
1

Non-Smooth Model Predictive Control:

Stability and Applications to Hybrid Systems

M. Lazar, W.P.M.H. Heemels, S. Weiland, A. Bemporad

Abstract

In this report we investigate the stability of hybrid systems in closed-loop with Model Predictive

Controllers (MPC) and we derivea priori sufficient conditions for Lyapunov asymptotic stability and

exponential stability. A general theory is presented which proves that Lyapunov stability is achieved for

both terminal cost and constraint setand terminal equality constrainthybrid MPC, even though the

considered Lyapunov function and the system dynamics may be discontinuous. For particular choices

of MPC criteria and constrained Piecewise Affine (PWA) systems as the prediction models we develop

novel algorithms for computing the terminal cost and the terminal constraint set. For a quadratic MPC

cost, the stabilization conditions translate into a linear matrix inequality while, for an∞-norm based

MPC cost, they are obtained as∞-norm inequalities. It is shown that by using∞-norms, the terminal

constraint set is automatically obtained as a polyhedron or a finite union of polyhedra by taking a

sublevel set of the calculated terminal cost function. New algorithms are developed for calculating

polyhedralor piecewise polyhedral positively invariant sets for PWA systems. In this manner, the on-line

optimization problem leads to a mixed integer quadratic programming problem or to a mixed integer

linear programming problem, which can be solved by standard optimization tools. Several examples

illustrate the effectiveness of the developed methodology.
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I. I NTRODUCTION

Hybrid systems provide a unified framework for modeling complex processes that include

both continuous and discrete dynamics. The large variety of practical situations where hybrid

systems are encountered (e.g., physical processes interacting with discrete actuators) led to an

increasing interest in modeling and control of hybrid systems. Several modeling formalisms have

been developed for describing hybrid systems, such as Mixed Logical Dynamical (MLD) systems

[1] or Piecewise Affine (PWA) systems [2], and several control strategies have been proposed

for relevant classes of hybrid systems. In particular, PWA systems have become popular due to

their accessible mathematical description on one hand, and their ability to model a broad class of

hybrid systems [3], [4] on the other. Many of the control schemes for hybrid systems are based

on Model Predictive Control (MPC), e.g., as the ones in [1], [5–7]. MPC, also known asreceding

horizon control, is a control strategy that offers attractive solutions for industry, e.g., see [8] for

a recent survey of industrial MPC controllers. Initial MPC algorithms were exclusively designed

for linear systems and many ideas were soon suitably generalized to nonlinear systems [9]. As a

future objective, it has been pointed out in the survey [9] that many system theoretic concepts,

as well as control strategies like model predictive control, require re-examination for the class

of hybrid systems. More precisely, hybrid MPC faces two difficult problems, which cannot be

handled using the tools developed for linear or nonlinear models. Firstly, the computational

complexity of the constrained optimization problem that has to be solved on-line and, secondly,

guaranteing closed-loop stability. In this paper we focus on the latter problem and we aim

at deriving sufficient conditions that guarantee Lyapunov stability, attractivity and exponential

stability for a general class of hybrid models and MPC optimization criteria. Note that many

of the hybrid MPC schemes e.g., [1], [6], [7], have only been proven to guarantee attractivity,

while Lyapunov stability [10–12] is a desirable property from a practical point of view as well.

This is due to the fact that if attractivity alone is ensured, then in principle, an arbitrarily small

perturbation from the equilibrium may cause the state of the closed-loop system to drift far away

by a fixed distance before converging back to the origin.

In the literature, a hybrid MPC scheme is based on the optimization of a cost function that is

defined using mainly quadratic forms, e.g. [1], [7] or1,∞-norms, e.g. [5], [6]. If a quadratic cost

function is used, the MPC optimization problem leads to a Mixed Integer Quadratic Programming
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(MIQP) problem. An option to guarantee attractivity in this case is to impose aterminal equality

constraint[1]. However, this method has the disadvantage that the predicted state must be brought

to the origin in finite time. This requires that the PWA system is controllable, while stabilizability

should be sufficient in general. Moreover, a longer prediction horizon may be needed for ensuring

feasibility of the MPC optimization problem, which increases the computational complexity.

Controllers with reduced complexity are proposed for this case in [13], but convergence can only

be established by ana posteriorianalysis. Although the terminal equality constraint method has

been proven to guarantee attractivity [1], a proof of Lyapunov stability is missing for hybrid

systems. Also, some quadratic cost hybrid MPC schemes, such as the one in [13], rely on the

result of [9] (which uses continuity of the MPC value function) to claim stability. Since continuity

of the value function is not guaranteed in the hybrid case, such results only guarantee attractivity

in general. Sorting this aspect out precisely is one of the main topics in this paper. In the case

when the1-norm or the∞-norm is used to define the cost function, the MPC optimization

problem leads to a Mixed Integer Linear Programming (MILP) problem. Ana priori heuristic

test for guaranteeing attractivity of∞-norm based MPC of PWA systems has been developed in

[5] and ana posterioristability check has been proposed in [14]. The a posteriori check is based

on computing explicitly the PWA closed-loop dynamics and checking stability afterwards using

the theory of [15], [16]. No indication is available how to adapt the original MPC set-up in case

that the closed-loop system is unstable. The use of an a posteriori stability check emphasizes

the need for conditions that guarantee stability in hybrid MPC. The inclusion of such conditions

in the MPC design (i.e. a priori) would yield a major advantage. This is one of the motivations

for this work.

In this technical report we derivea priori sufficient conditions for asymptotic stability (includ-

ing Lyapunov stability) of both terminal cost and constraint set and terminal equality constraint

hybrid MPC. We present a general theory for a wide class of hybrid models and MPC cost

functions and we show that Lyapunov stability can be achieved even though the value function

and the system dynamics are discontinuous. New methods for calculating the terminal cost and

the terminal constraint set are developed for the particular case of constrained PWA systems. In

the case of a quadratic cost, the conditions are obtained in the Linear Matrix Inequalities (LMI)

form and thus, the terminal weight(s) can be calculated using semi-definite programming. For

an∞-norm based cost, the conditions are specified using∞-norm inequalities, which lead to a
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constrained optimization problem that has to be solved off-line. One of the advantages of using

∞-norms is that the terminal constraint set can be automatically obtained as a polyhedron or a

finite union of polyhedra by taking a sublevel set of the calculated terminal cost function. We

also develop new algorithms for calculating positively invariant sets for feedback controlled PWA

systems. These algorithms provide the means to come up withpolyhedralpositively invariant sets

in the case of quadratic forms based hybrid MPC and thereby obtaining an MIQP optimization

problem.

