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On the Dynamic Analysis of Piecewise Linear
Networks

W.P.M.H. Heemels, M.K. Çamlıbel, J.M. Schumacher

Abstract—Piecewise linear (PL) modelling is often used to
approximate the behavior of nonlinear circuits. One of the
possible PL modelling methodologies is based on the linear
complementarity problem, and this approach has already
been used extensively in the circuits and systems commu-
nity for static networks. In this paper the object of study
will be dynamic electrical circuits that can be recast as lin-
ear complementarity systems, i.e., as interconnections of lin-
ear time-invariant differential equations and complementar-
ity conditions (ideal diode characteristics). A mathemat-
ically precise framework is developed that formalizes the
mixed discrete and continuous behavior of these switched
networks. Within this framework the fundamental question
of well-posedness (existence and uniqueness of solution tra-
jectories given an initial condition) is studied and additional
properties of the behavior are derived. For instance, a full
characterization is presented of the inconsistent states.

Keywords— circuit analysis, piecewise linear networks,
switched circuits, linear complementarity problem, passiv-
ity.

I. Introduction

Many electrical networks consist of dynamic components
like capacitors and inductors and static nonlinear elements
such as resistors and transistors. To analyze the behaviour
of such networks, the nonlinear elements are often approx-
imated by piecewise linear (PL) descriptions. In the liter-
ature many explicit canonical representations of PL func-
tions can be found that store the parameters in a minimal
way [1–4]. Van Bokhoven [5] developed an implicit model
based on the linear complementarity problem of mathe-
matical programming [6]. Basically, the complementarity
relations correspond to ideal diode characteristics. In [7,8]
it has been shown that the complementarity framework in-
cludes the explicit canonical representations given in [1–3].
Consequently, static PL elements can be replaced by net-
works consisting of ideal diodes and linear resistors (see
Section III for an example). For instance, in [5, Ch. 9]
complementarity models have been presented for voltage
controlled switches, MOS transistors and digital gates. Ac-
tually, Eaves and Lemke [9] showed that any static (contin-
uous) PL mapping can be rewritten in the complementarity
format. This explains the extensive use of the linear com-
plementarity problem [6] (together with a number of vari-
ants) in the study of PL electrical networks [5, 7, 8, 10–14].
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In many electrical networks switching elements like
thyristors and diodes are already present for a great va-
riety of applications in both power engineering and signal
processing. To reduce the simulation time of the transient
behavior of such networks [15–19] and for analysis purposes
(of e.g. stability or chaos) [20, 21] these switches are often
modelled ideally.

As a consequence, two different motivations can be given
for the use of ideal diode (or complementarity) models in
the study of nonlinear and switched electrical circuits: as
a modelling methodology for PL networks and as ideal-
ized descriptions of physical devices. In this paper we will
consider PL networks that can be modelled (or realized)
by using ideal diode characteristics (complementarity con-
ditions) and linear resistors for the static (PL) part and
inductors and capacitors for capturing the dynamic part
of the network. This results in models that are combina-
tions of linear electrical networks (described by linear time-
invariant differential equations) and ideal diodes (comple-
mentarity conditions). As such, the systems at hand form
a subclass of linear complementarity systems [11, 22–25],
which can be seen as dynamic extensions of the linear com-
plementarity problem.

It is well-known that ideal network models may well be
of a mixed discrete and continuous nature. In particular,
the circuit evolves through multiple topologies (modes) de-
pending on the (discrete) states of the diodes characteris-
tics (“on” or “off”) or equivalently, the complementarity
conditions. For each combination of the discrete states of
the diodes (blocking or conducting) other equations govern
the evolution of the system’s variables. The mode transi-
tions are triggered by inequalities and may result in dis-
continuities and Dirac impulses in the network’s variables,
see e.g. [15,16,18,19,26–28].

In this paper we provide a mathematical framework that
allows the precise formulation of a solution concept for
the complementarity class of continuous/discrete networks.
The introduction of a solution concept is coupled to the
question of well-posedness, i.e., existence and uniqueness
of solutions of the network model for all initial conditions.
Much effort has been invested in considering existence and
uniqueness of solutions to static (DC) models of electrical
networks [29–35]. For the dynamic equivalent, the classical
theory of ordinary differential equations guarantees exis-
tence and uniqueness of solutions under a Lipschitz conti-
nuity condition (see e.g. [36]). Here however we will be con-
sidering networks containing ideal diodes, for which such
conditions are not fulfilled. The only papers known to the
authors dealing with well-posedness for dynamic circuits
containing non-Lipschitz elements are [37, 38]. However,
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the obtained results in [37, 38] do not cover the networks
considered here, since an ideal diode cannot be reformu-
lated as a current or voltage-controlled resistor. To show
that the well-posedness issue is nontrivial, we will present
a network example containing a negative resistor that has
multiple solutions for certain initial conditions and no so-
lutions for others. Hence, not all PL circuits are well-posed
and additional assumptions are required to guarantee the
existence and uniqueness of trajectories.

The main purposes of the paper are the following.
(i) Define a mathematically precise solution concept for
dynamic PL circuits that can be modelled by linear com-
plementarity systems.
(ii) Prove (global) existence and uniqueness of solutions
under a condition that all elements are passive (excluding
negative resistors as in the example mentioned above).
(iii) Establish regularity properties of the solutions. In par-
ticular, it will be proven that derivatives of Dirac impulses
do not occur (even for inconsistent initial states) and Dirac
impulses may occur only at the initial time. The consis-
tent states (also called ‘regular states’) will be character-
ized fully in terms of set inclusions and linear complemen-
tarity problems. Moreover, it will turn out that the set
of switching times is a right-isolated set, meaning that fol-
lowing all time instants there exists a positive length time
interval in which the diodes do not change their discrete
state.

These results will be used to provide a rigorous basis
for so-called “time-stepping” methods (see e.g. [5, 11, 39])
that are used for simulation of dynamic PL circuits. Al-
though several numerical simulation methods have already
been proposed to deal with phenomena that arise in non-
smooth circuits [5, 8, 11, 12, 16, 17, 39], little attention has
been paid to the question if and in what sense the com-
puted time functions converge to the true solution of the
network model. On the basis of the framework presented
in the current paper, a companion paper [40] gives a for-
mal statement and proof of the consistency – convergence
of the approximated time functions to the exact solution of
the network model – of time-stepping routines for the sim-
ulation of a class of internally switched electrical circuits.
Another way of approximating dynamic circuits with ideal
diodes can be obtained by replacing the ideal characteristic
by smooth functions between diode current and voltage.
The interested reader is referred to [41] for more details
on the consistency of such ‘regularization’ or ‘smoothing’
methods.

The outline of the paper is as follows. After the no-
tational conventions in the next section, complementarity
modelling of PL dynamic circuits is discussed in Section III.
In Section IV, we describe the evolution of the network
model within a given mode, i.e., with the diodes replaced
by either an open (blocking) or short (conducting) circuit.
Next, an extension of the linear complementarity problem
will be introduced, which will play an important role in
the proof of well-posedness. In section VI the regular (or
consistent) states are introduced and characterized explic-
itly. In Section VII the solution concept is introduced and

the proof of global well-posedness is presented. Finally, we
state the conclusions.

II. Notation

The following notational conventions will be in force. N

denotes the set of natural numbers {0, 1, 2, . . .}, R the real
numbers, R+ the nonnegative real numbers (including zero)
and C the complex numbers. If a is a (column) vector, we
denote its i-th component by ai. M� is the transpose
of the matrix M ∈ C

m×n and M∗ denotes the complex
conjugate transpose. A (not necessarily symmetric) matrix
M ∈ C

m×m is called nonnegative definite and we write
M � 0 if Re x∗Mx = 1

2x
∗(M + M∗)x � 0 for all x ∈ C

m.
In case strict inequality holds for all nonzero vectors x, we
call the matrix positive definite and write M > 0. By I we
denote the identity matrix of any dimension. Given M ∈
R

k×l and two subsets I ⊆ {1, . . . , k} and J ⊆ {1, . . . , l}, the
(I, J)-submatrix of M is defined as MIJ := (Mij)i∈I,j∈J .
In case J = {1, . . . , l}, we also write MI•. If I = {1, . . . , k},
the notation M•J is sometimes used.

