvalue of the symmetric part of M, i.e. %(M +
M. O

Proof. By From Lemma 7.3.10 and proposition 5.10.10 in [47], we have

n
— _— — . 7.30
llz1 — z2llo0 < D g1 — q2lloo (7.30)

Since|z|l < n¥2|z]l and|zlleo < 12|l for all z € R, (7.30) yields

3/2
w(M)

llz1 — z2|| < lgr — g2ll.

d

Using the passivity ofA, B, C, D), we can compute a lower bound G (1))
with G(s) := C(sI — A)~1B + D, that will be useful for the application of proposi-
tion 7.6.10.

Lemma 7.6.11 Consider the matrices A € R™ |, B ¢ R™ C € R™" and D €
R™X™ such that assumption 7.2.9 holds and (A, B, C, D) is passive. Let u(N) denote
the smallest eigenvalue of the symmetric part of a matrix N and define G(s) =
C(sI — A)™1B + D. The following statements hold.
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1. D>0.
2. u#0andu' Du = 0 implies thatu " CBu > 0.
3. There exists « > O such that (D + hC B) > «h for all sufficiently small h.
4. There exists B > 0 such that (G (h~1)) > Bh for all sufficiently small h.
O

Proof. 1: This is clear from lemma 7.2.8 item 2.

2: Assume thatt £ 0 andu " Du = 0. We claim that K B — C ")u = 0, wherek
is a solution of the linear matrix inequalities in lemma 7.2.8 item 2. Suppose it is not
true, i.e. (K B —CT)u # 0. Then, there exists € R” such thatt " (KB —C ")u > 0.
Hence, for sufficiently small > 0

wx]'TATK+KA KB-CT J[ax] _
u B'K—-C —-D+DNH||u]|™

=2%xT(ATK+KA)x+20x (KB—Cu >0. (7.31)

Obviously, (7.31) contradicts lemma 7.2.8 item 2. HerigeB — C ")u = 0 and thus
u'CBu = u' BTKBu > 0, becaus& is positive definite and? has full column
rank.

3: Note thatay + ax h > by + by h for all sufficiently smallk > 0 if and only if
(a1 > b1) or (a1 = b1 andas > by). Since

(u'Du>0)or(u' Du=0andu'CBu> min v' CBv)
vT Dv=0
lvll=1

holds for allu with ||z|| = 1 due to items 1 and 2. From this we obtain that forall
with flu|| =1

u'Du+hu'CBu>h min v CBv for all sufficiently smallr > 0.
v Dv=0
lvll=1

This yields by using [128, property 5.2.2.1(Rayleigh-Ritz theorem)]
w(D +hCB) = ”nrlmlinluT(D +hCB)u
ull=

>h min v'CBv
vT Dv=0
lvll=1

for all sufficiently smallz > 0. Since

min v'CBv > 0
v Dv=0
lvll=1
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according to item 2, the proof of this part is complete.
4: Itis known from matrix theory (see e.g. [128, property 9.13.4.9]) that

w(N1+ N2) = n(N1) + n(N2)
for all square matrice&/; andN». Hence, we get
w(G(h™Y)) > w(D + hCB) + h*u(CA(I — hA)~1B)
> Bh (from item 3)
for someg > 0 and all sufficiently smalk. O

The following auxiliary lemma will be needed in the sequel.

Lemma 7.6.12Let # = {x € R" | Ax > b} be a given nonempty polyhedron with
A € R™™ and b € R™ and let x* be equal to argmin.cp | x||. There exists an index
set J C n such that x* = argming, x=p, llx|l. O
Proof. Consider the convex quadratic optimization problem

min %xTx.
Ax>b

The well-known Kuhn-Tucker conditions are necessary and sufficient for this problem
because of its convexity (see for instance [47, section 1.2])x1.és the solution of
the optimization problem above if and only if there exisis @ R such that

¥ =Au
Ax* > b
u=>0

u' (Ax* —b) = 0.
Take such a vectar, defineJ = {j | u; > 0} andv = u;. Then,x* satisfies

x* = (Asa) v (7.32a)
Aj.x* = bj. (7.32b)

Note that (7.32) are necessary and sufficient (Kuhn-Tucker) conditions for the convex
quadratic minimization problem

a

To formulate the next lemma, we need to define the concept of a dual cone.
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Definition 7.6.13 For any nonempty s&f c R™, the set
{weR" | w'v>0forallvea@)

is called thedual cone of @ and denoted by *. |

Lemma 7.6.14 Let M € R™" be nonnegative definite and @ = SOL(0, M). We have
the following statements.

1. LCP(q, M) is solvable if and only if g € Q,

2. For each q € @, there exists a unique least-norm solution z* € SOL(q, M)
such that ||z*|| < ||z|| for all z € SOL(q, M),

3. There exists o > O such that for all g € @*

Il < allqll,
where z*(q) denotes the least-norm solution (see item 2) of LCP(q, M ).
O

Proof. 1-2: These statements follow from [47, cor. 3.8.10 and thm. 3.1.7(c)], respec-
tively, because SQOlg, M) is a nonempty polyhedron whene Q*.

3. Define
0 if A=0
a(A) =1 max min |x|| ifA#0
yeim A Ax=y
lylI=1

It is well-known that arg min,—, x| = ATy forall y € im A, whereA™ denotes the
pseudoinverse ol (see [127, p.163]). Clearly, — ||ATy]| is a continuous function
onimA, because the pseudoinverse is linear and bounded and thus continuous [127,
p.165]. Then, this mapping achieves its minimum on thé seéty € im A and||y|| =

1}, which is compact. Hence, the quantityA) is well-defined for allA. Define

1
—1je
o :=~2 max max a(| 2| ).
JSn Kc3n M
_M‘]. Ke

For anyg € @*, we know from the items 1 and 2 that LGR (/) is solvable and that
there exists a unigue least-norm solutigtig). LetJ := {;j | z;‘-(q) > 0}. Clearly,
P:={|vy>0v5=0,9g;+M;;v; =0, andg c+M;c;v; > 0} C SOL(q, M)
andz*(¢q) € #. Note that® is a polyhedron, since it is of the forfa | Av > b} with

1 0
_ _IJC. _ 0
A= M andb = g

-Mj, q;
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Moreover, it is obvious thazt*(_q) = argming,>p [|v]l. According to lemma 7.6.12
there exists an index s& < 3n such that:*(¢) = argmin,,=p, lv]l. Thus, we
havel|z*(@)|l < a(Aks)llbkll. Note thatbk (12 < (16117 < llgli? + llgs 1% < 2lql?
andv/2a(Ak.) < . Consequently,

5@l < e llgll.

7.6.8 Proof of theorem 7.4.1

After these preliminary results on LCPs, the proof of the main result on linear passive
complementarity systems is in order. The proof will be based on showing that the
requirements of theorem 7.3.4 are fulfilled this class of linear complementarity systems.

Lemma 7.6.15 Consider LCS(A, B, C, D) such that assumption 7.2.9 holds and the
quadruple (A, B, C, D) is passive. Then LCP(hC (I —hA)~*x, G(h™1)) has a unique
solution for each x € R" and all sufficiently small h (independent of x ). (Il

Proof. Lemma 7.6.11 item 4 together with [47, theorem 3.1.6] implies unique solv-
ability for eachx and all sufficiently smalk.
a

Lemma 7.6.16 Consider LCS(A, B, C, D) such that assumption 7.2.9 holds and the
quadruple (A, B, C, D) is passive. Lett > 0 and @ = SOL(0, D), i.e.

Q={zeR"|z>0,Dz>0andz Dz =0},

be given. Also let ({ul'}, {x}'}, {y'}) be produced by algorithm 7.3.1. The following
statements hold for all sufficiently small h.

1. Cx! e @* forallk # —1.

2. There exists « > 0 independent of xo such that ||u£’ || < allxo|l forallk # 0.
a

Proof.