The report is organized as follows. Section II deals with preliminary definitions and Section III

provides a precise problem formulation. Section IV deals with discrete-time Lyapunov stability,

and the results regarding stability of hybrid MPC are given in Section V. For the case of

constrained PWA systems, methods for calculating the terminal cost, the terminal constraint set

and the value of the prediction horizon are developed in Section VI and Section VII for hybrid

MPC based on quadratic costs and for hybrid MPC based on∞-norms, respectively. The special

case of terminal equality constraint hybrid MPC is addressed in Section VIII and the conclusions

are summarized in Section IX.

II. PRELIMINARIES

Let R, R+, Z and N denote the field of real numbers, the set of non-negative reals, the set

of integer numbers and the set of non-negative integers, respectively. LetS ⊆ Rn be a set. We

denote by∂S the boundary ofS, by int(S) its interior and bycl(S) its closure. For any real

λ ≥ 0, the setλS is defined as{x ∈ Rn : x = λy, y ∈ S}.

Consider the time-invariant discrete-time autonomous nonlinear system described by

xk+1 = G(xk), (1)

whereG : Rn → Rn is an arbitrary,possibly discontinuous, nonlinear function. A pointx∗ ∈ Rn

is an equilibrium point of system (1), ifG(x∗) = x∗. For convenience we recall the following

definitions related to stability.

Definition II.1 Let x∗ ∈ Rn be an equilibrium point of system (1) and letX ⊆ Rn be a set that

contains an open neighborhood ofx∗.
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1) The equilibriumx∗ is Lyapunov stableif for any ε > 0 there exists aδ = δ(ε) > 0 such

that

‖x0 − x∗‖ ≤ δ ⇒ ‖xk − x∗‖ ≤ ε for all k ≥ 0,

wherexk is the state of system (1) at timek ≥ 0 with initial statex0 at timek = 0.

2) The equilibriumx∗ is attractive inX if

lim
k→∞

‖xk − x∗‖ = 0, for all x0 ∈ X .

3) The equilibriumx∗ is locally attractive if there exists aδ > 0 such that

‖x0 − x∗‖ ≤ δ ⇒ lim
k→∞

‖xk − x∗‖ = 0.

4) The equilibriumx∗ is globally attractiveif it is attractive inRn.

5) The equilibriumx∗ is asymptotically stable inX in the Lyapunov senseif it is both

Lyapunov stable and attractive inX .

6) The equilibriumx∗ is locally (globally) asymptotically stable in the Lyapunov senseif it

is both Lyapunov stable and locally (globally) attractive.

7) The equilibriumx∗ is exponentially stable inX if there existθ > 0 andλ ∈ [0, 1) such

that

‖xk − x∗‖ ≤ θ‖x0 − x∗‖λk, for all x0 ∈ X and for all k ≥ 0.

8) The equilibriumx∗ is locally exponentially stableif there exists aδ > 0, θ > 0 and

λ ∈ [0, 1) such that

‖x0 − x∗‖ ≤ δ ⇒ ‖xk − x∗‖ ≤ θ‖x0 − x∗‖λk, for all k ≥ 0.

9) The equilibriumx∗ is globally exponentially stableif it is exponentially stable inRn.

Definition II.2 A real-valued scalar functionϕ : R+ → R belongs to classM (ϕ ∈M) if it is

continuous, non-decreasing and ifϕ(0) = 0 andϕ(x) > 0 for x > 0.

Definition II.3 Let 0 ≤ λ ≤ 1 be given. A setP ⊆ Rn is called aλ-contractive setfor system

(1) if for all x ∈ P it holds thatG(x) ∈ λP. For λ = 1 a λ-contractive set is called apositively

invariant set.

September 1, 2005 DRAFT



6

Definition II.4 A setP ⊆ Rn is called the maximal positively invariant setcontained in a set

X ⊆ Rn for system (1) if the following conditions are satisfied:

1) P ⊆ X .

2) P is a positively invariant set for system (1).

3) If P̃ is a positively invariant set for system (1) and̃P ⊆ X , thenP̃ ⊆ P.

A polyhedron is a convex set obtained as the intersection of a finite number of open and/or

closed half-spaces. Moreover, a convex and compact set inRn that contains the origin in its

interior is called a C-set [17]. A piecewise polyhedral set is a finite union of polyhedral sets.

The p-norm of a vectorx ∈ Rn is defined as:

‖x‖p ,

(|x1|p + . . .+ |xn|p)
1
p , 1 ≤ p <∞

maxi=1,...,n |xi|, p = ∞
,

wherexi, i = 1, . . . , n is the i-th component ofx. For a matrixZ ∈ Rm×n we define

‖Z‖p , sup
x 6=0

‖Zx‖p

‖x‖p

, p ≥ 1,

as the induced matrix norm. It is well known [18] that‖Z‖∞ = max1≤i≤m

∑n
j=1 |Z{ij}|, where

Z{ij} is theij -th entry ofZ. For a matrixZ ∈ Rm×n with full-column rank,Z−L := (Z>Z)−1Z>

denotes the Moore-Penrose inverse [18], which satisfiesZ−LZ = In. For a positive definite

matrixZ, Z
1
2 denotes the Cholesky factor [18], which satisfies(Z

1
2 )>Z

1
2 = Z

1
2 (Z

1
2 )> = Z and,

λmin(Z) andλmax(Z) denote the smallest and the largest eigenvalue ofZ, respectively.

III. PROBLEM STATEMENT

Consider the time-invariant discrete-time nonlinear system

xk+1 = g(xk, uk), (2)

wherexk ∈ X ⊆ Rn is the state,uk ∈ U ⊆ Rm is the control input at the discrete-time instant

k ≥ 0 and g : Rn × Rm → Rn is an arbitrary,possibly discontinuous, nonlinear function. The

setsX andU specify state and input constraints and it is assumed that they are polyhedral C-sets.