A triple of matrices (A,B,C) with A ∈ R
n×n, B ∈

R
n×m and C ∈ R

p×n is a called minimal, if the matrices
[B AB . . . An−1B] and [C� A�C� . . . (A�)n−1C�] have
full rank.

By R(s) we denote the field of real rational functions in
one variable. M(s) ∈ R

k×l(s) means that M(s) is a k × l
matrix with entries in R(s). A rational vector or matrix
is called (strictly) proper, if for all entries the degree of
the numerator is smaller than or equal to (strictly smaller
than) the degree of the denominator.

A vector u ∈ R
k is called nonnegative (positive), and we

write u � 0 (u > 0), if ui � 0 (ui > 0) for all i ∈ {1, . . . , k}.
If two vectors u, y ∈ R

k are orthogonal, i.e., u�y = 0, we
write u⊥y. Similarly, we write u(s)⊥y(s) for two rational
vectors u(s), y(s) ∈ R

k(s), if u�(s)y(s) = 0 for all s ∈ C.
The set of arbitrarily often differentiable functions from

R to R
m is denoted by C∞(R;Rm). Lk

2(t0, t1) denotes the
set of all measurable functions v from (t0, t1) to R

k for
which the integral

∫ t1
t0

‖v(τ)‖2dτ is finite.

III. Complementarity modelling

As already mentioned in the introduction, many dynamic
piecewise-linear (PL) electrical networks can be modelled
(or realized) by using linear resistors, capacitors, induc-
tors, gyrators, transformers and ideal diodes. Kevenaar
and Leenaerts [7] (see also [8]) show that all the explicit PL
representations proposed by Chua and Kang [1,2], Güzelis
and Göknar [3], and Kahlert and Chua [4] are all cov-
ered by one implicit model based on the linear comple-
mentarity problem (see Definition V.10 below) of mathe-
matical programming [6]. This implicit model was develop
by Van Bokhoven [5] and can represent all static (continu-
ous) PL functions as proven by Eaves and Lemke [9]. Van
Bokhoven’s model is of the form

z = Ax + Bu + g (1a)
y = Cx + Du + h (1b)
0 � y⊥u � 0, (1c)
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Fig. 1. An example of a piecewise linear circuit.

which describes a PL mapping from x to z. In (1) A,
B, C, D are matrices and g, h are vectors of appropriate
dimensions. Given x ∈ R

n one has to solve the linear com-
plementarity problem (1b)–(1c) for the auxiliary variables
y and u, after which u can be substituted in (1a) to obtain
z.

To illustrate this modelling methodology, we consider
the example of the nonlinear resistor in [11] given by the
characteristic

Vr = max(
1
2
Ir, Ir) =

{
Ir, Ir � 0
1
2Ir, Ir < 0

(2)

The voltage over the resistor is given by Vr, while Ir denotes
the current through the resistor. This PL characteristic can
be rewritten as

Vr =
1
2
Ir + u (3a)

y = −Ir + 2u (3b)
0 � y ⊥ u � 0. (3c)

Indeed, u = max(12Ir, 0) and thus Vr = max(12Ir, Ir),
which is equal to the PL function (2).

The nonlinear resistor given by (2) is now embedded in
the dynamic network from [11], which is depicted in Fig-
ure 1. Taking C = 1 F , L = 1 H and R = 1 Ω we obtain
the system description

ẋ(t) =
(

0 1
−1 − 3

2

)
x(t) +

(
0
−1

)
u(t)

y(t) = (0 − 1) x(t) + 2 u(t)
0 � y(t) ⊥ u(t) � 0,

where x1 is the voltage over the capacitor, x2 is the cur-
rent through the inductor and Vr is eliminated by using (3).
From this reformulation we can now obtain the equivalent
network as depicted in Figure 2 that consists of linear (pos-
itive) resistors, capacitors, inductors and ideal diodes only.
In other words, we derived a “dynamic complementarity
model” of the nonlinear network depicted in Figure 1.

In fact, [5, Section 2.3] presents a structured method that
replaces any static PL two-pole element by an equivalent
circuit consisting of ideal diodes, linear resistors and con-
stant (current or voltage) sources. As we aim at provid-
ing sufficient conditions for the existence and uniqueness
of solutions (so-called well-posedness) we will not consider

R

L

x2

+
x1

−
C

1
2Ω

1
2Ω

−
u
+

y

Fig. 2. An equivalent “complementarity” circuit of the network in
Figure 1.
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Fig. 3. A circuit containing a negative resistor.

networks including negative resistors as are used in [5, Sec-
tion 2.3]. Indeed, negative resistors can result in ill-posed
circuits as is illustrated by the simple example given in
Figure 3. The circuit consists of a capacitor (C = 1 F ),
a negative resistor (R = −1 Ω) and an ideal diode. The
corresponding complementarity model is given by

ẋ(t) = u(t) (5a)
y(t) = x(t)− u(t) (5b)

0 � y(t) ⊥ u(t) � 0 (5c)

with x the voltage across the capacitor, and u and y the
current through and (minus) the voltage across the diode,
respectively. In Figure 4 the linear relation between y and
u given by (5b) and the complementarity conditions (5c)
are drawn. It is obvious that in case the initial state satis-
fies x(0) > 0 multiple solutions exist, while for x(0) < 0 no
solution trajectory can be found. Indeed, in case x(0) = 1
the diode can be both blocking (u = 0) and conducting
(y = 0), which results in the solution trajectories u(t) =
0, x(t) = y(t) = 1 and u(t) = x(t) = et, y(t) = 0, re-
spectively. This simple example shows that well-posedness
does not hold for all PL systems and additional assump-
tions (like allowing only positive resistors) are required to
guarantee the existence and uniqueness of trajectories.

��� ��

�

�

Fig. 4. A linear relation and complementarity conditions.

A second restriction that will be applied in this paper
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is that we assume absence of current and voltage sources.
Unlike the positivity assumption on resistors, this restric-
tion is imposed just to keep the presentation as uncluttered
as possible. In this paper we therefore consider the basic
case of networks realized by linear electrical networks con-
sisting of (linear) positive resistors, inductors, capacitors,
gyrators, transformers (RLCGT) and ideal diodes (like the
one in Figure 1). An extension to the case including sources
that generate even piecewise Bohl signals (e.g. constants,
exponentials and (co)sines and combinations of these) can
be given on the basis of the current paper as is outlined in
[42].

The networks considered here lead directly to a comple-
mentarity model as mentioned in e.g. [5, 8]. Indeed, the
linear (RLCGT)-part of the network can be described by
the state space model

ẋ(t) = Ax(t) + Bu(t) (6a)
y(t) = Cx(t) + Du(t) (6b)

under suitable conditions (the network does not contain
all-capacitor loops or nodes with the only elements incident
being inductors, see chapter 4 in [43] for more details.) In
(6) A ∈ R

n×n, B ∈ R
n×k, C ∈ R

k×n and D ∈ R
k×k denote

real matrices of appropriate dimensions, and x denotes the
state variable of the network (typically consisting of linear
combinations of the currents through the inductors and
voltages across the capacitors). Moreover, the pair (ui, yi)
denotes the voltage-current variables at the connections to
the i-th diode, i.e.,

(ui = −Vi ∧ yi = Ii) ∨ (ui = Ii ∧ yi = −Vi),

where Vi and Ii are the voltage across and current through
the i-th diode, respectively, and ∨ denotes the Boolean
(non-exclusive) “or” and ∧ the Boolean “and”-operator.
The ideal diode characteristics are described by the rela-
tions

Vi � 0 ∧ Ii � 0 ∧ (Vi = 0 ∨ Ii = 0) (7)

as shown in Figure 5.

Ii

Vi

Vi

IiIiIiIiIiIi

Ii

Ii

Ii

Ii

Ii

+

Fig. 5. The ideal diode characteristic.