1: Itis evident from (7.4b) and (7.4c) tha} solves LCP(X/, D) whenk # —1.
Since D is nonnegative definite (lemma 7.6.11 item 1), we have(thét € Q* due
to [47, cor. 3.8.10].

2: All inequalities involving s are meant to hold for all sufficiently small,
and a1, az, ..., as are suitably chosen positive constants in this proof. Note that
LCP(CXZ, D) is solvable for alk # —1 due to item 1 and [47, corollary 3.8.10]. Let
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u* be the least-norm solution of LCE’((’,j, D). Clearly,u* solves also LCF((X,’Z —
hC(I —hA)~1Bu*, G(h~1)). According to proposition 7.6.10, we have

3/2

<—— |ICd —hA) X — X! + hc (T — hA) T Bu*|,
1(G(h=1)) ¢ k

h
[

since |, solves LCPC(I — hA)~x}, G(h™1)) andG (1) > 0 for all sufficiently
smallk. By using the triangle inequality and lemma 7.6.11 item 4, we obtain

o1 _ _
luty, — u*|l < 1L = na) Lo x4 aglC — hA) T Bu*.

Note that(/ —hA)™1—1 = hA(I —hA)~ L Itcanbe easily verified that lemma 7.6.2
item 2 and lemma 7.6.14 item 3 result in

Iy — ¥l < c2llX] . (7.33)
Consequently, we get
Ity all < I+ gy — w* ] < esllX] | (7.34)

by applying the triangle inequality and employing lemma 7.6.14 item 3 and (7.33). It
follows that
X all < I+ DX g — X2
< X+ 10— hA) ™ = 1XE + h(I — hA)TIBU || (from (7.4a))
< (L +ash)|X¢|l.  (from lemma 7.6.2 item 2) (7.35)

Since lim,_o(1 + agh)Vr = ¢*47 (lemma 7.6.2 item 3), (7.35) implies now that
X1 < asliX" 4] = as|lxoll (7.36)

for someas > 0. Finally, (7.34) and (7.36) establish the desired inequality. O

After all these preliminaries, we can prove the theorem 7.4.1.
Proof of theorem 7.4.1According to lemma 7.6.15, assumption 7.3.2 holds. Then,
proposition 7.6.3 item 1 implies that RCB( A, B, C, D) has a unique solution, say
(u(s), y(s)). Itis known from theorem 5.3.4 thé{(s) is proper. Therefore, bounded-
ness 0f||hug|| for all sufficiently smalli follows from proposition 7.6.3 item 2. On
the other handD is nonnegative definite due to item 1 of lemma 7.6.11 and

T
gl = ( /O lul'ye ) dDYY? < at¥/2|x0] (7.37)

due to (7.5) and lemma 7.6.16 item 2. Finally, it is known from theorem 7.2.10 that
(u, x, y) is the unique solution of0, t] with initial statexg. As a consequence of
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theorem 7.3.4 item 33c, for any sequerigg}, which converges zerd(u’«, y+)}
converges weakly tdgu, y) and {x*} converges tor. In other words,{(u", y")}
converges weakly tq:, y) and{x"} converges ta ash tends zero. O

7.6.9 Proof of theorem 7.4.2

In this subsection, the continuous dependence of the solution trajectories on the initial
states will be proven as formulated in theorem 7.4.2.

Proof of theorem 7.4.2Let the sequencgr,}C R” converge tor € R”. Denote the
solution of LCSA, B, C, D) on [0, t] with the initial states;, andx by (u¥, x¥, y%)
and(u, x, y), respectively. Then, it should be shown that

1. {(uF x{‘mp,yfmp)} convergesu

imp’ imp’ximp’yimp)’

2. {(u} 4. ¥¥,o)} cOnVerges weakly tou,,,. y,,,) and{xf,,} converges (strongly)
10 Xpeg.
I:Let@®  xk 3Ky = ks, xks, yks). Also letuX (k) andu, (i) be the solutions
imp’® “imp’ Jimp 0% 0% 0 0 0

of the one-step problems LCP(I —hA)~tx;, hC(I —hA)~1B+ D) and LCPC (I —
hA)~x,hC(I — hA)~1B + D), respectively. From proposition 7.6.10 and lemma
7.6.11 item 4, we get

o - -
luf(h) — ug(h)| < e - RA) 7 1% — %

for sufficiently smallz. By multiplying the inequality above by and using lemma
7.6.2 item 2, we obtain

ey (h) — hug(h)| < o' Ik — | (7.38)

for sufficiently smallk. On the other hand, it is already known from the proof of
theorem 7.3.4 item 2 that ligm. o huf(h) = uf and limy,_.o hug(h) = uy. Thus, (7.38)
yields

lug — uoll < o' % — %I (7.39)
Clearly, {uf} converges ta, and thus{ufmp} converges ta,,, . Sincex{‘mp =0 and
Yip = Dul,, itfollows that{(uj, . xf, .5, )} CONVerges tdu,,, . X, Yim,)-

2: Observe thatuy ., xF . ¥ree) ANA@WU, 400 X 000 V,eq) @Te the unique solutions of
LCS(A, B, C, D) on[0, t] with the initial states;;, + Bu’{) andx + Bug, respectively.
Moreover,{ix; + Bu’é} converges ta + Bug as shown in the proof of item 1 above.
Lemma 7.6.16 item 2 together with (7.37) implies that for sggne 0 independent

of X + Bub, lluf,, || < Bllxx + Bub|l for all k. This implies that the sequen¢e

reg eg}
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is bounded, since the sequerigg + BuX} is convergent. Hence, there exists at least
one weakly convergent subsequencezgg} according to lemma 7.6.1 item 3a. Take

any such subsequence{q)feg}, say{uf’eg}. Define
* T =1T,B,c0:
« S=D,
« qi = Ce (X + Buf), and
e T =T.
It can be checked that
e T is compact ( [170, exercise 4.15]),
S is nonnegative definite (by lemmma 7.6.11 item 1),

 {g;} converges ttﬁ?eA‘()'c+Buo)|[o,T] (this follows from||q; — Ce? (X 4+ Bug) || <
ICe™ |l N5k — 1)

* OCP(q;, S+ T) is solvable (from proposition 7.6.5 item 1), and

k k
* {Tlurleg - T”r[eg} =0.

As a consequence, the sequerﬁaéeg} converges weakly to the solutian.., of
OCP(Cet (X + Buo)lio,«1- T(a,8,c,p)) according to theorem 7.6.9. Singeeg is

unigue due to proposition 7.6.5 item 2 and theorem 7.2.10, the reasoning above states
that any weakly converging subsequence{:dfgg} has the same limit. Lemma 7.6.1

item 2 implies now that the whole sequer{méeg} converges weakly ta,,,. Note

that proposition 7.6.5 item 2 and uniqueness of the solutions of ACB, C, D) yield

that

xfeg = eA'()_ck + Bulé)|[0,r] + T(A,B,I,O)u]r(eg (7.40a)
Yreog = Cxfog + Ditly, (7.40b)
and
Xog = eA'()f + Buo)ljo,1 + T(A,B,I,O)Mrgg (7.40c¢)
Vreg = CXpeg + Dit g (7.40d)

Then, convergence df*  } to x.,, and weak convergence ¢f* _} to Yreg fOllow

reg reg reg

from (7.40), convergence &¢f; + Bu’(‘)} to x + Bug and compactness @, z,7,0). O
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7.7 Appendix: LCS with low leading row coefficients

In this appendix, we study the consistency of the backward Euler time-stepping scheme
for linear complementarity systems given by

X(t) = Ax(t) + Bu(t) (7.41a)
y(t) = Cx(t) + Du(r) (7.41b)
O<u(t) Ly@®)=0 (7.41¢c)

satisfying certain additional conditions. To formulate these conditions, we recall some
results from Chapter 3.