We assume for simplicity that the origin is an equilibrium state for (2) withu = 0, meaning that

g(0, 0) = 0. Note that the class of nonlinear dynamical systems (2) contains certain classes of

hybrid systems, such as PWA systems, due to the fact thatg may be discontinuous. For a fixed
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N ∈ N, N ≥ 1, let xk(xk,uk) := (xk+1, . . . , xk+N) denote a state sequence generated by system

(2) from initial statexk and by applying the input sequenceuk := (uk, . . . , uk+N−1) ∈ UN .

Furthermore, letXT ⊆ X denote a desired target set that contains the origin.

Definition III.1 The class ofadmissible input sequencesdefined with respect toXT and state

xk ∈ X is UN(xk) := {uk ∈ UN | xk(xk,uk) ∈ XN , xk+N ∈ XT}.

Now consider the following constrained optimization problem.

Problem III.2 Let the target setXT ⊆ X andN ≥ 1 be given and letF : Rn → R+ with

F (0) = 0 andL : Rn × Rm → R+ with L(0, 0) = 0 be mappings. At timek ≥ 0 let xk ∈ X be

given and minimize the cost function

J(xk,uk) , F (xk+N) +
N−1∑
i=0

L(xk+i, uk+i) (3)

over all input sequencesuk ∈ UN(xk).

In the following, we callF , L andN the terminal cost, the stage cost and the prediction horizon,

respectively. We call an initial statex ∈ X feasible if UN(x) 6= ∅. Similarly, Problem III.2 is

said to be feasible (orsolvable) for x ∈ X if UN(x) 6= ∅. Let Xf (N) denote the set offeasible

initial stateswith respect to Problem III.2 and let

VMPC : Xf (N) → R+, VMPC(xk) , inf
uk∈UN (xk)

J(xk,uk) (4)

denote the value function corresponding to (3). Throughout the paper we assume that there exists

an optimal sequence of controls

u∗k , (u∗k, u
∗
k+1, . . . , u

∗
k+N−1) (5)

calculated for statexk ∈ Xf (N) and Problem III.2. Hence, the infimum in (4) is a minimum

andVMPC(xk) = J(xk,u
∗
k). The following stability analysis is not affected by the possible non-

uniqueness of the optimal control sequence (5), i.e. all results apply irrespective of which optimal

sequence is selected. Letx∗k(xk,u
∗
k) := (x∗k+1, . . . , x

∗
k+N) denote the state sequence generated

by system (2) from initial statexk ∈ Xf (N) and by applying the optimal sequence of controls

u∗k. Let u∗k(1) denote the first element of the sequence (5). According to the receding horizon

strategy, theMPC control law is defined as

uMPC
k = u∗k(1); k ∈ N. (6)
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A precise problem formulation can now be stated as follows.

Problem III.3 Let a desired set of initial statesX0 ⊆ X, system (2) and the stage costL be

given. Determine a terminal costF , a terminal constraint setXT and a prediction horizonN

such that system (2) in closed-loop with the MPC control (6) is asymptotically stable in the

Lyapunov sense inXf (N) andX0 ⊆ Xf (N).

Note that many of the hybrid MPC schemes only guarantee attractivity, e.g., see [1], [5–7],

and not Lyapunov stability, which is an important property in practice. This is due to the fact

that if attractivity alone is ensured, then in principle, an arbitrarily small perturbation from the

equilibrium may cause the state of the closed-loop system to drift far away by a fixed distance

before converging back to the origin.

IV. D ISCRETE-TIME LYAPUNOV STABILITY

In this section we formulate discrete-time stability results for thediscontinuousautonomous

nonlinear system (1). We assume thatx∗ = 0 is an equilibrium point for system (1), i.e.G(0) = 0,

and we derive sufficient conditions for asymptotic stability and exponential stability. Consider a

non-negative scalar functionV : Rn → R+ with V (0) = 0 and let∆V (xk) := V (xk+1)−V (xk) =

V (G(xk)) − V (xk) denote the forward difference ofV . Let w, ψ and r be classM functions

and consider the following assumptions.

Assumption IV.1 For everyε > 0 there exists aδ(ε) ∈ (0, ε) such thatψ(δ) < w(ε).

Assumption IV.2 w(‖x‖) := a‖x‖σ, ψ(‖x‖) := b‖x‖σ, r(‖x‖) := c‖x‖σ for somea, b, c, σ > 0.

Theorem IV.3 Let X ⊆ Rn be a positively invariant set for system (1) that contains a neighbor-

hood N of the equilibrium x∗ = 0 and let w, ψ and r be class M functions. Suppose there exists

a non-negative scalar function V : X → R+ with V (0) = 0 such that:

V (x) ≥ w(‖x‖), ∀x ∈ X , (7a)

V (x) ≤ ψ(‖x‖), ∀x ∈ N , (7b)

∆V (x) ≤ −r(‖x‖), ∀x ∈ X . (7c)

Then the following results hold:
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1) Under Assumption IV.1 the origin of the nonlinear system (1) is asymptotically stable in the

Lyapunov sense in X .

2) Under Assumption IV.2 the origin of the nonlinear system (1) is locally exponentially stable.

Moreover, if the inequality (7b) holds for N = X , then the origin of the nonlinear system

(1) is exponentially stable in X .

Proof: Stability. Let xk represent the solution of (1) at timek, obtained from the initial

condition x0 at time k = 0. Choose anη > 0 such that the ballBη := {x ∈ Rn | ‖x‖ ≤ η}

satisfiesBη ⊆ N . Due to Assumption IV.1 we can choose for any0 < ε ≤ η a δ ∈ (0, ε)

such thatψ(δ) < w(ε). For anyx0 ∈ Bδ ⊆ X , due to positive invariance ofX , from (7) and

Assumption IV.1 it follows that

. . . ≤ V (xk+1) ≤ V (xk) ≤ . . . ≤ V (x0) ≤ ψ(‖x0‖) ≤ ψ(δ) < w(ε).

Since from (7a) we have thatV (x) ≥ w(ε) for all x ∈ X \ Bε it follows that xk ∈ Bε for all

k ≥ 0. Hence, the origin of the nonlinear system (1) isLyapunov stable.