By suitable substitutions the following system descrip-
tion is obtained:

ẋ(t) = Ax(t) + Bu(t) (8a)
y(t) = Cx(t) + Du(t) (8b)

0 � y(t) ⊥ u(t) � 0. (8c)

In this formulation t ∈ R+ denotes the time variable, x(t)
the state, and u(t) and y(t) the complementarity variables
at time t. The system (8) is called a linear complementarity
system. System descriptions of this form were introduced

in [23] and were further studied in [22–25, 41]. We use the
notation LCS(A,B,C,D) to indicate the system given by
(8). Note that (8c) means that for all i ∈ {1, . . . , k} yi(t) �
0 ∧ ui(t) � 0 ∧ (yi(t) = 0 ∨ ui(t) = 0). Rather than using
this explicit expression, we shall below usually employ the
more compact notation (9c). Observe that the description
(4) for the nonlinear circuit in Figure 1 is exactly of the
form (8).

Since (8a)-(8b) is a model for the RLCGT-multiport
network consisting of positive resistors, capacitors, in-
ductors, gyrators and transformers, the matrix quadruple
(A,B,C,D) is not arbitrary, but satisfies a passivity condi-
tion. To be precise, (A,B,C,D) is passive (or in the terms
of [44], dissipative with respect to the supply rate u�y) in
the following sense.

Definition III.1 [44] A system (A,B,C,D) given by (6)
is called passive, or dissipative with respect to the supply
rate u�y, if there exists a nonnegative function V : R

n →
R+, (a storage function), such that for all t0 � t1 and all
time functions (u, x, y) ∈ Lk+n+k

2 (t0, t1) satisfying (6) the
following inequality holds:

V (x(t0)) +
∫ t1

t0

u�(t)y(t)dt � V (x(t1)).

The above inequality is called the dissipation inequality.
The storage function represents a notion of “stored energy”
in the network. The following proposition gives several
equivalent characterizations of passivity.

Proposition III.2 [44] Consider a system (A,B,C,D) in
which (A,B,C) is a minimal1 representation. The follow-
ing statements are equivalent.
• (A,B,C,D) is passive.
• The transfer matrix G(s) := C(sI−A)−1B+D is positive
real, i.e., x∗[G(λ) + G∗(λ)]x � 0 for all complex vectors x
and all λ ∈ C such that Re λ > 0 and λ is not an eigenvalue
of A.
• The matrix inequalities( −A�K −KA −KB + C�

−B�K + C D + D�

)
� 0 (9a)

and
K = K� � 0 (9b)

have a solution K.
Moreover, in case (A,B,C,D) is passive, all solutions to the
linear matrix inequalities (9) are positive definite (i.e., (9b)
holds with strict inequality) and a symmetric K is a solu-
tion to (9) if and only if V (x) = 1

2x
�Kx defines a storage

function of the system (A,B,C,D).

This proposition enables us to verify that the net-
work in Figure 1 yields an LCS(A,B,C,D)-model with
(A,B,C,D) passive for which sometimes the nomenclature
linear passive complementarity systems is used. Indeed, it

1See Section II for a definition of “minimality.”
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is easily verified that the matrix inequalities (9) are satis-

fied for (4) with K =
(
1 0
0 1

)
. Moreover, V (x) = 1

2x
2
1+

1
2x

2
2

is a storage function, which is physically clear as it repre-
sents the total electrical energy in the capacitor and the
inductor in both Figure 1 and Figure 2.

A technical assumption that we will often use is the fol-
lowing.

Assumption III.3 B has full column rank and (A,B,C)
is a minimal representation.

These assumptions imply that (specific kinds of) redun-
dancy have been removed from the circuit. The minimality
requirement of (A,B,C) indicates the fact that the number
of states (i.e. the total number of capacitors and inductors)
is the minimal number needed to realize the transfer func-
tion C(sI −A)−1B + D from u to y (see also [43, Ch. 8]).
Minimality is a standard assumption in the literature on
dissipative dynamic systems [44]. The full column rank
condition is included to prevent redundancy in the collec-
tion of diodes. See [45] for two simple network examples
that illustrate the implications and relevance of Assump-
tion III.3.

We note the following consequence of passivity, which
will be used frequently in the sequel.

Lemma III.4 Consider a system (A,B,C,D) in which
(A,B,C) is a minimal representation and (A,B,C,D) is
passive. If v ∈ R

k satisfies (D+D�)v = 0 (or equivalently,
v�Dv = 0), then C�v = KBv for any K satisfying (9).

Proof: According to Proposition III.2, passivity of the
system implies that K is symmetric, K > 0 and satisfies[

A�K + KA KB − C�

B�K − C −(D + D�)

]
� 0. (10)

Premultiplication of (10) by (γz� v�) and postmultipli-
cation by (γz� v�)� for arbitrary z ∈ R

n and γ ∈ R

yields γ2z�(A�K +KA)z + 2γz�(KB −C�)v � 0 due to
(D+D�)v = 0. Considering this expression as an inequal-
ity for a quadratic form in γ, we find that z�(KB−C�)v =
0. Since z is arbitrary, we obtain (KB − C�)v = 0. ✷

IV. Dynamics in a given mode

Equation (8c) implies that, for all t, and for every i =
1, . . . , k ui(t) = 0 or yi(t) = 0 must be satisfied (the diode
is conducting or blocking and can be replaced by a short or
an open circuit, respectively). This results in a multimodal
system with 2k modes, where each mode is characterized
by a subset I of {1, . . . , k}, indicating that yi(t) = 0 if i ∈ I
and ui(t) = 0 if i ∈ Ic with Ic := {i ∈ {1, . . . , k} | i �∈ I}.
For each such mode (also called “topology,” “configura-
tion,” or “discrete state”) the laws of motion are given by
differential and algebraic equations (DAEs). Specifically,
in mode I they are given by (we omit the time arguments

for brevity)

ẋ = Ax + Bu (11a)
y = Cx + Du (11b)
yi = 0, i ∈ I (11c)
ui = 0, i ∈ Ic. (11d)

Example IV.1 For an illustration of the ideas of this pa-
per in the simplest possible context, consider the linear
RLC circuit (with R = 1 Ω, L = 1 H and C = 1 F ) cou-
pled to two ideal diodes as shown in Figure 6. The network
is described by

ẋ1 = x2 − u1 + u2 (12a)
ẋ2 = −x1 − x2 − u2 (12b)

y1 = −x1 (12c)
y2 = x1 + x2 + u2 (12d)
0 � u ⊥ y � 0, (12e)

where x1 is the voltage across the capacitor C, x2 is the
current through the inductor L, u1 and u2 are the current
through and y1 and y2 are (minus) the voltage across diode
1 and 2, respectively.

D1 D2C L

R

Fig. 6. RLC circuit with ideal diodes

Depending on whether the diodes are blocking or con-
ducting, the system has 22 = 4 modes or circuit topologies.
• Mode I = ∅: Both diodes are blocking in this mode,
i.e., u1 = u2 = 0.
• Mode I = {2}: The first diode is blocking while the
second one is conducting, i. e., u1 = y2 = 0 in this mode.
• Mode I = {1}: The first diode is conducting and the
second one is blocking, i. e., y1 = u2 = 0 in this mode.
• Mode I = {1, 2}: In this mode both diodes are conduct-
ing, i. e., y1 = y2 = 0.

The mode will vary during the time evolution of the sys-
tem (diodes go from conducting to blocking or vice versa).
The system evolves in a certain mode as long as the inequal-
ity conditions in (8c) are satisfied. At the event of a mode
transition, the system may in principle display jumps of the
state variable x. Jumping phenomena are well-known in
the theory of unilaterally constrained mechanical systems
[46], where at impacts the change of velocity of the collid-
ing bodies is often modelled as being instantaneous. These
discontinuous and impulsive motions are also observed in
electrical networks (see e.g. [15,16,18,19,26–28]) and con-
sequently, a distributional framework will be needed to ob-
tain a mathematically precise solution concept. We restrict
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ourselves to the Dirac distribution (supported at t = 0) de-
noted by δ and its derivatives, where δ(i) denotes the i-th
(distributional) derivative of δ.