Definition 7.7.1 Let (A, B, C, D) be a system with Markov parametels , i =
0,1,2,... defined byH® = D andH' = CA"'B fori = 1,2,.... The lead-
ing row coefficientsos, ... , p, Of (A, B, C, D) are defined foy € m as

pj :=inf{i € N| Hj, # 0}

with the convention inf) = oco. In case the leading row coefficients are all finite, we
define theleading row coefficient matrix M(A, B, C, D) as

Hi
M(A,B,C, D) = ; . (7.42)
HEY
We omit the argument&A, B, C, D), if they are clear from the context. ]

The convergence results in this appendix will be obtained under the following
assumption.

Assumption 7.7.2 The leading row coefficients afd, B, C, D) satisfy p; € {0, 1}
forall j € m, the leading row coefficient matrix is a P-matrix, and is nonnegative
definite. |

We would like to use Theorem 7.3.4 to prove the following result.

Theorem 7.7.3 Consider the linear complementarity system (7.41) and assume that
Assumption 7.7.2 holds. Let t > 0 and xo € R" be given. There exists a sequence
{hi} of time steps such that the associated approximations (u'tk | xhi yhk) (see (7.5))
generated by the backward Euler time-stepping scheme satisfy the following.

. (uf’gg, yfé‘g) converges weakly in £'2”+m (0, 7) to (reg, Yreg)-

h .
. x,é‘g converges in £5(0, T)-sense 0 Xyeg.
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o The sequence {(uf’r’;p, xl.hrf’;p, yl.}"zp)} converges to (uimp, 0, Yimp), where the im-
pulsiv part (Wimp, Yimp) 1S equal to (uod, yod) for some ug, yo € R™.

e The triple (u, x, y) is a solution of LCS(A, B, C, D) on (0, t) with the initial
state xg in the sense of Definition 7.2.5.

Moreover, if the solution (u, x, y) is unique in the sense of Definition 7.2.5, then the
above three statements hold for any arbitrary sequence of time steps going to zero. []

Unigueness of the solutions in the sense of Definition 7.2.5 can for instance be
proven for projected dynamical systems for which the underlying dynamics is linear
and the constraint setis a convex polyhedron (under the full rank condition of Chapter 6)
by using the argument as in [147, p.33] and exploiting the full rank condition.

7.7.1 Preliminaries

The following results from [47] will be used in the sequel.

Theorem 7.7.4 Let M € R¥** pe a P-matrix. For any two vectors g and g’ in R¥,

Iz =2 oo < (M) YIg = ¢'lloos

where z and 7’ denote the unique solutions to the LCPs (g, M) and (q’, M), respectively.
The constant c(M) is defined as

c(M) := min 1{m3£XZi(Mz)i}.
rem

llzlloo=

Proof. See [47, Thm. 7.3.10(a)]. |

A lower bound orc(M) is provided by excercise 5.11.19 in [47].

Theorem 7.7.5 Let M € R™*™ be a P-matrix. Define §(M) := min{fo(M;;) | I C
m}, where o (M) denotes the smallest of the real eigenvalues (if any exists) of M.
Moreover, §(M) := maX«; [|M;;|l. Then, the following inequality is true:

1)

M)y > — >
(M) -
@+ 5an) "

Proof. Excercise 5.11.19 in [47]. O
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7.7.2 Proof of the main result

As seen before in this chapter, the resulting LCP that must be solved every time step is
given by

1
¥ = CW = AR~ +[C(4 = A)7'B + Dlufy (7.43a)
0=yl Llul,y >0 (7.43b)

After computing the solution to this LCP, the state on the next time step can be
calculated from

- 1 _
xh= - AT + (GL—4) 'Bul (7.44)

and a new LCP can be solved again:£ i + 1). The step size is taken constant.
To approximate a solution trajectory on the inter¢@lt) for initial statexg, we set
xﬁl := xo and follow the procedure as described above (see algorithm 7.3.1).
We start by proving that the one-step problem is solvable and the solutions are
uniformly bounded.

Theorem 7.7.6 Suppose that (A, B, C, D) satisfies Assumption 7.7.2. Then the fol-
lowing statements hold.

1. LCP(q, C(%l — A)"1B + D)) has a unique solution for all ¢ € R™ and all
sufficiently small h > O.

2. Foralli > 1 it holds thatCK.xih >0withK :={jem]|p; =1}

3. Let a fixed T > 0 be given, then there exists an o« > O such that ||uf7 I < allxoll
foralli =1, ..., [} and all sufficiently small h.

4. Letxg be given. For all sufficiently small h, it holds that ||hug | < for some «.
O

Remark 7.7.7 Note that fori = 0 CK.xih > 0 does not necessarily hold. As a
consequence (see the proof of the theorem), the bound given in statement 3 does not
hold fori = 0. According to Chapter 3, the conditidik,xo > O is equivalent to

xo being aregular state, i.e. a state from which no re-initialization is required before
smooth continuation is possible. |

Proof. Statementl will be proven during the proof of statemefit Statement
follows from the observation thatg.x/", ; = (y",, )k = 0, becaus®, = 0.
Without loss of generality we may assume that:= {i e m | p;, = 1} =

{{l+1,...,m}forsomed e m (otherwise re-arrange the complementarity pairs). Note

that this implies that
DK".
M= .
< (CB)ke >
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Moreover,G (k1) can be factorized as

—1, 4 0 Dgce + (CB)gceh + ... . _1
G )_< 0 ni > < (CB)ke+ (CAB)koh + ... )—‘ AV (=) (7.45)

with im0 V(A1) = M.
By premultiplying (7.43a) by ~1(k) and observing thaﬁfH > 0 if and only if
A=)yl | > 0, itfollows thatu” , is a solution to (7.43) ifand only ifit is a solution

i+1
to
=AY CUW - AN + v Yl (7.46a)
0=<jfyluliy =0, (7.46b)

wherej3! ; is defined as\~1(h)y/", ;. Note that for sufficiently smalk, V(1) is

a P-matrix and consequently, this one-step problem has a unique solution (thereby
proving statement). To arrive at the boundednessuj‘f independently of, we will

utilize Thm. 7.7.4 and 7.7.5 for (h1). Since lim, 0 V(h~1) = M, it follows that&

as in Theorem 7.7.5 satisfiesV (h 1)) < aq for all & sufficiently small. Moreover,
limy 0 V(h~1) = M implies that the quantity(V (- 1)) as in Theorem 7.7.5 satisfies
Iimth(V(h‘l)) = §(M), because the eigenvalues of a (sub)matrix depend continu-
ously on the entries of the matrix. Hence, there exists ans0< § (M) such that for
sufficiently smallk, it holds that

0<ap:=8(M) —e<8(V(Hh1) <8(M)+e. (7.47)

Theorem 7.7.5 implies now that

) o
s(V(h 1) = a1

( s(V(h*)))z“”’” (1 0y
(V™ <

=: 2.
This upperbound far(V (h~1))~! and Theorem 7.7.4 yield now that for any vector
g in Rk,

lul, 1 — zlloo < a2l A" R)C UL — ARk — gllcc, (7.48)

P~

wherez denotes the unique solution of the LGPV (h~1)). The idea is to find g
such that = 0 and a suitable bound i}, , is obtained. Note that

(7.49)

ATY (I — ARy ) = ( Cieo(d — AR) il ) |

h=1Cke(4 — AR)~1x]

If we take (see statement 2 of the theorem)

0
= < h_lC[(.xih > >0,
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it is obvious that the unique solution to LGP V (k1)) is equal taz = 0. According
to (7.49), there exists ars > 0 such that

Ckeo(d — AR)71
CreA + CroA?l + ..