Attractivity. SinceV is lower bounded by zero and∆V (xk) ≤ 0, it follows thatlimk→∞ V (xk) =

VL ≥ 0 exists. Then,limk→∞ ∆V (xk) = VL − VL = 0. Since0 ≤ r(‖xk‖) ≤ −∆V (xk), it

follows that limk→∞ r(‖xk‖) = 0. Assume by contradiction that‖xk‖ 9 0 for k → ∞. Then

there exists a subsequence{xkn} such that‖xkn‖ > µ > 0 for all n ≥ 0, which by monotonicity

and positivity of r implies thatr(‖xkn‖) ≥ r(µ) > 0 for all n ≥ 0. Hence, we reached a

contradiction of convergence ofr(‖xk‖) to zero. Thenlimk→∞ ‖xk‖ = 0 for all x0 ∈ X , which

implies that the origin of the nonlinear system (1) is attractive inX and thus, we haveasymptotic

stability in X in the Lyapunov sense.

Exponential stability. Supposex0 ∈ Bδ. Thenxk ∈ Bε ⊆ N for all k ∈ N. Therefore it holds

that V (xk) ≤ ψ(‖xk‖) and∆V (xk) ≤ −r(‖xk‖) for all k ∈ N. Then, by Assumption IV.2, we

have that for allk ∈ N

V (G(xk))− V (xk) ≤ −c‖xk‖σ = −c
b
ψ(‖xk‖) ≤ −c

b
V (xk).

This implies that:

V (xk) ≤ (1− c

b
)kV (x0) for all k ≥ 0.

In order to show that0 ≤ 1− c
b
< 1, we use the inequalities (7b) and (7c), which yield:

0 ≤ V (G(xk)) ≤ V (xk)− c‖xk‖σ ≤ ψ(‖xk‖)− c‖xk‖σ = (b− c)‖xk‖σ.
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Hence, it follows thatb ≥ c > 0. Then, we have thatρ := 1 − c
b
∈ [0, 1). From (7a), (7b) and

by Assumption IV.2 it follows that

a‖xk‖σ ≤ V (xk) ≤ ρkV (x0) ≤ ρkb‖x0‖σ, for all k ≥ 0.

Hence,‖xk‖ ≤ θ‖x0‖λk for all x0 ∈ Bδ and allk ≥ 0, with θ := ( b
a
)

1
σ > 0 andλ := ρ

1
σ ∈ [0, 1).

This means that the origin of the nonlinear system (1) islocally exponentially stable, i.e. in a

ball Bδ ⊆ N . Moreover, sinceX is a positively invariant set for system (1), if inequality (7b)

holds forN = X then, by applying the same reasoning as above, it follows that the origin of

the nonlinear system (1) isexponentially stable inX .

Remark IV.4 It is crucial to point out the following aspects regarding Theorem IV.3:

1) The hypothesis of Theorem IV.3 allows bothV andG to be discontinuous forx 6= 0.

2) The requirement thatw, ψ and r are classM functions replaces the more common and

more restrictive requirement thatw, ψ andr are classK functions [11] (K ⊂M).

3) For x ∈ Bδ ⊆ N we have that‖x‖ ≤ δ, which implies that forx ∈ X \ Bδ, ‖x‖ > δ.

Then, from inequality (7a) it follows that there exists a lower bound onV outside the ball

Bδ, i.e. for x ∈ X \ Bδ. This replaces the more common and somewhat more restrictive

assumption thatV is radially unbounded (i.e.V (x) →∞ as‖x‖ → ∞).

The classical proof of the first result of Theorem IV.3, e.g. the one given in [10–12], is based

on the fact thatG is continuous. However, if one can chooseδ such that Assumption IV.1 holds,

then the continuity ofV andG is no longer a necessary condition. In [16] this was pointed out

for the particular case of PWA systems and Piecewise Quadratic (PWQ) Lyapunov functions,

which is a special case of the general Theorem IV.3. Also, in [19] it was observed thatV does

not need to be continuous in order to achieve Lyapunov stability. Due to the fact that [19] dealt

with stability of perturbed Lipschitz continuous nonlinear systems, this issue was not further

pursued. Since Theorem IV.3 applies to discontinuousV andG, this is a result of considerable

importance for general discontinuous dynamical systems and hybrid systems, as will be made

clear in the sequel.

V. STABILITY OF HYBRID MODEL PREDICTIVE CONTROL

In this section we investigate the MPC stabilization of thediscontinuousnonlinear system (2),

which also includes certain relevant classes of hybrid systems. We will employterminal cost and
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constraint setand terminal equality constraintmethods as the ones used forsmoothnonlinear

systems in [9] in order to guarantee stability for the closed-loop system (2)-(6). Typically, these

methods rely on the fact thatVMPC and the system dynamics are continuous (e.g., see Section

3.2 of [9] or Theorem 4.4.2 of [20]). This requirement is induced by the classical Lyapunov

proof of Theorem IV.3 [10], as mentioned before. Of course, this condition is easily satisfied

for (unconstrained) linear systems andsmoothnonlinear systems by using a common MPC cost

criterion. However, it no longer holds in the case of discontinuous dynamical systems and hybrid

systems. Actually, in the survey [9] it was pointed out that all the concepts and ideas used in

MPC should be reconsidered in the hybrid context.

A. Terminal cost and constraint set

Consider an auxiliary static state-feedback control law

ũk , h(xk), (8)

with h being an arbitrary, possibly discontinuous, nonlinear function which is zero at zero

(h(0) = 0). Let XU := {x ∈ X | h(x) ∈ U} denote the safe set with respect tostate and input

constraints for this control law.

Assumption V.1 There existw,ψ ∈M such thatL(x, u) ≥ w(‖x‖) for all x ∈ Xf (N) and all

u ∈ U, andF (x) ≤ ψ(‖x‖) for all x ∈ XT .

Theorem V.2 Suppose XT is a closed positively invariant set for the closed-loop system (2)-(8)

that contains the origin in its interior and that XT is contained in the safe set XU. Fix N ≥ 1.

Furthermore, suppose that the following inequality is satisfied:

F (g(xk, h(xk)))− F (xk) + L(xk, h(xk)) ≤ 0, for all xk ∈ XT , (9)

where h(xk) defines the control law (8). Then it holds that

1) If Problem III.2 is feasible at time k ∈ N for state xk ∈ X, then Problem III.2 is feasible at

time k + 1 for state xk+1 = g(xk, u
MPC
k ). Moreover, Problem III.2 is feasible for all x ∈ XT .