Definition IV.2 [47] An impulsive-smooth distribution is
a distribution u of the form u = uimp + ureg, where
• uimp is a linear combination of δ and its derivatives, i.e.,

uimp =
l∑

i=0

u−iδ(i)

for vectors u−i ∈ R
k, i = 0, . . . , l and

• ureg is an arbitrarily often differentiable function from
(0,∞) to R

k such that u(m)
reg (0+) := limt↓0

dmureg

dtm (t) exists
and is finite for all m = 0, 1, 2, . . ..
The class of impulsive-smooth distributions is denoted by
Ck

imp. For a distribution u ∈ Ck
imp, uimp is called the im-

pulsive part and ureg is called the smooth part. In case
uimp = 0 we call u a regular or smooth distribution. If the
Laplace transform of an impulsive-smooth distribution is
rational, we call the distribution of Bohl type or a Bohl dis-
tribution. For a smooth Bohl distribution, we will use the
term Bohl function.

We also would like to introduce the notion of the deriva-
tive of an impulsive-smooth distribution.

Definition IV.3 Let u be an impulsive-smooth distribu-
tion that can be written as u = uimp + ureg, where

uimp =
l∑

i=0

u−iδ(i)

for vectors u−i ∈ R
k, i = 0, . . . , l and ureg is the smooth

part. The derivative of u is denoted by u̇ and defined by

u̇ =
l∑

i=0

u−iδ(i+1) + ureg(0+)δ + u̇reg, (13)

where u̇reg denotes the usual derivative of a function on
(0,∞).

Lemma IV.4 Consider the matrices A ∈ R
n×n, B ∈

R
n×k, C ∈ R

k×n and D ∈ R
k×k such that Assumption III.3

is satisfied and (A,B,C,D) represents a passive system.
Then the following holds.
1. For all I ⊆ {1, . . . , k} and for all initial states x0, there
exists a unique solution (u, x, y) ∈ Ck+n+k

imp satisfying the
dynamics for mode I given by

ẋ = Ax+ Bu+ x0δ (14a)
y = Cx+ Du (14b)
yi = 0, i ∈ I (14c)
ui = 0, i ∈ Ic (14d)

as equalities of distributions. We denote this solution by
(ux0,I , xx0,I , yx0,I).

2. For all modes I there exist matrices F I and KI such
that for all initial states x0 the smooth parts (u, x, y) :=
(ux0,I

reg , xx0,I
reg , yx0,I

reg ) of (ux0,I , xx0,I , yx0,I) are Bohl functions
and satisfy

ẋ = F Ix (15)
u = KIx (16)
y = Cx + Du. (17)

The matrices F I and KI only depend on the mode I and
not on the particular x0 at hand.

Proof:
1. The existence and uniqueness of a solution for (14)
for all initial states x0 is equivalent to the transfer matrix
GII := CI•(sI−A)−1B•I +DII being invertible as a ratio-
nal matrix [47, Prop. 3.23, Thm. 3.24, Thm. 3.26]. This
can also be seen from (22)-(23) below. Suppose on the
contrary that detGII(s) ≡ 0. Then there exists a rational
vector v(s) �≡ 0 such that GII(s)v(s) ≡ 0. Take σ > 0 such
that v(σ) �= 0 and σI −A is invertible. Define ū as

ūi :=

{
0 if i �∈ I

vi(σ) if i ∈ I

The triple

u(t) = ūeσt (18)

x(t) = (σI −A)−1Būeσt (19)

y(t) = G(σ)ūeσt (20)

satisfies the system equations (6), where G(s) = C(sI −
A)−1B + D. Since (A,B,C,D) is passive, there exists a
K > 0 such that the dissipation inequality

x�(t0)Kx(t0) +
∫ t1

t0

u�(t)y(t)dt � x�(t1)Kx(t1) (21)

holds for all t0 and t1 with t1 � t0. It can be verified that
u�(t)y(t) = e2σtū�G(σ)ū = e2σtv(σ)�GII(σ)v(σ) = 0 for
all t. By letting t0 tend to −∞, (21) results in

0 � x�(t1)Kx(t1)

for all t1. Because K > 0, this implies that x(t1) = 0 for
all t1. From (19) it follows that Bū = 0. Since B is of full
column rank, ū = 0 and hence also v(σ) = 0. We reached a
contradiction and consequently proved the first statement.

2. This statement follows from [47, Thm. 3.10]. ✷

Remark IV.5 In terms of Definition 3.2 in [24] the first
property of Theorem IV.4 states that all modes are au-
tonomous. To be specific, mode I is called autonomous
(see also [24, Lemma 3.3]) if for all initial states x0 there
exists a unique impulsive-smooth solution to (14).

Remark IV.6 The positive realness of G(s) implies that
G(σ) is nonnegative definite for all σ > 0. Since a nonneg-
ative definite matrix has only nonnegative principal minors
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[6, p. 153] and detGII(s) �≡ 0 (as shown in the proof of
Lemma IV.4), it follows that there exists a σ0 ∈ R such
that for all σ � σ0 the principal minors of G(σ) are posi-
tive, i.e., detGII(σ) > 0 for all I ⊆ {1, . . . , k}. In terms of
[6, Def. 3.3.1] this means that G(σ) is a P-matrix for all
sufficiently large σ.

Example IV.7 To demonstrate Lemma IV.4 we continue
the running example IV.1. In particular, we will consider
mode I = {2} in which u1 = y2 = 0. Using (12d) and
y2 = 0 yields that u2 = −x1 − x2. Since u1 = 0, it holds

that u = K{1}x with K{1} =
(

0 0
−1 −1

)
. Substituting

u1 = 0 and u2 = −x1−x2 in (12a)-(12b) leads to ẋ1 = −x1

and ẋ2 = 0. Hence, F {1} =
(−1 0

0 0

)
.

The solutions (ux0,I , xx0,I , yx0,I) have rational Laplace
transforms (ûx0,I(s), x̂x0,I(s), ŷx0,I(s)), which satisfy

sx̂x0,I(s) = Ax̂x0,I(s) + Bûx0,I(s) + x0 (22a)
ŷx0,I(s) = Cx̂x0,I(s) + Dûx0,I(s) (22b)

ŷx0,I
I (s) = 0 (22c)

ûx0,I
Ic (s) = 0. (22d)

We introduce G(s) = C(sI − A)−1B + D and R(s) =
C(sI−A)−1. Since GII(s) is invertible as a rational matrix
(see the proof of Lemma IV.4), the equations (22) can be
solved explicitly. This yields that the Laplace transforms
(ûx0,I(s), x̂x0,I(s), ŷx0,I(s)) are given by

ûx0,I
I (s) = −G−1

II (s)RI•(s)x0 (23a)

ûx0,I
Ic (s) = 0 (23b)

x̂x0,I(s) = (sI −A)−1Bx0 + (sI −A)−1Bûx0,I(s) (23c)

ŷx0,I
Ic (s) = [RIc•(s) −GIcI(s)G−1

II (s)RI•(s)]x0 (23d)

ŷx0,I
I (s) = 0. (23e)

Hence, the solutions of the mode dynamics (14) are one-to-
one related (by the Laplace transform and its inverse) to
solutions satisfying (22). On the basis of this relation, we
can prove that only Dirac impulses (and not its derivatives)
show up in passive electrical networks with diodes. Note
that this statement is implied by the fact that the Laplace
transforms (ûx0,I(s), x̂x0,I(s), ŷx0,I(s)) are proper for any
x0 ∈ R

n and I ⊆ {1, . . . , k}.

Theorem IV.8 Consider matrices A ∈ R
n×n, B ∈ R

n×k,
C ∈ R

k×n and D ∈ R
k×k such that Assumption III.3 is sat-

isfied and (A,B,C,D) represents a passive system. Then
for each x0 ∈ R

n and I ⊆ {1, . . . , k} the Laplace transform
ûx0,I(s) is proper.