P~

IATH ) CU — AR X! — glles = | ( )xﬁnoo < a3llx oo

for all sufficiently smallz. Equation (7.48) implies now that for sufficiently small

h h
||ui+1||oo < o203 [1%;' | o0- (7.50)

=04

To complete the proof, we have to bou|nd1 |foralli =1,2,...,[71. Byapplying
the triangle inequality and using (7.50), we obtain

h h h h
||x,'+1||oo < xi' oo + ||x,'+1 — X o <

5 oo + 102 — RA) ™Y = Q1x! + AL — hA) T Bul 1 lloe < A+ ash)||x! o
(7.51)

for somews > 0 and all sufficiently smalt. Since lim,_,o(14ash)i! = e*57, (7.51)
implies that

x| < asllxoll (7.52)

for somexg > 0 and all sufficiently smah. The proofis now completed by combining
(7.50) and (7.52).

Statementtis proven as follows. Denote the unique solution (observeiiia) :=
C(ocd — A)~1B + D is a P-matrix for sufficiently large € R) of the rational com-
plementarity problem RCRC (sd — A) " 1xg, C(sd — A)"1B + D)) by (u(s), y(s)).

It can be seen from the results in the beginning of Section 3.5.2utkatmust be
proper. Indeed, sincé:(s), y(s)) is a solution to an RCP, there exists an index set
I C k such thatu;c(s) = 0 andu;(s) = —G;Il(s)CI.(sl — A)~1xo. By replacing

h by s~1 in the decomposition of (7.45) and using the diagonalith@f), we obtain
thatG;;(s) = A][(S_l)V”(S) with limg_, oo Vyi(s) = Myr. Invertibility of My,
follows from the fact that its determinant is equal to a principal minor of the P-matrix
M. This means that the rational mati; (s) has a proper inverse. Since the inverse
of A(s~1) has at most a polynomial part of degree one, the expressiary foy and

the strict properness @, (sd — A)~Lx yield thatu(s) is proper.

Since the unique solutiouy, y4) to LCP(h—1C(h=14 — A)~Ixo, C(h714 —
A)~1B + D) coincides with(h—1u(h=1), h=1y(h~1)) for sufficiently smallz and
u(s) is proper, the result follows. O

The proof of the main result 7.7.3 in this appendix follows now by combining
theorem 7.3.4 and the theorem we have just proven.
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8

Concluding remarks

8.1 Summary of contributions 8.2 Open problems and ideas for
further research

8.1 Summary of contributions

The contributions in this thesis are oriented towards the fundamental issues for a class
of discontinuous dynamical systems. Questions related to the solution concept, well-
posedness and reliable numerical schemes are, of course, ofindependentinterest. How-
ever, such arigorous foundation is also indispensable for the analysis of the dynamical
behavior (stability, controllability, observability, etc.) and controller synthesis. The
results presented here can be looked upon as the basis needed for developing systematic
controller design methodologies.

8.1.1 Linear complementarity systems

Specific forms of complementarity systems have been used for a long time in par-
ticular applications such as mechanical systems with inelastic unilateral constraints
and electrical networks with ideal diodes; see for instance the work of Lotstedt [124].
The idea of coupling complementarity conditions tgeaeral input/output dynamical
system was first put forward by Van der Schaft and Schumacher [177]. It was noted
in this paper that to formulate complete dynamics for complementarity systems one
needs to specify mode selection rules and jump rules, and on both topics proposals
were formulated. The mode selection rule proposed in [177] is fairly simple (it is
not based on the solution of a complementarity problem), and in the case of several
pairs of complementary variables it leads to results that are not always satisfactory. In
particular, the mode selection rule is not consistent with physical laws for mechanical
systems with impacts. An alternative mode selection rule was proposed in [179] for
nonlinear dynamics in the case of smooth continuations only. However, the rule was
not complete as it did not solve the mode selection problem when impulsive motions
are required. Under the assumption of linear dynamics, the rule proposed in [179] was
extended to general (not necessarily smooth) continuations in Chapter 3 of this thesis.



200 Concluding remarks

In this way, a new class of dynamical systems calledar complementarity systems
has been introduced based on the equations

x(t) = Ax(t)+ Bu() (8.1a)
y(@) = Cx(t)+ Du(t) (8.1b)
O<y@) L u@ =>0. (8.1c)

The definition of this class of dynamical systems and the study of its properties con-
stitute the main contributions of this thesis.

(Linear) complementarity systems have interesting connections to existing research
areas. Firstly, linear complementarity systems can be seen as dynamical extensions of
the linear complementarity problem and form as such a bridge between linear system
theory and mathematical programming. Secondly, the combination of inequalities and
differential equations causes the system description to be of hybrid nature as it contains
both continuous and discrete dynamics. As a consequence, (linear) complementarity
systems form a subclass of hybrid dynamical systems. Thirdly, the equations (8.1a)-
(8.1b) form a standard state space description in input/state/output form. Hence, adding
the complementarity relations means ‘closing the loop’ of a linear control system by
a discontinuous feedback. From this point of view, linear complementarity systems
are related to control theory. Finally, it has been shown that unilaterally constrained
mechanical systems, projected dynamical systems, optimal control problems with in-
equality constraints, electrical networks with diodes and piecewise linear systems allow
a description in terms of the complementarity formalism. Although the complementar-
ity systems seem of a rather specific form at first sight, it turns out that it is a nontrivial
class of dynamical systems with many interesting fields of application.

The links to these existing research fields motivate the study of (linear) complemen-
tarity systems in the sense that the obtained results have a broad range of applications
and may also yield ideas that are extendable to more general classes of hybrid dynamical
systems.

8.1.2 Solution concept

The specification of the dynamics of a linear complementarity system in this thesis
is based on the notion of ainitial solution, which itself uses the impulsive-smooth
distributional theory that has been developed in [83]. To support the contention that
the solution concept that we obtain in this way is physically relevant, we show that
the concept agrees with Moreau’s formulation in case of unilaterally constrained linear
mechanical systems with inelastic impacts. Moreover, the results on electrical net-
works with ideal diodes (Chapter 5) indicate that the solution concept complies with
applications in circuit theory as well.
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8.1.3 Well-posedness

The largest part of this thesis is concerned with the problem of existence and uniqueness
of solutions. Three phenomena have been described that could obstruct the global
existence (i.e. on the intervfd, oo)) of solutions. A first problem could be that no
initial solution exists from a given initial state (“deadlock”). This means that neither

a smooth continuation nor a re-initialization is possible. In case deadlock can be
excluded and uniqueness of initial solutions is true (for arbitrary initial state), the
system might be callethitially well-posed. An initially well-posed system does not
necessarily have solutions (starting from a given initial state) on an interval of the form
[0, &) for somee > 0. The reason is the possible occurrence of a sequence of only re-
initializations taking place at one time instant without convergence of the corresponding
event states. Indeed, in this case it is not possible to define a smooth continuation after
the (infinitely many) jumps. Aocallywell-posed system does not display such behavior

by definition and guarantees consequently the existence and uniqueness of solutions
on a time interval with positive length. Finally, a finite (right-)accumulation point of
event times may prevent a locally well-posed system from belobnlly well-posed,

when the left limit of the state variable does not exist at the accumulation point. In this
case the solution cannot be defined beyond the accumulation point. The investigation
of all these phenomena in the context of linear complementarity systems has resulted
in the contributions summarized below.

Lotstedt [124] showed existence and uniquenessnafoth continuations for a
class of mechanical complementarity systems. Necessary and sufficient conditions for
local well-posedness of linear complementarity systems with one pair of complemen-
tary variables (“bimodal systems”) were provided by Van der Schaft and Schumacher
in [177]. The same authors gave in [179] a sufficient condition for existence and
uniqueness ofmooth continuations in real-analytic nonlinear complementarity sys-
tems. The results in this thesis pertain to linear complementarity systems so that all
initial conditions may be considered, including the ones that give rise to impulsive
solutions. A sufficient condition for local well-posedness of systems in this class has
been given. The condition is more general than the one obtained in [179] since there
is no assumption of “uniform relative degree”. Instead, it is required that the lead-
ing row and column coefficient matrices have positive principal minors. From the
proof of this result, we obtained two interesting byproducts. Firstly, the set of regular
states (states from which smooth continuation is possible without re-initialization) has
explicitly been characterized. Secondly, it has been shown that after, at most, one
re-initialization, smooth continuation is possible. In terms of multiplicities, this means
that every event time has, at most, multiplicity one. These results immediately apply
to linear mechanical systems subject to independent unilateral constraints. In addition,
we proved for bimodal systems and linear complementarity systems whose leading
row coefficients are either zero or one that global existence of solutions is guaranteed
under the ‘local well-posedness conditions.’