2) Under Assumption IV.1 and Assumption V.1 the origin of system (2) in closed-loop with

the MPC control (6) is asymptotically stable in Xf (N), while satisfying the state and input

constraints.
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3) Under Assumption IV.2 and Assumption V.1 the origin of system (2) in closed-loop with

the MPC control (6) is locally exponentially stable, while satisfying the state and input

constraints.

Proof: Consider the optimal sequence of controls (5) and the shifted sequence of controls

uk+1 , (u∗k+1, u
∗
k+2, . . . , u

∗
k+N−1, ũk+N), (10)

where the auxiliary control̃uk+N denotes the control law (8) at timek +N .

1) If Problem III.2 is feasible at timek ∈ N for statexk ∈ Ωj then there existsu∗k ∈ UN(xk)

that solves Problem III.2. Then it follows thatxk+N ∈ XT . SinceXT ⊆ XU is positively invariant

for system (22) it follows thatuk+1 ∈ UN(xk+1). Hence, Problem III.2 is feasible for state

xk+1 = g(xk, u
MPC
k ). Moreover, all states in the setXT ⊆ XU are feasible with respect to

Problem III.2, as the feedback (8) can be applied for anyk ≥ 0. This implies thatXT ⊆ Xf (N).

2) From (3), (4) and by Assumption V.1 we have that

VMPC(xk) ≥ L(xk, u
MPC
k ) ≥ w(‖xk‖), ∀x ∈ Xf (N). (11)

Let x̃k(xk) := (x̃k+1, . . . , x̃k+N) denote the state sequence generated by the “local” dynamics

xk+1 = g(xk, h(xk)) from initial statexk ∈ XT . Sincex̃k(xk) ∈ XN
T , (9) holds for all elements

of the sequencẽxk(xk), yielding:

F (x̃k+1)− F (xk) + L(xk, h(xk)) ≤ 0, F (x̃k+2)− F (x̃k+1) + L(x̃k+1, h(x̃k+1)) ≤ 0,

. . . , F (x̃k+N)− F (x̃k+N−1) + L(x̃k+N−1, h(x̃k+N−1)) ≤ 0.

From the above inequalities, by optimality and by Assumption V.1 it follows that

VMPC(xk) ≤ J(xk, ũk) ≤ F (xk) ≤ ψ(‖xk‖), ∀xk ∈ XT , (12)

whereũk := (h(xk), . . . , h(x̃k+N−1)). By optimality, we observe that for allxk ∈ Xf (N)

∆VMPC(xk) = J(xk+1,u
∗
k+1)− J(xk,u

∗
k) ≤ J(xk+1,uk+1)− J(xk,u

∗
k) =

= −L(xk, u
MPC
k ) + F (x̃k+N+1)− F (x∗k+N) + L(x∗k+N , h(x

∗
k+N)). (13)

By the hypothesis (9), fromx∗k+N ∈ XT and using Assumption V.1 it follows that

∆VMPC(xk) ≤ −L(xk, u
MPC
k ) ≤ −w(‖xk‖), ∀xk ∈ Xf (N). (14)
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We observe that under Assumption V.1 and Assumption IV.1VMPC satisfies the hypothesis of

Theorem IV.3 for the classM functionsw, ψ, r = w and forX = Xf (N), N = XT . Hence,

the second statement of Theorem V.2 follows from Theorem IV.3.

3) From the proof of 2) it also follows thatVMPC satisfies the hypothesis of Theorem IV.3 for

the classM functionsw, ψ, r = w and forX = Xf (N), N = XT . Hence, the last statement of

Theorem V.2 follows from Theorem IV.3.

Next, consider the closed-loop nonlinear system (2)-(8), i.e.

xk+1 = g(xk, h(xk)). (15)

In the sequel we will make use of the following result obtained as a by-product of Theorem V.2.

Corollary V.3 Consider the closed-loop system (15). Suppose there exists a class M function w

such that F (x) ≥ w(‖x‖) for all x ∈ XT . Furthermore, suppose that the hypothesis of Theorem V.2

and Assumption V.1 hold. Then we have that:

1) Under Assumption IV.1 the origin of system (15) is asymptotically stable in XT , while

satisfying the state and input constraints.

2) Under Assumption IV.2 and if X = Rn, U = Rm and both (9) and Assumption V.1 hold for

XT = Rn, the origin of system (15) is globally exponentially stable.

The proof readily follows from the fact that (9) implies

F (g(xk, h(xk)))− F (xk) ≤ −w(‖xk‖) < 0, for all xk ∈ XT \ {0} (16)

and by using the reasoning used in the proof of Theorem V.2. It is worth pointing out that

Corollary V.3 states thatF is a local Lyapunov function for the closed-loop system (15).

Remark V.4 In order to solve Problem III.3, one still has to compute the terminal constraint

set. It follows from Theorem V.2 that it is sufficient to takeXT as a positively invariant set

for system (15) that contains the origin in its interior, in order to achieve stability. Depending

of the class of systems, there are several methods that can be used to obtainXT , as will be

illustrated in the next sections. Also, it follows from Corollary V.3 that the sublevel sets of the

Lyapunov functionF are positively invariant sets. Hence, depending of the type of terminal cost,

one could takeXT as a suitable sublevel set ofF . Once the terminal set has been calculated,
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one can perform a reachability analysis for system (2) in order to determine the minimum value

of the prediction horizon needed to ensure thatX0 ⊆ Xf (N).

B. Terminal equality constraint

In this subsection we consider the special case whenF (x) = 0 for all x ∈ X andXT = {0},

which corresponds to theterminal equality constraintmethod for guaranteeing stability in MPC

[9].

Assumption V.5 There existw,ϕ ∈M such thatL(x, u) ≥ w(‖x‖) for all x ∈ Xf (N) and all

u ∈ U. There exists a neighborhood of the originN ⊆ Xf (N) such thatL(x∗k+i, u
∗
k+i) ≤ ϕ(‖xk‖)

for all xk ∈ N andi = 0, . . . , N−1, where(u∗k, . . . , u
∗
k+N−1) is an optimal sequence of controls

obtained as in (5) for statex∗k := xk and (x∗k, . . . , x
∗
k+N−1) is the corresponding state trajectory.