Proof: Denote ûx0,I(s) by u(s) for brevity. The triple

ū(t) = u(σ)eσt (24)

x̄(t) = (σI −A)−1Bu(σ)eσt (25)

ȳ(t) = G(σ)u(σ)eσt (26)

satisfies (6) for all σ ∈ R such that σI −A is nonsingular.
It follows from passivity that there exists a K > 0 such
that for all t1 and t0 with t1 � t0

x̄�(t1)Kx̄(t1) − x̄�(t0)Kx̄(t0) �
∫ t1

t0

ū�(t)ȳ(t)dt. (27)

By substituting (24)-(26) into the dissipation inequality
(27), one obtains

u�(σ)B�(σI −A)−�K(σI −A)−1Bu(σ) �

� 1
2σ

u�(σ)G(σ)u(σ).
(28)

Since K > 0, B has full column rank, and (σI − A)−1 =
1
σI + 1

σ2A + 1
σ3A

2 + . . . is strictly proper, there exists an
α > 0 such that

α

σ2
‖u(σ)‖2 � u�(σ)B�(σI −A)−�K(σI −A)−1Bu(σ)

(29)
for all sufficiently large σ. We know from (22) that
u�(s)y(s) = 0, where y(s) := ŷx0,I = C(sI − A)−1x0 +
G(s)u(s). Hence, the right-hand side of (28) satisfies

1
2σ

u�(σ)G(σ)u(σ) = − 1
2σ

u�(σ)C(σI −A)−1x0

� 1
2σ

‖C(σI −A)−1x0‖‖u(σ)‖

� β

2σ2
‖u(σ)‖‖x0‖. (30)

The last inequality follows from the existence of a β > 0
such that ‖C(σI − A)−1‖ � β

σ for all sufficiently large σ.
Thus, (28), (29) and (30) yield ‖u(σ)‖ � β

2α‖x0‖ for all
sufficiently large σ. Hence, u(s) must be proper. ✷

The fact that solutions of linear passive networks with
ideal diodes do not contain derivatives of Dirac impulses
is widely believed true on “intuitive” grounds, but the au-
thors are not aware of any previous rigorous proof. The
framework proposed here makes it possible to prove the
intuition.

To summarize the discussion so far, it has been shown
that instead of considering impulsive-smooth distributions
as the solution space within a mode, we can restrict our-
selves to Bohl distributions with impulsive part containing
only Dirac impulses and not its derivatives (i.e., Bohl dis-
tributions with proper rational Laplace transforms).

Consider a solution to (14) for mode I and initial state
x0. An important observation is that a nontrivial impulsive
part of ux0,I will result in a re-initialization (jump) of the
state. If uimp = u0δ (i.e., u0 = lims→∞ ûx0,I(s)), then a
jump will take place according to

xreg(0+) := lim
t↓0

xreg(t) = x0 + Bu0. (31)

The proof can be found in [47].
The following properties can be proven for the impul-

sive part of an impulsive-smooth distribution satisfying the
mode dynamics.
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Lemma IV.9 Consider matrices A ∈ R
n×n, B ∈ R

n×k,
C ∈ R

k×n and D ∈ R
k×k such that Assumption III.3

is satisfied and (A,B,C,D) represents a passive system.
Consider the impulsive-smooth solution (ux0,I , xx0,I , yx0,I)
to (14) for mode I and initial state x0. The impulsive part
ux0,I

imp is given by u0δ for some vector u0 ∈ R
k that satisfies

u0�Du0 = 0 and u0�C(x0 + Bu0) = 0.

Proof: As stated before, the properness of ûx0,I(s) im-
plies that ux0,I

imp = u0δ with u0 = lims→∞ ûx0,I(s). For
brevity we will denote ûx0,I(s) by u(s) and ŷx0,I(s) by
y(s) in this proof. Take the power series expansion of u(s)
around infinity as

u(s) = u0 + u1s−1 + u2s−2 + · · · (32)

Because for all i either ui(s) ≡ 0 or yi(s) ≡ 0, we have that

u�(s)y(s) = u�(s)[C(sI −A)−1x0 + G(s)u(s)] = 0.

Substituting (32) into this equality and considering the co-
efficients corresponding to s0 and s−1 yield

u0�Du0 = 0 (34)

u0�Cx0 + u0�Du1 + u1�Du0 + u0�CBu0 = 0. (35)

The relation (34) implies that

(D + D�)u0 = 0. (36)

Now, (35) and (36) give

u0�Cx0 + u0�CBu0 = 0, (37)

which establishes together with (34) the desired identities.
✷

V. The rational complementarity problem

In the previous section the dynamics within a mode
(i.e., with a fixed state of the diodes) has been consid-
ered, while the inequality conditions have been ignored.
However, a solution (ux0,I , xx0,I , yx0,I) within a mode (14)
will in general only be valid for a limited amount of time,
since a change of mode (diode going from conducting to
blocking or vice versa) may be triggered by the inequality
constraints. Therefore, we would like to express some kind
of “local nonnegativity.” We call a (smooth) Bohl function
v initially nonnegative if there exists an ε > 0 such that
v(t) � 0 for all t ∈ [0, ε). Note that a Bohl function v is
initially nonnegative if and only if there exists a σ0 ∈ R

such that its Laplace transform v̂(σ) � 0 for all σ � σ0.
Hence, there is a connection between small time values for
time functions and large values for the indeterminate s in
the Laplace transform. This fact is closely related to the
well-known initial value theorem (see e.g. [48]). The defini-
tion of initial nonnegativity for Bohl distributions will be
based on this observation (see also [24,25]).

Definition V.1 We call a Bohl distribution v initially
nonnegative, if its Laplace transform v̂(s) satisfies v̂(σ) � 0
for all sufficiently large real σ.

Remark V.2 To relate the definition to the time do-
main, note that a scalar-valued Bohl distribution v without
derivatives of the Dirac impulse (i.e., vimp = v0δ for some
v0 ∈ R) is initially nonnegative if and only if
1. v0 > 0, or
2. v0 = 0 and there exists an ε > 0 such that vreg(t) � 0
for all t ∈ [0, ε).

Definition V.3 We call a Bohl distribution (u, x, y) ∈
Ck+n+k

imp an initial solution to (8) with initial state x0, if
there exists an I ⊆ {1, . . . , k} such that
1. (u, x, y) satisfies (14) for mode I and initial state x0 in
the distributional sense and
2. u, y are initially nonnegative.

According to Lemma IV.4 condition 1 means that
(u, x, y) = (ux0,I , xx0,I , yx0,I) for an LCS with (A,B,C,D)
passive and satisfying Assumption III.3.

Example V.4 Consider the system ẋ(t) = u(t), y(t) =
x(t) together with (8c). This represents a system consist-
ing of a capacitor connected to a diode. The current in the
network is equal to u and the voltage across the capacitor
is equal to y = x. For initial state x(0) = x0 = 1, (u, x, y)
with u = 0 (no current) and y(t) = x(t) = 1 for all t ∈ R is
an initial solution. This corresponds to the case that the
diode is always blocking and there is no (nonzero) current
in the network. To demonstrate that the distributional
framework is needed, consider the initial state x0 = −1,
for which (u, x, y) with u = δ, x(t) = y(t) = 0, t > 0 is
the unique initial solution. This corresponds to an instan-
taneous discharge of the capacitor at time instant 0. Note
that a state jump occurs at time 0 from −1 to 0.

We emphasize that an initial solution only satisfies the
equations (8) in the following local sense. In case an ini-
tial solution has a nontrivial impulsive part, only the re-
initialization as given in (31) forms a piece of the global so-
lution. If the initial solution (u, x, y) is smooth, the largest
interval on which (u, x, y) satisfies the equations (8) is equal
to [0, ε), where ε is equal to

ε = inf{t > 0 | ureg,i(t) < 0 or yreg,i(t) < 0 for some i}.
(38)

Example V.5 Consider again the network in Exam-
ple IV.1. We will compute the initial solutions for
two initial states, to wit (x1(0), x2(0))� = (−e, 1)� and
(x1(0), x2(0))� = (1, 1)�.