The conditions for local well-posedness are sufficient and the question arises,
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whether they are necessary as well. We studied this problem for bimodal systems
and Theorem 3.6.10 states thguivalence between “local well-posedness,” “global
well-posedness” and the leading Markov parameter being positive (in this case equiv-
alent to the condition of the leading row and column coefficient matrices having only
positive principal minors). The investigation of well-posedness has been continued
by the study of theational complementarity problem (RCP), which resulted in nec-
essary and sufficient conditions for initial well-posedness. To be specific, we proved
that the existence and uniqueness of an initial solution (or equivalently, the existence
and uniqueness of an allowed re-initialization or a smooth continuation) is equivalent
to unique solvability of a family of linear complementarity problems (LCPs). The
strength of this connection is that dynamical properties of a linear complementarity
system are related to solvability characteristics of static problems for which an extensive
literature is already available. This strength has been demonstrated by showing initial
well-posedness for linear mechanical systems with (possibly dependent) inequality
constraints, linear relay systems and electrical networks with ideal diodes.

In Chapter 5, the results on existence and uniqueness of initial solutions have been
generalized to obtain global existence of solutions and much stronger statements on
unigueness for linear passive electrical networks with ideal diodes. The passivity of the
underlying state space description has turned out to be an elegant assumption, which
results in detailed information on the nature of the solutions. In addition to proving
global existence of solutions, we have shown that derivatives of Dirac impulses do
not occur in the solution trajectories, that Dirac impulses and discontinuities in the
state variable occur only at the initial time= 0, and that the set of event times is
right-isolated. The interpretation of the latter result is that for all time instants there
exists a positive length time interval in which the diodes do not change from conducting
to blocking or vice versa. Note that this excludes the existence of left-accumulation
points in the set of event times. Furthermore, we have explicitly characterized the set
of regular states in terms of the dual cone of the solution set to the homogeneous LCP
associated with the ‘feedthrough term:

From a more general point of view, the results on existence and unigueness of
solutions, presented in the thesis, contribute to fill a gap present in hybrid systems
theory in which studies of well-posedness are rare.

8.1.4 Time-stepping methods

In addition to the contributions to the event driven methods by the results on mode selec-
tion (RCP, LCP and LDCP) and re-initialization, the main emphasis — from a numerical
point of view — has been to provide a rigorous mathematical basis for time-stepping.
In particular, we concentrated on the time-stepping method based on the well-known
backward Euler integration formula. In practice, this method has already proven to be
useful for the transient simulation of piecewise linear electrical circuits [20,120, 121]
and constrained mechanical systems [125, 140, 155, 192, 194]. The advantages of
the method for linear complementarity systems are that it is straightforward to im-
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plement, and that many algorithms (provided by Lemke [47], Katzenelson [109] and
others [121]) are available to explicitly solve the one-step problems consisting of linear
complementarity problems. However, as illustrated by an example in Chapter 7, one
should not indiscriminately apply time-stepping methods to approximate solutions of
arbitrary linear complementarity systems. Also the hybrid nature of the dynamics and
the fact that the event times are not traced exactly cause the consistency of the method
to be uncertain. As a consequence, it is essential to identify classes of linear comple-
mentarity systems for which consistency of the numerical scheme can be shown. In his
work on the existence of solutions to nonlinear mechanical complementarity systems,
Stewart [192, 193] has shown the convergence of time-stepping approximations for a
suitably chosen sequence of time steps. A similar result has been proven in this thesis
for linear complementarity systems with leading row coefficient matrices being either
zero or one under the condition that the leading row coefficient matrix has only positive
principal minors and the ‘feedthrough terf’is nonnegative definite. A stronger re-

sult has been proven for linear passive complementarity systems (linear passive circuits
with ideal diodes). The main contribution states that for any arbitrary sequence (and
not only one special sequence) of time steps, which tends to zero, the corresponding
approximations converge to the true transient solution of the network model. The same
result holds for the simulation of a class of projected dynamical systems of which the
defining vector field is linear.

8.1.5 Applications and generalizations

In Chapter 2 an overview of several applications of complementarity systems has been
given. In spite of the special form of the complementarity conditions, many interesting
classes of dynamical systems can be described by the complementarity formalism.
This opens many possibilities to transfer and extend results from one subdomain of
complementarity systems to another or even to the whole class.

In Chapter 6 projected dynamical systems, which are used for studying e.g. econom-
ical markets, transportation networks and international trade, have also been rewritten
as complementarity systems. As an interesting bonus, we have obtained a new, and,
in our opinion, more direct proof of the global existence of solutions for thes&n-
ear complementarity systems. Obviously, it is very useful to identify many classes of
dynamical systems that allow a complementarity reformulation. The reason is that the
available literature on these systems may serve as a potential source of knowledge to
obtain analysis and design tools for complementarity systems.

8.2 Open problems and ideas for further research
The objective of the final section of the thesis is to indicate open problems, which

should receive further attention in the future. Suggestions for possible starting points
are also presented.



204 Concluding remarks

8.2.1 Nonlinear complementarity systems

This thesis is mainly concerned witinear complementarity systems. Only Chapter
6 deals with projected dynamical systems, which result in gradient-type complemen-
tarity systems for which the underlying state space description is in general nonlinear.
Although this seems to be the only exception, the results of Chapter 3 allow a direct
generalization to smooth continuations f@mnlinear complementarity systems thereby
extending Theorem 3.2 in [179]. We can formulate the following assertion.

Consider the complementarity system

x(@) = fx@)+gx@)u) (8.2a)
y@) = hx@®)) (8.2b)
with complementarity conditions anandy. Here, f is a mapping fronR” to R”, g

from R” to R"** andh from R” to R¥, which are sufficiently smooth.
For xg € R" we define the-th leading row coefficienp; (xg) as

pi(x0) = inf{j € N\ (0} | LgL) "hi(xo) # 0} (8:3)
and the index sel (xg) as
Jo) == {j € k| (hj(x0).... . LY h;(x0)) = O}, (8.4)

whereL denotes the “Lie-derivative” (see e.g. [151]).

Theorem 8.2.1 Consider the complementarity system (8.2) with f, g and h real-
analytic. Consider xog € R" such that the matrix

i -1
(Lo, L5 i (x0)1,jes o) (8.5)

has only positive principal minors. There exists an ¢ > 0 such that a unique real-
analytic solution exists on [0, ) if and only if (h; (xg), . . . , L?f @)=y (vo)) is lexico-

graphically nonnegative for all i € k. (]

This theorem generalizes [179, Thm.3.2] in the sense that a uniform relative degree
(i.e. p1(xp) = p2(x0) = ... = pr(xp)) is not required and the theorem has a ‘local’
character, because only a submatrix of the ‘leading row coefficient matrix’ needs to
have positive principal minors.

However, the above result (like [179, Thm.3.2]) only deals witlvoth continu-
ations and this immediately touches upon one of the most essential problems in the
nonlinear context. The absence of a general formulation of the re-initialization rules
(impulsive motions) is a major open issue for deriving the complete dynamics. Cur-
rently, there is little known about a nonlinear equivalent for the jump spacehich
should describe the “projection directions” of the re-initializations (see Chapter 3) for
nonlinear mode dynamics of the forfi(x, x) = 0. This problem needs to be solved
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before a suitable solution concept can be introduced. The interested reader is referred
to [182] for an exposition on this problem. Of course, the study of well-posedness has
to be reconsidered, although it may benefit from the ideas proposed in the thesis. The
problem will naturally be more complex. One reason is the absence of a tool similar
to the rational complementarity problem, which has played a crucial role in much of
the well-posedness results obtained here.