Remark V.6 Assumption V.5 requires thatXf (N) contains the origin in its interior. This is

not strictly necessary as the second condition of Assumption V.5 only needs to be satisfied for

N ∩Xf (N). However, the case whenXf (N) does not contain the origin in its interior requires

a modification to the stability notions as the closed-loop system (2)-(6) is not defined on a

neighborhood around the origin. However, the modifications are straightforward.

Theorem V.7 Consider the closed-loop system (2)-(6), the MPC Problem III.2 with XT = {0},

F (x) = 0 for all x ∈ X and fix N ≥ 1. Then it holds that

1) If Problem III.2 is feasible at time k ∈ N for state xk ∈ X, then Problem III.2 is feasible at

time k + 1 for state xk+1 = g(xk, u
MPC
k ).

2) Under Assumption IV.1 and Assumption V.5 the origin of a system (2) in closed-loop with

the MPC control (6) is asymptotically stable in Xf (N), while satisfying the state and input

constraints.

3) Under Assumption IV.2 and Assumption V.5 the origin of a system (2) in closed-loop with

the MPC control (6) is locally exponentially stable, while satisfying the state and input

constraints.

Proof: The proof of the first statement of Theorem V.2 also applies to Proposition V.7

for h(x) = 0 for all x ∈ X andXT = {0}, which is positively invariant. By Assumption V.5,

inequality (11) holds. SinceXT = {0}, F (x) = 0 and h(x) = 0 for all x ∈ X the inequality
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(14) holds. However, note that contrary to the proof of Theorem V.2, the terminal cost no longer

provides a suitable upper bound for the value function (4). Lettingx∗k := xk, by Assumption V.5

we have that

VMPC(xk) = J(xk,u
∗
k) =

N−1∑
i=0

L(x∗k+i, u
∗
k+i) ≤ Nϕ(‖xk‖), ∀xk ∈ N . (17)

We observe that under Assumption V.5 and Assumption IV.1 or Assumption IV.2VMPC satisfies

the hypothesis of Theorem IV.3 for the classM functionsw, ψ = Nϕ, r = w and forX =

Xf (N). Hence, the last two statements follow from Theorem IV.3.

Remark V.8 If there exists a classM function ψ such thatVMPC(xk) ≤ ψ(xk) for all xk ∈

Xf (N), then system (2) in closed-loop with the MPC control (6) is exponentially stable inXf (N),

for both terminal equality constraint and terminal cost and constraint set methods. However, the

existence of a classM upper bound onVMPC for the whole set of feasible states cannot be

guaranteed in general. For example, in the terminal cost and constraint set case the terminal

cost function provides a suitable upper bound only forxk ∈ XT , due to the input constraints.

Exponential stability inXf (N) can be achieved if Assumption V.5 holds for allx ∈ Xf (N)

andF (x∗k+N) ≤ ϕN(‖xk‖) for someϕN(‖xk‖) ∈ M, which ultimately yields a suitable upper

bound forVMPC on Xf (N).

In the following sections we consider the specific cases when the cost functionsF andL are

defined using either quadratic forms or∞-norms. We also provide solutions to the following

problems for the class of constrained PWA systems [2].

Problem V.9

1) P1: Let the system (2) and stage costL be given. For the terminal cost and constraint

set method determine the terminal costF and the auxiliary control law (8) such that

Assumption V.1 holds and inequality (9) is satisfied for the closed-loop system (15). For

the terminal equality constraint method prove thatL satisfies Assumption V.5.

2) P2: Calculate a positively invariant setXT for system (15) (with the feedback control law

uk = h(x) obtained by solving problem P1) that contains the origin in its interior and that

is contained in the safe setXU.
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3) P3: Given a desired set of initial conditionsX0 ⊆ X, take the terminal constraint set

equal to the set obtained by solving problem P2 and calculate the minimum value of the

prediction horizonN such thatX0 ⊆ Xf (N).

Solving the above problems yields a complete solution to Problem III.3.

VI. T ERMINAL COST AND CONSTRAINT SET: QUADRATIC FORMS

Throughout the rest of the paper we consider the class of time-invariant discrete-time Piecewise

Affine (PWA) systems [2] described by equations of the form

xk+1 = Ajxk +Bjuk + fj when xk ∈ Ωj, (18)

which is a sub-class of the discontinuous nonlinear system (2). Also, we take the auxiliary

controller (8) as a PWL state-feedback control law, i.e.

ũk = h(xk) , Kjxk when xk ∈ Ωj, j ∈ S. (19)

Here, xk ∈ X ⊆ Rn is the state anduk ∈ U ⊆ Rm is the control input at the discrete-time

instantk ≥ 0. Aj ∈ Rn×n, Bj ∈ Rn×m, fj ∈ Rn, Kj ∈ Rm×n, j ∈ S with S := {1, 2, . . . , s} a

finite setof indices ands denoting the number of discrete modes. Here,fj ∈ Rn denotes a fixed

offset vector for allj ∈ S. The collection{Ωj | j ∈ S} defines a partition ofX, meaning that

∪j∈SΩj = X andΩi∩Ωj = ∅ for i 6= j. EachΩj is assumed to be a polyhedron (not necessarily

closed). LetS0 := {j ∈ S | 0 ∈ cl(Ωj)} and letS1 := {j ∈ S | 0 6∈ cl(Ωj)}, so thatS = S0∪S1.

We assume that the origin is an equilibrium state for (18) withu = 0 and we require that

fj = 0 for all j ∈ S0. (20)

The class of hybrid systems described by (18)-(20) contains PWA systems whichmay be

discontinuous over the boundariesand which are Piecewise Linear (PWL), instead of PWA,

in the state space region∪j∈S0Ωj.

In this section we consider the case when quadratic forms are used to define the cost function,

i.e. F (x) = ‖P
1
2

j x‖2
2 = x>Pjx when x ∈ XT ∩ Ωj and L(x, u) = ‖Q 1

2x‖2
2 + ‖R 1

2u‖2
2 =

x>Qx+ u>Ru, and we assume thatXT ⊆ ∪j∈S0Ωj in order to obtain a solution to problem P1.