If the response of mode I = {2} is computed for initial
state (x1(0), x2(0))� = (−e, 1)� (see also Example IV.7),
it can be seen that x1(t) = −e(1−t), x2(t) = 1, y1(t) =
e(1−t), u2(t) = e(1−t) − 1, u1 = y2 = 0. Hence, this is
indeed an initial solution for initial state (−e, 1)� as u and
y are initially nonnegative. Note that the initial solution is
smooth and satisfies the equations (8) on the interval [0, 1)
(i.e., ε = 1 in (38)).

For initial state (x1(0), x2(0))� = (1, 1)� it can easily
be verified that x1 = 0, x2(t) = e−t, y1 = 0, y2(t) = e−t,
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u1 = δ + e−t, u2 = 0, which complies with mode I = {1}.
As u and y are initially nonnegative, we have indeed derived
an initial solution starting in (1, 1)�. Note that there is a
jump in the state component x1 from 1 to zero caused by
the presence of the δ. The physical interpretation is that
there is an instantaneous discharge of the capacitor C.

In this manner the complete behaviour of the network
can be derived, which results in the phase diagram as given
in Figure 7.

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−3

−2

−1

0

1

2

3
phase diagram

v
C

i L

indicates the jump in v
C

Fig. 7. Phase diagram of the circuit given in Example IV.1.

Even when a solution within some mode exists and is
unique given an initial state, it still might be possible that
different modes give rise to different initial solutions (see
for instance, the example of the circuit in Figure 3 contain-
ing a negative resistor). It is also possible that there are no
initial solutions at all, i.e., no solution within a mode satis-
fies the initial nonnegativity conditions. We will start our
investigation of well-posedness for linear passive comple-
mentarity systems by studying existence and uniqueness
of initial solutions. An important tool in existence and
uniqueness of initial solutions is the rational complemen-
tarity problem (RCP) [22,25].

Definition V.6 (The rational complementarity prob-
lem) Let the vector x0 ∈ R

n and matrices A ∈ R
n×n,

B ∈ R
n×k, C ∈ R

k×n and D ∈ R
k×k be given. The

rational complementarity problem RCP(x0, A,B,C,D) is
the problem of finding rational k-vectors u(s) ∈ R

k(s) and
y(s) ∈ R

k(s) such that
1. for all s ∈ C

y(s) = C(sI −A)−1x0 + [C(sI −A)−1B + D]u(s) (39a)
u(s) ⊥ y(s), (39b)

and
2. there exists a σ0 ∈ R satisfying for all σ > σ0

y(σ) � 0 and u(σ) � 0. (40)

Any pair of rational vectors (u(s), y(s)) satisfying the above
conditions is said to be a solution to RCP(x0, A,B,C,D).

If A, B, C and D are clear from the context, we also write
RCP(x0) for brevity.

From the definition of initial nonnegativity and (22), the
following important relation is clear from [24].

Theorem V.7 Consider the matrices A ∈ R
n×n, B ∈

R
n×k, C ∈ R

k×n and D ∈ R
k×k and assume that all modes

of LCS(A,B,C,D) are autonomous (see Remark IV.5).
Then the following statements hold.
• All initial solutions are of Bohl type.
• There is a one-to-one correspondence between initial so-
lutions to (8) and solutions to RCP(x0). More specifically,
(u, x, y) is an initial solution to (8) if and only if its Laplace
transform (û(s), x̂(s), ŷ(s)) is such that (û(s), ŷ(s)) is a so-
lution to RCP(x0) and

x̂(s) = (sI −A)−1x0 + (sI −A)−1Bû(s). (41)

• The following statements are equivalent.
1. There exists a unique initial solution for initial state

x0 to LCS(A,B,C,D).
2. RCP(x0) has a unique solution.

• The initial solution is smooth if and only if the corre-
sponding solution to RCP(x0) is strictly proper. Similarly,
the initial solution has an impulsive part containing only
Dirac distributions (and not its derivatives) if and only if
the corresponding solution to RCP(x0) is proper.

As a consequence, studying existence and uniqueness
of initial solutions is equivalent to studying existence and
uniqueness of solutions to RCPs. In [25] necessary and suf-
ficient conditions for existence and uniqueness of solutions
to RCPs have been presented in terms of families of lin-
ear complementarity problems (cf. Definition V.10 below).
Based on this relation and the literature on linear comple-
mentarity problems the following result has been proven in
[25].

Theorem V.8 Consider matrices A ∈ R
n×n, B ∈ R

n×k,
C ∈ R

k×n and D ∈ R
k×k such that Assumption III.3 is sat-

isfied and (A,B,C,D) represents a passive system. Then
RCP(x0) has a unique solution for all x0.

Theorem V.7 now yields the following.

Theorem V.9 Consider matrices A ∈ R
n×n, B ∈ R

n×k,
C ∈ R

k×n and D ∈ R
k×k such that Assumption III.3 is sat-

isfied and (A,B,C,D) represents a passive system. From
each initial state x0 there exists exactly one initial solution
to LCS(A,B,C,D).

According to Theorem V.7 there exists a one-to-one rela-
tion between initial solutions and solutions to RCP. Since
strictly proper Laplace transforms correspond to smooth
Bohl distributions (without Dirac impulses and jumps of
the state variable), it is interesting to characterize the set
of initial states for which the corresponding solution to the
RCP is strictly proper. In the following theorem such an
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explicit characterization will be given. To formulate the
theorem, we need the following concepts.

Definition V.10 Let a real vector q ∈ R
k and a real ma-

trix M ∈ R
k×k be given. The linear complementarity prob-

lem with data q and M (LCP(q,M)) is the problem of find-
ing a real vector z ∈ R

k such that 0 � z⊥(q + Mz) � 0.
Any such vector z is called a solution to LCP(q,M).

For an extensive survey on LCPs, we refer to [6]. The
set of all solutions z to LCP(q,M) will be denoted by
SOL(q,M).

Remark V.11 If (u(s), y(s)) is a solution to the prob-
lem RCP(x0, A,B,C,D), then u(σ) is a solution to
LCP(C(σI − A)−1x0, G(σ)) for all sufficiently large (real)
σ, where G(s) = C(sI −A)−1B + D.

Remark V.12 Several times we shall employ the follow-
ing standard observation on solutions of LCP. If zi ∈
SOL(qi,Mi) with i ∈ {1, 2} then

(z1 − z2)�((q1 + M1z1)− (q2 + M2z2))

= −z�1 (q2 + M2z2) − z�2 (q1 + M1z1) � 0.

Finally, a dual cone is defined as follows [6].

Definition V.13 Let Q be a nonempty set in R
k. The

dual cone of Q, denoted by Q∗, is defined as the set

Q∗ = {w ∈ R
k | w�v � 0 for all v ∈ Q}.

Theorem V.14 Consider matrices A ∈ R
n×n, B ∈ R

n×k,
C ∈ R

k×n and D ∈ R
k×k such that Assumption III.3 is

satisfied and (A,B,C,D) represents a passive system. De-
note the solution set of LCP(0,D) by Q := SOL(0,D).
Furthermore, let (ux0(s), yx0(s)) be the (unique) solution
to RCP (x0). The following assertions hold:
1. For all x0 ∈ R

n, C(x0 + Bu0) ∈ Q∗ where u0 =
lims→∞ ux0(s).
2. ux0(s) is strictly proper if and only if Cx0 ∈ Q∗.
3. lims→∞ ux0(s) ∈ Q.

Proof:
1: In view of Remark V.11 and Remark V.12, we have for
each v ∈ Q := SOL(0,D) that

(ux0(σ) − v)�(C(σI −A)−1x0 + G(σ)ux0(σ)−Dv) � 0

for all sufficiently large σ. Since D � 0 ((9a) yields D +
D� � 0) and G(σ) = C(σI −A)−1B + D, we obtain

(ux0(σ)− v)�[C(σI −A)−1x0+

+ C(σI −A)−1Bux0(σ)] � 0 (42)

for all sufficiently large σ. Multiplying this relation by σ
and letting σ tend to infinity yields, since ux0(s) is proper,

(u0 − v)�(Cx0 + CBu0) � 0

It follows from Lemma IV.9 that v�(Cx0 +CBu0) � 0 for
all v ∈ Q and thus C(x0 + Bu0) ∈ Q∗.