8.2.2 Elastic impact rule

A key motivation for the physical relevance of the solution concept presented in Chapter
3 is the relation to the inelastic impact rule as proposed by Moreau [144] (see also
[31, 139]) for unilaterally constrained mechanical systems. The projection operator
Py, i.e. the projection onto the consistent subspégalong the jump spacé; of
mode/, corresponds to inelastic collisions. As noted in the main text, if mode
selected from initial stateg (i.e. I € $(xo)), xo is decomposed ag = v + ¢ with
v € Vy andr € T;. The re-initialized state is then equal Bpxp = v. A question
that arises is whether the “(partial) mirroring ¥ along7;” defined by the operator
Q9xo = v — et corresponds physically to the elastic impact case, wheted< 1
denotes the restitution coefficient (as in Newton'’s restitution law). In particular, is the
re-initialization for thecompletely elastic impact case governed by the opera@}
(e =17

One could even go one step further and consider the possibility to specify the
restitution coefficients for every contact separately. To be specific, consider the linear
complementarity system

. 0 1 0
X = ( —MﬁlK —MﬁlD ) X + ( MﬁlET ) u (86&)
A B
y = (E O)x (8.6b)
——
C
O<y 1 u=>0 (8.6¢)

corresponding to the mechanical system
Mg(t) + Dq(t) + Kq(t) = 0 subjecttoEg(r) > 0

as described in Chapter 3. Suppose that the restitution coeffigieassociated to

the constrainE;q () > 0. For the inelastic impact case, the re-initialization is given

by x(0+) = xo + BuO, if the impulsive paru;,,;, of the initial solution(u, x, y) for

initial statexg is equal tau%s. Sinceu? is the multiplier associated with the constraint
Eieq(t) > 0, 0ne may wonder if the re-initialization definedy#+ Zie,;(1+ei)B.iu?

makes sense in this context. Of course, in this new setting the questions of well-
posedness have to be reconsidered, although it can be easily established that the ‘initial
well-posedness’ results remain valid with this modified jump rule.



206 Concluding remarks

8.2.3 Global existence

The results in Chapters 3 and 4 describe mainly initial and local well-posedness results.
Only in case of bimodal system, linear complementarity systems with low leading
row coefficients, passive linear complementarity systems, linear relay systems (see
[94,123]) and projected dynamical systems, we have obtained global well-posedness
results. Hence, a major part of the class of (linear) complementarity systems (being
locally well-posed) is still not covered.

As mentioned before, the problem of extending local existence of solutions to global
existence for linear complementarity systems is caused by accumulations of event
times (Zeno trajectories): the durations of the smooth continuations in the successive
continuous phases get smaller and smaller such that the event times accumulate and
converge to a finite limit. If the state trajectory does not converge, continuation is not
possible beyond the limit of the event times (using the solution concept proposed here).
The proofs of the global existence results are all based on showing that the limit of the
event states does exist in these circumstances. For nonlinear complementarity systems
an extra phenomenon that may obstruct global existence is the occurrence of ‘finite
escape times’ within the continuous phases.

An alternative method to prove global existence is the use of approximations
(e.g. time-stepping or smoothing methods) for the system’s equations. The line of
reasoning to obtain global existence generally consists of proving that the approximat-
ing systems are solvable on an arbitrary time interval, that the solutions converge and
that the limit is a solution to the original system. Such arguments have been used by
Stewart [192, 193] to prove global existence of solutions to unilaterally constrained
mechanical systems. Also in this thesis, similar arguments yield an alternative proof
for global well-posedness for the class of linear passive complementarity systems. In-
deed, the main result on consistency of the backward Euler time-stepping method in
Chapter 7 shows global existence as a byproduct and could replace the (more direct)
reasoning of Chapter 5.

8.2.4 Lr-uniqueness

The uniqueness results obtained in the Chapters 3 and 4 state uniqueness in the sense of
the solution concept of Chapter 3. This solution concept is posed in a ‘forward sense’
implying that solutions with left-accumulations of event times as in Example 1.4.4 are
not allowed. This means for Example 1.4.4, that there is only one ‘forward’ solution
starting from the origin. However, adopting aip-solution concept as in Theorem
5.4.17 results in multiple solutions starting from the origin and consequetighy,
uniqueness does not hold. Hence, one should distinguish clearly between the possible
concepts of uniqueness.

It is natural to consider time to be asymmetric for hybrid systems. However,
a disadvantage of a system with solutions being only ‘unique in a forward sense’
(and not inL2-sense) is that we can only prove the convergencesabgequence of
the approximated time functions as obtained from the backward Euler time-stepping
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scheme. Convergence of the whole sequence does not follow as it was the case in
Chapter 7 for linear passive complementarity systems. This problem obstructs, for
instance, the proof of consistency —in the sense of showing convergencexobaryy
sequence of approximating functions — for the numerical scheme applied to linear
complementarity systems with low leading row coefficients-uniqueness was shown

for linear passive complementarity systems and projected dynamical systems, but how
to prove similar results for more general situations remains an open problem. Of
course, other notions of uniqueness (in different function spaces) may be of interest as
well.

8.2.5 Accumulation of event times

As seen in the previous two subsections, right-accumulations of event times may ob-
struct global existence of solutions, while left-accumulations may prevent that the
solution trajectories ar€,-unique. Itis useful and interesting to characterize the situ-
ations when the phenomenon of accumulation of event times occurs and when it does
not. In the simple case of a bimodal linear complementarity systemMvith 0 and

C B positive, the existence of accumulation of event times can be excluded by using a
result from [60] (see [94]). However, we are not aware of any results in other situations.

8.2.6 Moreau’s sweeping process

A widely studied dynamical system is the sweeping process of Moreau [31, 139, 140].
The sweeping process describes the motion of a particle in a moving set. The motion
of a closed convex set is given by the multi-valued functies C(r) with C(z) C R”".

The dynamics is described by the first-order differential inclusion [140]

dx

I © N (x(1)), (8.7)

whereNc¢ () (x(t)) denotes the (outward) normal cone®ft) in the pointx(r) (see
Chapter 6). The inclusion (8.7) describes that the particle is at rest when it is contained
in the interior ofC (¢) and is moving only (motion described bywhen it is caught-up
by the boundary of (z).

We conjecture that if the moving s€t¢) is given by a finite collection of inequal-
ities, i.e.

Cit)={zeR"|ci(z,t) >0foralli € k},
then there are close connections between the sweeping process and complementarity

systems under certain additional conditions. Intuitively, the proofs and additional as-
sumptions must resemble the ones given in Chapter 6 for projected dynamical systems.
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The complementarity system will (probably) look like

k

6 = Y [Veal, 0l u (8.8a)
i=1

yit) = ci(x,1) (8.8b)

with complementarity conditions ofu; (¢), y; (¢)). Here we usévc;(z, t) to denote
the gradient ot; (z, t) with respect ta;, which is considered to be a row vector.

The details of this problem still have to be filled in, but it is expected that the material
contained in Chapter 6 and [140] will be of great help. The consequences of such a
connection have to be studied and results from complementarity systems can possibly
be transferred to the sweeping process and vice versa. In particular, an alternative
proof for existence of solutions (similar to the one in Chapter 6) could possibly be
given for the sweeping process. Attention should also be paid to the relations between
the numerical methods for the sweeping process and complementarity systems.

8.2.7 Stability

As indicated in [18], the derivation of general (computationally tractable) methods for
the determination of stability is extremely complicated even for the most elementary
(discrete-time) hybrid systems (see (1.1) above). Also the paper [122] indicates many
open problems in the field of stability efvitched systems and does not suggest that

the problem of stability is solvable for a broad subclass of switched or hybrid systems.