This yields the following cost:

J(xk,uk) , x>k+NPjxk+N +
N−1∑
i=0

x>k+iQxk+i + u>k+iRuk+i when xk+N ∈ Ωj, j ∈ S0. (21)
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In this casePj, Q ∈ Rn×n andR ∈ Rm×m are assumed to be positive definite matrices. From

(21) it follows that

L(x, u) ≥ x>Qx ≥ λmin(Q)‖x‖2
2

and that

F (x) ≤ max
j∈S0

λmax(Pj)‖x‖2
2.

Then we have that the quadratic forms based terminal cost and stage cost satisfy Assumption V.1

for w(‖x‖) = λmin(Q)‖x‖2
2, ψ(‖x‖) = maxj∈S0 λmax(Pj)‖x‖2

2, which satisfy Assumption IV.1

and Assumption IV.2 (e.g. Assumption IV.1 is satisfied forδ(ε) = η( λmin(Q)
maxj∈S0

λmax(Pj)
)

1
2 ε, where

η ∈ (0, 1) ensures thatδ(ε) < ε).

Hence, we have shown that Assumption V.1 applies for quadratic forms based hybrid MPC.

In the sequel we provide a method for calculating the terminal costF and the auxiliary control

(19) such that inequality (9) is satisfied for the PWA system (18).

A. Computation of the terminal weight(s) - Problem P1

Let Qji := {x ∈ Ωj | ∃u ∈ U : Ajx+Bju+ fj ∈ Ωi}, (j, i) ∈ S0×S0 and letSt0 := {(j, i) ∈

S0 ×S0 | Qji 6= ∅}. The set of pairs of indicesSt0 can be easily determined off-line by solving

s2
0 linear programs. Consider now the PWL sub-system of the PWA system (18), i.e.

xk+1 = Ajxk +Bjuk, when xk ∈ XT ∩ Ωj, j ∈ S0. (22)

The setSt0 contains all discrete mode transitions that can occur in system (22), i.e. a transition

from Ωj to Ωi can occur if and only if(j, i) ∈ St0. Letting uk be the control law (19) in (22)

and substituting the resulting closed-loop system andF in (9) yields that it is sufficient to find

(Pj, Kj) with Pj positive definite for allj ∈ S0 that satisfy the matrix inequality

Pj − (Aj +BjKj)
>Pi(Aj +BjKj)−Q−K>

j RKj > 0, ∀(j, i) ∈ St0, (23)

for (9) to be satisfied with strict inequality. Next, we present three methods that can be used to

solve the nonlinear matrix inequality (23) efficiently using semi-definite programming.

Lemma VI.1 Let {(Pj, Kj, Zj, Yj, Gj) | j ∈ S0} with Zj ,Pj positive definite and Gj invertible

for all j ∈ S0 denote unknown variables that are related according to Zj = P−1
j , Yj = KjP

−1
j and
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Kj = YjG
−1
j , j ∈ S0. Then the following matrix inequalities are equivalent:Pj 0

0 Pj − (Aj +BjKj)
>Pi(Aj +BjKj)−Q−K>

j RKj

 > 0, ∀(j, i) ∈ St0; (24)


Zj Zj Y >

j (AjZj +BjYj)
>

Zj Q−1 0 0

Yj 0 R−1 0

(AjZj +BjYj) 0 0 Zi

 > 0, ∀(j, i) ∈ St0; (25)


Zj (AjZj +BjYj)

> (R
1
2Yj)

> (Q
1
2Zj)

>

(AjZj +BjYj) Zi 0 0

R
1
2Yj 0 I 0

Q
1
2Zj 0 0 I

 > 0, ∀(j, i) ∈ St0; (26)


Gj +G>

j − Zj G>
j Y >

j (AjGj +BjYj)
>

Gj Q−1 0 0

Yj 0 R−1 0

(AjGj +BjYj) 0 0 Zi

 > 0, ∀(j, i) ∈ St0. (27)

The proof of Lemma VI.1 is given in the Appendix. After solving any of the above LMIs, the

terminal weightsPj and the feedbacksKj are simply recovered asPj := Z−1
j andKj := YjZ

−1
j ,

j ∈ S0 for (25) and (26) and asPj := Z−1
j andKj := YjG

−1
j , j ∈ S0 for (27).

If any of the above LMIs is feasible forPj = P for all j ∈ S0 implies thatF (x) = x>Px is a

local common quadratic Lyapunov functionof the closed-loop system (22)-(19). LettingPj 6= Pi

for i 6= j, (i, j) ∈ St0 implies a relaxation in the sense that solving any of the above LMIs now

amounts to searching for aPiecewise Quadratic (PWQ) Lyapunov function[15], [16].

Remark VI.2 In [21] and [13] some preliminary results for the terminal cost and constraint set

method for hybrid MPC based on quadratic cost have been presented. The result of [21] uses

(25) in order to guarantee stability for unconstrained PWL systems in closed-loop with MPC

controllers. The result of [13] uses (26) and relies on [9] (where continuity ofVMPC is used) in

order to guarantee stability of PWA systems in closed-loop with MPC controllers.
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Next, we employ anS-procedure technique with respect to the matrix inequality (23), as done

in [15], to further reduce conservativeness, i.e. we consider the inequality

Pj − (Aj +BjKj)
>Pi(Aj +BjKj)−Q−K>

j RKj − E>
jiUjiEji > 0, ∀(j, i) ∈ St0 (28)

in the unknowns(Pj, Kj, Uji), where the matricesPj are the terminal weights employed in cost

(21), the matricesUji have all entries non-negative and the matricesEji define the conesCji,

which are such thatCji := {x ∈ Rn | Ejix ≥ 0} andQji ⊆ Cji for all (j, i) ∈ St0. Note that if

(Pj, Kj, Uji) with Pj > 0 andUji with all entries non-negative for all(j, i) ∈ St0 satisfy (28),

then it follows that

x>(Pj − (Aj +BjKj)
>Pi(Aj +BjKj)−Q−K>

j RKj)x ≥ x>(E>
jiUjiEji)x ≥ 0 (29)

wheneverx ∈ Qji ⊆ Cji, (j, i) ∈ St0. Hence, (9) is satisfied and conservativeness is reduced

when comparing to the matrix inequality (23). However, the techniques used in the proof of

Lemma VI.1 can not be used to transform (28) into an LMI, as this would require the matrices

Uji to be positive definite, which increases conservativeness.