2: “only if”: Suppose ux0(s) is strictly proper. Statement 1
and u0 = 0 yield Cx0 ∈ Q∗.

“if”: Suppose that Cx0 ∈ Q∗. From Lemma III.4 and
Lemma IV.9 we obtain that

u0�Du0 = 0 (43)
u0�Cx0 + u0�CBu0 = 0 (44)

(KB − C�)u0 = 0 (45)

Since (ux0(s), yx0(s)) is the solution to RCP(x0), u0 � 0
and Du0 � 0. Together with (43), this gives u0 =
lims→∞ ux0(s) ∈ Q (this proves statement 3).

From (45), we obtain u0�CBu0 = u0�B�KBu0. Since
u0 ∈ Q and Cx0 ∈ Q∗, (44) gives

0 � −u0�Cx0 = u0�CBu0 = u0�B�KBu0 � 0.

Finally, positive definiteness of K and the full column rank
of B imply u0 = 0, i.e., ux0(s) is strictly proper.

3: This has already been shown in the proof of statement 2.
✷

A direct implication of the statements 1 and 2 in Theo-
rem V.14 is that, if smooth continuation is not possible for
x0, it is possible after one re-initialization. Indeed, by (31)
the state after the re-initialization is equal to x0 + Bu0, if
the impulsive part of the (unique) initial solution is equal
to u0δ. According to the fact that the Laplace trans-
form of an initial solution is a solution to the correspond-
ing RCP (which is automatically proper), it follows that
lims→∞ ux0(s) = u0 is indeed the coefficient determining
the impulsive part. Since C(x0+Bu0) ∈ Q∗, it follows from
statement 2 that from x0 +Bu0 there exists a smooth ini-
tial solution. To summarize this discussion, we formulate
a local existence result.

Theorem V.15 Consider matrices A ∈ R
n×n, B ∈ R

n×k,
C ∈ R

k×n and D ∈ R
k×k such that Assumption III.3 is

satisfied and (A,B,C,D) represents a passive system. For
all initial states x0, there exists a unique Bohl distribu-
tion (u, x, y) defined on [0, ε) for some ε > 0 satisfying the
following.
1. there exists an initial solution (ū, x̄, ȳ) such that

(uimp, ximp, yimp) = (ūimp, x̄imp, ȳimp).

with ūimp = u0δ for some u0 ∈ R
k,

2. xreg(0+) = x0 + Bu0, and
3. for all t ∈ (0, ε)

xreg(t) = xreg(0+) +
∫ t

0

[Axreg(τ) + Bureg(τ)]dτ

yreg(t) = Cxreg(t) + Dureg(t)
0 � ureg(t)⊥yreg(t) � 0.
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VI. Regular states

Another consequence of Theorem V.14 is the character-
ization of so-called regular states (sometimes also called
consistent states) as introduced in the following definition.

Definition VI.1 A state x0 is called regular for
LCS(A,B,C,D), if the corresponding initial solution is
smooth. The collection of regular states for a given quadru-
ple (A,B,C,D) is denoted by R.

We have the following equivalent characterizations of
regular states.

Theorem VI.2 Consider LCS(A,B,C,D) given by (8)
such that (A,B,C,D) is passive and Assumption III.3 is
satisfied. Define Q := SOL(′,D) and let Q∗ be the dual
cone of Q. The following statements are equivalent.
1. x0 is a regular state for (8).
2. Cx0 ∈ Q∗.
3. LCP(Cx0,D) has a solution.
4. Cx0 ∈ pos(I,−D), which means that Cx0 can be
written as a positive combination of the columns of the
identity matrix I and the matrix −D. In other words,
Cx0 = v1 − Dv2 for two nonnegative vectors v1 � 0 and
v2 � 0.

Proof: Since strictly proper Laplace transforms corre-
spond to smooth Bohl distributions, statement 2 in The-
orem V.14 gives a characterization of the regular states:
x0 ∈ R if and only if Cx0 ∈ Q∗ with Q = SOL(0,D).
Hence, statement 1 and 2 are equivalent. Since D � 0, [6,
Cor. 3.8.10] completes the proof. ✷

Hence, several tests are available for deciding the reg-
ularity of an initial state x0. In [17] it is stated that a
well-designed circuit does not contain Dirac impulses. As
a consequence, the characterization of R forms a verifica-
tion of the synthesis of the network.

Example VI.3 The circuit in Example IV.1 is of the form
(8) with

A =
(

0 1
−1 −1

)
; B =

(−1 1
0 −1

)
;

C =
(−1 0

1 1

)
; D =

(
0 0
0 1

)
.

The cone Q = SOL(0,D) is given by {
(
u1
u2

)
| u1 �

0 and u2 = 0} and thus Q∗ = {
(
y1
y2

)
| y1 � 0}. As a

consequence of Theorem VI.2, the set of regular states is
given by

R = {x0 ∈ R
n | C1•x0 � 0} = {x0 ∈ R

n | x0,1 � 0}.
Note that this is in agreement with the phase diagram in
Figure 7. Moreover, in Example V.5 the initial solution
for the state (1, 1)� turned out to contain a non-trivial

impulsive part and hence, (1, 1)� is not regular. This is in
accordance with (1, 1)� �∈ R. Similar statements hold for
the initial state (−e, 1)�.

For further illustration of the structure of the cones Q∗

and R, some additional examples are in order.

Example VI.4 Consider the following situations. In each
case we assume that the quadruple (A,B,C,D) is passive
and satisfies Assumption III.3.
(a) If D = 0, then Q = R

k
+ and Q∗ = R

k
+. Hence, R =

{x0 ∈ R
n | Cx0 � 0}.

(b) If D =
(
0 −1
1 0

)
, then Q = {

(
u1
u2

)
| u1 � 0 and u2 =

0}. Consequently, Q∗ = {
(
y1
y2

)
| y1 � 0} and thus R =

{x0 ∈ R
n | C1•x0 � 0}.

(c) If D is positive definite, it follows that Q = {0}, which
implies that Q∗ = R

k and thus R = R
n.

In the next section, it will be shown that the characteri-
zation of the regular states plays a key role in the proof of
global existence of solutions as the set of such initial states
will be proven to be invariant under the dynamics.

VII. Solution concept and global

well-posedness

In [24, 25] a (global) solution concept has been intro-
duced that is based on concatenation of initial solutions. In
principle, this allows impulses at any mode transition time
(necessary for e.g. unilaterally constrained mechanical sys-
tems). In the context of linear passive electrical networks
with diodes, such a general notion of solution will not be
needed. In fact, the solution concept as formulated in The-
orem V.15 will be extended such that mode changes are
possible. This will be achieved by dropping the Bohl re-
quirement and allowing L2 functions as regular parts. The
function space Lδ(0, T ) consists of the distributions of the
form u = uimp + ureg, where uimp = u0δ with u0 ∈ R and
ureg ∈ L2(0, T ).

Definition VII.1 Consider matrices A ∈ R
n×n, B ∈

R
n×k, C ∈ R

k×n and D ∈ R
k×k such that Assump-

tion III.3 is satisfied and (A,B,C,D) represents a passive
system. Let a time horizon T > 0 and initial state x0
be given. (u, x, y) ∈ Lk+n+k

δ (0, T ) is called a solution to
LCS(A,B,C,D) on [0, T ], if
1. there exists an initial solution (ū, x̄, ȳ) such that

(uimp, ximp, yimp) = (ūimp, x̄imp, ȳimp),

2. xreg(0+) = x0+Bu0 with u0 ∈ R
k given by ūimp = u0δ,

and
3. for almost all t ∈ (0, T )

xreg(t) = xreg(0+) +
∫ t

0

[Axreg(τ) + Bureg(τ)]dτ

yreg(t) = Cxreg(t) + Dureg(t)
0 � ureg(t) ⊥ yreg(t) � 0.
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We have already proven local well-posedness (Theo-
rem V.15). The question arises whether global well-
posedness is also guaranteed.

A. Global existence

We now come to the main existence result of this paper.