It is well-known that the stability of all mode dynamics is not sufficient for the
stability of the switching system. Vice versa, the instability of all the modes does not
exclude the stability of the overall system. Hence, the stability problem cannot be
solved by studying properties of the continuous phases separately (except in certain
special cases). New methodologies are needed that incorporate both the switching
logic and the continuous dynamics to access the stability for hybrid systems.

Extensions of Lyapunov methods to switched or hybrid systems are the most pop-
ular. Researchers have tried to obtain conditions for various notions of stability by
using common Lyapunov functions [25, 148, 184, 185], multiple Lyapunov functions
[26,27,101,157], switching based on Lyapunov functions [134], piecewise quadratic
Lyapunov functions [106, 107], convex homogeneous Lyapunov functions [163], and
converse Lyapunov theorems [138]. Of course, the problem of explicitly constructing a
suitable Lyapunov function is often extremely difficult and easily verifiable conditions
are consequently not obtained in this way.

As (linear) complementarity systems have a clear additional structure, one might
be optimistic and believe that efficient methods exist to answer the questions of sta-
bility. The unilaterally constrained mechanical systems and linear passive comple-
mentarity systems can be proven to be stable by using a quadratic Lyapunov functions
(which is a common Lyapunov function for all linear mode dynamics and also the
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re-initializations). Interestingly, this Lyapunov function satisfies both standard con-
tinuous time as well as discrete time (for the projection operators describing the re-
initializations) Lyapunov inequalities. This suggests (as in [106,107]) that parts of the
question of stability of hybrid systems may be brought in the realm of the theory of lin-
ear matrix inequalities. However, the following example indicates that even for special
subclasses of linear complementarity systems, where impulsive motions are absent,
the problem of stability is far from trivial. The problem of determining whether there
exists a matrixt' such that the trajectories

X(t) = Ax(t) + B max(0, Fx(t)) (8.9)

of x are square integrable (and consequently, il x () = 0) cannot be answered by
standard methodologies [95]. This problem is inspired by the control of linear systems
with a positivity constraint on the attainable control values. Only the following rather
simple result has been proven so far.

Theorem 8.2.2 Suppose that (A, B) has scalar input and A has at most one pair of
unstable, complex conjugate eigenvalues. There exists an F such that (8.9) has only
L2-solution trajectories if and only if (A, B) is stabilizable (in the ordinary sense) and
A has no eigenvalues contained in R, := [0, 00). U

Although the assumptions of this theorem are rather restrictive, it appears to be very
helpful for the stabilization of surge in compressors [205]. The positivity constraint
in the compressor is due to the control valve that can only attain values between zero
(valve closed) and its maximal capacity (fully open).

Since the problem mentioned above falls within the category of stability problems
for linear complementarity systems, it indicates that the stability problems are, in
general, also difficult for this class. Of course, this renders the development of new
techniques that could (partially) answer stability issues for (specific subclasses) of
complementarity systems both interesting and challenging.

8.2.8 Controller synthesis

Control of hybrid systems is now widely recognized as a key area of research and
investigation, both at a fundamental and at an experimental level. As mentioned in the
introduction, systematic synthesis tools are currently not available for general hybrid
systems. Itwould therefore be a giant step forwards, if structured design methodologies
could be developed for the subclass of (linear) complementarity systems especially in
view of the possible applications mentioned in Chapter 2.

One possible method could be based on utilizing the results on time-stepping ob-
tained in this thesis and in [192,193]. For smooth systems it is common practice to
use sampled data control and to design a controller on the basis of a discretized ver-
sion of the system. This methodology can be extended to complementarity systems
(under certain conditions), because accurate discretized models can be obtained by
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time-stepping techniques as shown in this thesis. Since such a discretized model can
be rewritten in a discrete-time piecewise linear description (for which stabilization
and control problems have already been studied before [15, 190]), this opens several
possibilities to controller synthesis for complementarity systems. As a consequence,
it is worthwhile to identify other classes of complementarity systems for which the
backward Euler time-stepping method is consistent. Our conjecture is that for linear
complementarity systems containing derivatives of Dirac impulses in the solution tra-
jectories, the proposed numerical scheme does not generate proper output in general.
The reason is that a derivative of a Dirac impulse cannot be approximated by non-
negative (step) functions. The investigation of new time-stepping methods covering
more general cases is therefore an interesting open problem as well. Currently, the
consistency of the backward Euler time-stepping routine is being investigated for relay
systems.

Other approaches for control design could be categorized as “generalizing” and
“specializing” techniques. Generalizing techniques are related to the extension of
control methods developed for subclasses of complementarity systems. For instance,
the control methods developed for unilaterally constrained mechanical systems in [32]
may also be applicable to electrical networks or piecewise linear sysgmsalizing
methodologies aim at applying techniques and concepts used for general hybrid systems
to the class of complementarity systems.

Which methods will be successfulis not clear at this moment. However, itis obvious
that complementarity systems —as common meeting ground of several mature research
areas — have the potential to play a major role in developing systematic methods to
overcome analysis and synthesis problems in a wide range of applications. The work
in this thesis forms a step in this direction, as it solves various fundamental problems,
needed for setting up a general system and control theory for complementarity systems.
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Samenvatting

Door technologische ontwikkelingen is belangstelling ontstaan voor de analyse en syn-
these van systemen met zowel een discreet (digitaal) als een continu (analoog) karakter.
Deze zogenaamde “hybride systemen” ontstaan o.a. door tijd-continué processen te
koppelen aan tijd-asynchrone digitale regelsystemen. Veel gebruiksartikelen (auto’s,
magnetrons, wasmachines, enzovoorts) worden aangestuurd door digitale “embedded
software,” waardoor het gehele proces een systeem is met hybride dynamica. Ook fy-
sische systemen zijn vaak hybride van aard: de beschrijving van mechanische objecten
hangt sterk af van het actief zijn van bepaalde contacten, wrijvingsmodellen maken
duidelijk verschil tussen “slip” en “stick” fasen en elektrische schakelaars als diodes
kunnen zowel geleidend als blokkerend zijn.

De algemeenheid van de bovenstaande voorbeelden maakt duidelijk dat de studie
van hybride systemen vanuit een (te) generiek kader weinig specifieke uitspraken zal
opleveren over de individuele elementen in de modelklasse. Dientengevolge is het ver-
standig een deelklasse te bestuderen met een additionele structuur, die analyse en rege-
laarontwerp wel mogelijk maakt. De keuze dient echter zodanig gemaakt te worden dat
vele praktisch interessante systemen binnen de modelstructuur vallen. De klasse van
(lineaire) complementariteitssystemen voldoet aan de twee genoemde eigenschappen
en vormt dan ook het onderwerp van dit proefschrift. Complementariteitssystemen
bestaan uit differentiaalvergelijkingen, ongelijkheden en logische uitdrukkingen en
kunnen beschouwd worden als de dynamische generalisaties van het “Linear Comple-
mentarity Problem” (LCP) van de mathematische programmering.

Het bestuderen van complementariteitssystemen wordt in hoofdstuk 2 gemotiveerd
door een breed spectrum aan mogelijke applicaties: mechanische systemen met on-
gelijkheidsnevenvoorwaarden, Coulomb wrijving of eenzijdige veren; elektrische net-
werken met diodes; regelsystemen met saturatie-verschijnselen en dode zones; stuks-
gewijs lineaire systemen; “variable structure systems;” relay systemen; hydraulische
processen met kleppen, die stromingen slechts in één richting toelaten; verzamelin-
gen van vergelijkingen afkomstig van optimale besturingsproblemen met toestands-
beperkingen; enzovoort. In hoofdstuk 6 wordt tevens aangetoond, dat de klasse van
geprojecteerde dynamische systemen in het complementariteitsformalisme past.