Theorem VII.2 Consider matrices A ∈ R
n×n, B ∈

R
n×k, C ∈ R

k×n and D ∈ R
k×k such that Assumption III.3

is satisfied and (A,B,C,D) represents a passive system.
Then, for all initial states x0 and all T > 0 the system
LCS(A,B,C,D) has a solution on [0, T ] in the sense of
Definition VII.1.

Proof: The construction of a solution will be based
on concatenation of initial solutions. Theorem V.15 im-
plies that a solution (u, x, y) exists on [0, τ1) (take τ1 as
large as possible, i.e., equal to ε as in (38)) from initial
state x0. Note that x(0+) ∈ R and that (ureg, xreg, yreg) is
part of a smooth initial solution with initial state xreg(0+).
Since t �→ (ureg, xreg, yreg)(t+ρ) forms a smooth initial so-
lution for any ρ ∈ (0, τ1), we have that xreg(ρ) ∈ R for
all ρ ∈ (0, τ1). Since (ureg, xreg, yreg) is a Bohl function,
the limit limt↑τ1 xreg(t) = xreg(τ1) exists. The closedness
of R (follows from statement 2 in Theorem V.14) implies
that x(τ1) ∈ R. Due to local existence of solutions and
x(τ1) ∈ R, there exists a smooth continuation (a smooth
initial solution) from x(τ1) that defines a solution on [0, τ2)
with τ2 > τ1. This construction can be repeated as long as
the limit limt↑τ x(t) exists, where [0, τ) is the time-interval
on which a solution has been generated so far. An obstruc-
tion to the existence of a global solution (on [0, T ]) might
be that the intervals of continuation [τi, τi+1) are getting
smaller and smaller such that limi→∞ τi = τ∗ < T and
limt↑τ∗ x(t) does not exist. To complete the proof we will
show the existence of the latter limit under any circum-
stances.

Suppose the maximal interval on which a solution
(u, x, y) can be defined is [0, τ∗), τ∗ < T . According to
Lemma IV.4 there is at most exponential growth (ẋ = F Ix)
between mode changes. For shortness we drop the sub-
script reg in the remainder of the proof. Since x is contin-
uous on (0, τ∗) and governed by at most a finite number of
linear dynamics (ẋ = F Ix), x is bounded (say ‖x(t)‖ � M
for all t ∈ [0, τ∗)). On an interval (s, t) ⊆ [0, τ∗) where
(u, x, y) is governed by the dynamics ẋ = F Ix of mode I,
the following estimate holds

‖x(t) − x(s)‖ = ‖eF I(t−s)x(s) − x(s)‖ �
� cI | t− s | ‖x(s)‖ � cIM | t− s | . (46)

Indeed, note that the matrix function t �→ etF I −I
t is

bounded (by cI) on [0, τ∗). Hence, for (s, t) ⊆ [0, τ∗) with
x possibly evolving through several modes we get from (46)
that

‖x(t) − x(s)‖ � M max
I⊆{1,...,k}

cI | t− s | .

This implies that x is Lipschitz continuous on [0, τ∗) and
thus also uniformly continuous. It follows from a stan-
dard result in mathematical analysis [49, ex. 4.13] that
x∗ := limt↑τ∗ x(t) exists. From the construction above it
can be derived that x(t) ∈ R for all t ∈ [0, τ∗) and hence,
x∗ ∈ R, which implies that smooth continuation is possible
(local existence) from x∗ beyond τ∗. This contradicts the
definition of τ∗. Hence, existence of a solution on [0, T ] is
guaranteed. ✷

B. Uniqueness

It can easily be seen that the solutions obtained by the
construction in Theorem VII.2 must be unique, because
the initial solutions are unique (see e.g. [25]). However, it
might be possible that a different construction yields other
solutions. The following theorem states that this is not the
case.

Theorem VII.3 Consider matrices A ∈ R
n×n, B ∈

R
n×k, C ∈ R

k×n and D ∈ R
k×k such that Assumption III.3

is satisfied and (A,B,C,D) represents a passive system.
Then for all initial states x0 and all final times T > 0
there exists at most one solution (u, x, y) ∈ Lk+n+k

δ (0, T )
to LCS(A,B,C,D) in the sense of Definition VII.1.

Proof: Suppose that two solutions (u, x, y) and
(u′, x′, y′) exist in the sense of Definition VII.1. According
to Corollary V.9 there exists exactly one initial solution
from the initial state x0. This implies that the impulsive
parts of (u, x, y) and (u′, x′, y′) must be the same and more-
over, that the re-initialization from x0 must be unique so
that x(0+) = x′(0+). Clearly, (u− u′, x− x′, y− y′) satis-
fies (6) from initial state 0 and is smooth. The dissipation
inequality yields

∫ t

0

[u(τ) − u′(τ)]�[y(τ) − y′(τ)]dτ �

[x(t) − x′(t)]�K[x(t) − x′(t)]

for all t ∈ (0,∞). From the fact that u, u′, y and y′ are
nonnegative almost everywhere and the complementarity
of (u, y) and (u′, y′), we obtain

∫ t

0

[u(τ) − u′(τ)]�[y(τ) − y′(τ)]dτ � 0.

Hence,
[x(t) − x′(t)]�K[x(t) − x′(t)] � 0

for all t ∈ (0,∞). Since K > 0, we obtain x(t) = x′(t) for
all t. Since B is of full column rank, it follows that u = u′

and y = y′ almost everywhere. ✷

Since the global solution is unique, the solution must be
equal to the one constructed in the proof of Theorem VII.2.
This characterizes the nature of solutions to linear passive
complementarity systems. Between mode changes the tra-
jectories are of Bohl type and thus real-analytic. Moreover,
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the set E of mode transition times is right-isolated, i.e., for
all τ ∈ E there exists an α > 0 such that (τ, τ + α) ∩ E is
empty.

Remark VII.4 The fact that the set of mode transi-
tion times E is right-isolated can also be formulated as
follows: there do no exist left-accumulation points2 of
mode transition times in the solutions defined by Defini-
tion VII.1. However, we cannot exclude the existence of
right-accumulation points in general on the basis of this
paper. Using a result in [50] it can be proven that for a
linear passive network with one diode satisfying Assump-
tion III.3 and D = 0 also right-accumulations do not occur.

VIII. Conclusions

In this paper we studied all dynamic piecewise linear
(PL) networks that can be realized by linear passive elec-
trical circuits with ideal diodes. As a result, the systems
under study fall within the realm of linear complementar-
ity systems for which a mathematical framework has been
established in this paper. This framework has led to a
precise definition of a transient true solution and formal
proofs were given for the existence and uniqueness of solu-
tions (well-posedness). Moreover, several regularity prop-
erties of the solutions have been proven. In particular, it
has been shown that derivatives of Dirac impulses do not
occur and that Dirac impulses happen only at the initial
time instant; also the set of regular states has been exactly
characterized.

Such a rigorous basis is needed for many analysis issues
of switched electrical circuits. For instance, the paper [40]
deals with the question whether the approximated time
functions obtained by a time-stepping method [5, 11, 39]
converge to the true transient solution of the network
model. The theory developed in this paper is indispensable
for answering the consistency question for this numerical
simulation technique.

Networks with internally triggered switches have discrete
as well as continuous characteristics. From this point of
view, the paper proposes a systematic modelling framework
and a precise notion of solutions for a class of networks
of such a mixed nature. Systems consisting of continuous
dynamics (differential equations) and switching logic are
sometimes called “hybrid systems” and receive currently
much attention from both control theorists [51, 52] and
computer scientists [53]. Hybrid systems are encountered
in various research programs ranging from switching con-
trollers, unilaterally constrained mechanical systems, piece-
wise linear systems, and switched electrical networks to hy-
draulic systems with valves. Since the underlying problems
for these systems are essentially the same, all these research
programs may benefit from a general theory as is currently
being developed for complementarity systems.

2A point τ is called a left-accumulation point of E ⊆ R, if there
exists a sequence {τi}i∈N with τi ∈ E such that τi > τ and
limi→∞ τi = τ . A right-accumulation point is defined by changing
“>” into “<”.
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