De eerste essentiéle stappen voor het opzetten van een goed gefundeerde theo-
rie voor een klasse van (discontinué) dynamische systemen zijn het definiéren van
een fysisch relevant oplossingsconcept en de beantwoording van de klassieke vragen
betreffende existentie en uniciteit van oplossingen. Het introduceren van een op-
lossingsconcept voor complementariteitssystemen is een niet-triviale aangelegenheid
als gevolg van de sprongverschijnselen en de verschillende werkgebieden (ook wel
“configuraties” of “discrete toestanden” genoemd), die elk hun eigen karakteristieke
bewegingsvergelijkingen hebben. De definitie van de oplossingstrajecten is dan ook
gebaseerd op de combinatie van een distributioneel en een hybrid kader. De praktische



228 Samenvatting

waarde van het voorgestelde oplossingsconcept wordt aangetoond door te laten zien
dat de oplossingstrajecten aan algemeen geaccepteerde regels voldoen als gespeci-
ficeerd in de literatuur over o.a. mechanische systemen met botsingsverschijnselen en
schakelende elektrische netwerken.

Een belangrijke kwestie betreft de existentie en uniciteit van oplossingen gegeven
een beginconditie (zgn. goedgesteldheid). Het is verrassend te moeten constateren, dat
dit fundamentele probleem nauwelijks aandacht krijgt in de hybride systeemtheorie. In
dit proefschrift, zullen dan ook verifieerbare condities voor goedgesteldheid van line-
aire complementariteitssystemen afgeleid worden. Goedgesteldheid vormt een eerste
verificatie van het gebruikte model en is dus van onafhankelijk belang. Bovendien
geven zowel het oplossingsconcept als goedgesteldheid de noodzakelijke inzichten,
die belangrijk zijn om vragen over bestuurbaarheid, stabiliteit en regelaarontwerp te
beantwoorden.

In hoofdstuk 4 wordt aangetoond dat de existentie en uniciteit van “initiéle oplossin-
gen”van een lineair complementariteitssysteem (gegeven een beginconditie) equivalent
is aan de existentie en uniciteit van oplossingen van een familie van statische LCP’s.
Dit verband is gebaseerd op het gebruik van het “Rational Complementarity Problem,”
een generalisatie van het LCP voor rationale functies. De kracht van deze equivalentie
ligtin de uitgebreide literatuur beschikbaar voor LCP’s, die nu aangewend kan worden
om goedgesteldheidsresultaten voor lineaire complementariteitssystemen te verkrij-
gen. Ditwordt in het proefschrift geillustreerd aan de hand van mechanische systemen
onder ongelijkheidsnevenvoorwaarden, lineaire relay systemen en lineaire elektrische
netwerken met diodes.

Omdat existentie van initi€éle oplossingen een oneindig aantal re-initialisaties op
€én tijdstip niet uitsluit, kan locale existentie van oplossingen op een tijdsinterval
met positieve lengte niet gegarandeerd worden op grond van de bovengenoemde resul-
taten. In hoofdstuk 3 worden dan ook voldoende voorwaarden voor locale existentie en
uniciteit van oplossingen afgeleid in termen van de positiviteit van de hoofdminoren
van de rijgewijze- en kolomsgewijze kopcoéfficientenmatrices. Deze condities zijn
gebaseerd op het gebruik van een andere variant van het LCP, het zogenaamde “Linear
Dynamic Complementarity Problem.” Een interessant tussenresultaat karakteriseert
de toestanden waarvoor geen re-initialisatie vereist is voordat een gladde voortzetting
kan plaats vinden (zgn. reguliere toestanden). Voor lineaire complementariteitssyste-
men met één complementariteitspaar en dus twee discrete toestanden (zgn. bimodale
systemen), en lineaire complementariteitssystemen met leidende rij indices gelijk aan
nul of een zijn deze “initiéle” en “locale” resultaten uitgebreid tot “globale” existentie
van oplossingen.

In hoofdstuk 5 wordt aandacht besteed aan lineaire complementariteitssystemen
waarvoor de onderliggende toestandsmodellen passief zijn, waardoor de systemen
corresponderen met lineaire passieve elektrische netwerken met ideale diodes. De
passiviteitsconditie maakt het mogelijk specifieke eigenschappen van de oplossings-
trajecten te bewijzen. Verder wordt de set van reguliere toestanden expliciet beschreven
m.b.v. de duale kegel van de oplossingsruimte van een homogeen LCP. Het testen of
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eentoestand regulier is kan nu geschieden door het bepalen of een zeker LCP oploshaar
is. Het combineren van al deze resultaten resulteert in globale existentie en uniciteit
van oplossingen in een sterkere zin dan voor algemene lineaire complementariteitssys-
temen.

Naast het formuleren van een oplossingsconcept en de resultaten betreffende goed-
gesteldheid, wordtin dit proefschrift ook aandacht geschonken aan numerieke simulatie
methoden. Dit proefschrift presenteert bijdragen voor o.a. “event-driven” methodie-
ken, die het simulatie-interval beschouwen als de vereniging van disjuncte subinter-
vallen, waarin de discrete toestand (de actieve beperkingen) niet veranderen. Op een
subinterval wordt het systeem beschreven door differentiaal- en algebraische vergelij-
kingen, die met standaard integratie routines opgelost kunnen worden (DAE-simulatie).
Gedurende de integratie dienen indicatoren, die het einde bepalen van een subinterval,
gecontroleerd te worden (event-detectie). Vervolgens, moet een nieuwe discrete toe-
stand (mode-selectie) en de re-initialisatie van de continue toestand bepaald worden.
Het voorgestelde oplossingsconcept in dit proefschrift is nauw verbonden met deze
event-driven methodiek en het werk op het gebied van goedgesteldheid heeft dan ook
directe consequenties voor mode-selectie en re-initialisatie.

Een alternatief voor de event-driven methode is de “time-stepping” techniek, die
de systeemvergelijkingen door discrete equivalenten vervangt. Numerieke integratie
formules worden gebruikt om de afgeleiden te benaderen en alle algebraische condities
worden voor elke tijdstap opgelegd. Een regelmatig toegepaste methode is gebaseerd
op de “backward Euler” integratie formule, die voor lineaire complementariteitssyste-
men resulteert in het oplossen van een LCP op elke tijdstap. Een fundamentele basis
voor deze “backward Euler time-stepping” methode blijkt noodzakelijk te zijn, omdat er
voorbeelden van lineaire complementariteitssystemen bestaan, waarvoor convergentie
van de benaderingen niet geldt. Een voorbeeld wordt beschreven in hoofdstuk 7. Ook
het feit, dat de tijden, waarop de overgangen tussen de discrete toestanden plaats vin-
den, niet exact getraceerd worden, maakt het onduidelijk of de methodiek consistent is.
Het is dus onverstandig deze methode voor algemene lineaire complementariteitssys-
temen toe te passen zonder enige verificatie vooraf. In hoofdstuk 7 wordt dan ook voor
passieve elektrische netwerken met ideale diodes aangetoond dat de benaderingen naar
de echte oplossing van het netwerkmodel convergeren.

Tijdens het verkrijgen van de beschreven resultaten en in het overzicht van mo-
gelijke applicaties in hoofdstuk 2 worden relaties tussen de deelklassen van comple-
mentariteitssystemen aangegeven. Enerzijds, biedt het vaststellen van de gemeen-
schappelijke structuur voor de verscheidene toepassingsgebieden mogelijkheden voor
generalisatie of transformatie van resultaten van het ene domein naar het andere. An-
derzijds, hebben complementariteitssystemen de potentie om een belangrijke rol te
vervullen in het ontwikkelen van systematische technieken, die analyse en synthese
mogelijk moeten maken voor een breed scala aan toepassingen. Het werk in dit proef-
schrift vormt een stap in die richting, daar het verschillende fundamentele vragen
beantwoordt, die noodzakelijk zijn voor het opzetten van een algemene systeem- en
regeltheorie voor complementariteitssystemen.
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