We therefore develop an alternative method for finding a solution to the matrix inequality

(28). This method is based on solving a sequence of LMIs that is obtained by fixing a suitable

basis of the state space and successively selecting tuning parameters. Consider an eigenvalue

decomposition of the terminal weight matrices from cost (21), i.e.Pj = VjΣjV
>
j , j ∈ S0 where

Σj = diag(σ1j, . . . , σnj), σ1j ≥ . . . ≥ σnj and V >
j = V −1

j . In the sequel we assume that the

orthonormal matrices{Vj | j ∈ S0} are known and letΓj := diag(γ1j, . . . , γnj), j ∈ S0 denote

an arbitrary diagonal matrix. Consider now the following LMI:

∆ji ,


VjΣjV

>
j −Q− E>

jiUjiEji (Aj +BjKj)
>Vi K>

j

V >
i (Aj +BjKj) Γi 0

Kj 0 R−1

 > 0, ∀(j, i) ∈ St0, (30)

in the unknowns{(σ1j, . . . , σnj), (γ1i, . . . , γni), Kj, Uji | (j, i) ∈ St0}. In addition to (30) we

require that the linear scalar inequalities

σ1j ≥ . . . ≥ σnj > 0, γnj ≥ . . . ≥ γ1j > 0, (31a)

1

εlj
− σlj ≥ 0, εlj − γlj ≥ 0, l = 1, . . . , n, (31b)
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with εlj fixed constants (scaling factors) in(0, 1], are satisfied for allj ∈ S0 and that

Uji has all entries non-negative,∀(j, i) ∈ St0. (32)

Note that the scaling factorsεlj ∈ (0, 1] are assumed to be known in (31) and that condition

(32) can be easily written as an LMI. Hence, the conditions (30)-(31)-(32) are in the LMI form.

Theorem VI.3 Choose the orthonormal matrices Vj and the scaling factors εlj ∈ (0, 1], l =

1, . . . , n, j ∈ S0 such that the LMI (30)-(31)-(32) is feasible. Let (σ1j, . . . , σnj), (γ1i, . . . , γni),

Kj , Uji be a solution. Then (Pj, Kj, Uji) with Pj = Vj diag(σ1j, . . . , σnj)V
>
j > 0 is a solution of

the matrix inequality (28).

The proof of Theorem VI.3 is given in the Appendix. Note that solving the LMI (30)-(31)-

(32) hinges on the fact that the orthonormal matricesVj and the scaling factorsεlj ∈ (0, 1],

l = 1, . . . , n, j ∈ S0 must be chosen a priori. This is not a problem with respect to the scaling

factors, which can be chosen arbitrarily small. However, when it comes to fixing the matrices

Vj, it is interesting to find out how they should be chosen such that by varyingσ1j, . . . , σnj a

sufficiently wide range ofPj matrices is covered. An answer to this question can be obtained

for the two dimensional case, where all orthonormal matrices can be parameterized according

to

Vj :=

− sin θj cos θj

cos θj sin θj

 , (33)

where0 ≤ θj ≤ π. In this way, multiple solutions of the LMI (30)-(31)-(32) can be obtained by

varyingθj, as will be illustrated in Example 2. A similar explicit form ofVj can be specified also

in the three dimensional case, by using two angles, i.e.,θ1j andθ2j. However, these expressions

get more complicated in higher dimensional spaces.

B. Computation of the terminal constraint set - Problem P2

A solution to problem P2 has been presented recently in [22], where the standard algorithm

for the calculation of the maximal positively invariant set for a linear system [17], [23] has been

extended to PWA systems. However, the worst-case number of one-step controllable sets that

have to be calculated in thei-th iteration of the algorithm of [22] equalssi
0, wheres0 is the

number of elements of the setS0. Hence, this approach may lead to a combinatorial explosion of
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possibilities and consequently, to numerical difficulties on one hand and a complex representation

of the terminal set on the other. This means that additional Boolean variables and inequalities

must be added to the Problem III.2.

In this subsection we develop two methods for solving problem P2, which do not suffer from

a combinatorial drawback and yield a simpler representation of the terminal set. Consider the

closed-loop system (22) with the feedback gains calculated as in Section VI-A, i.e.

xk+1 = (Aj +BjKj)xk =: Acl
j xk when xk ∈ Ωj, j ∈ S0. (34)

The first method deals with the computation of apolyhedralpositively invariant set for the

PWL system (34). To do so, we consider the autonomous switched linear system corresponding

to (34), i.e.

xk+1 = Acl
j xk, j ∈ S0, (35)

where we removed the switching rule from (34), turning the PWL system (34) into a switched

linear system (35) with arbitrary switching.

Definition VI.4 Let 0 ≤ λ ≤ 1 be given. A setP ⊆ Rn is called aλ-contractive setfor system

(35) with arbitrary switching if for allx ∈ P and all j ∈ S0 it holds thatAcl
j x ∈ P. For λ = 1,

P is called apositively invariant setfor system (35) with arbitrary switching.

We make use of the following result.

Lemma VI.5 A set which is positively invariant (λ-contractive) for the switched linear system

(35)under arbitrary switching is also a positively invariant (λ-contractive) set for the PWL system

(34).

Proof: This follows directly from the fact that, for the PWL system (34),xk+1 = Acl
j xk

for at least onej ∈ S0 at any discrete-time instantk ∈ N.

Since we require thatXT ⊆ XU∩{∪j∈S0Ωj} andXU is not convex in general, we consider in the

following a new safe set,̃XU, taken as a reasonably large polyhedral set (that contains the origin

in its interior) insideXU ∩ {∪j∈S0Ωj}. For instance, ifXU ⊆ ∪j∈S0Ωj is a polyhedron, we set

X̃U = XU or, if ∪j∈S0Ωj is a polyhedron we could set̃XU = {x ∈ ∪j∈S0Ωj | Kjx ∈ U,∀j ∈ S0}.

For an arbitrary target setX we denoteQ1
j(X ) := {x ∈ Rn | Acl

j x ∈ X}. Note that ifX is a

polyhedron that contains the origin, thenQ1
j(X ) has the same properties [17].
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Consider now the following sequence of sets:

X0 = X̃U, Xi =
⋂

j∈S0

X j
i , i = 1, 2, . . . , (36)

whereX j
i := Q1

j(Xi−1)
⋂
Xi−1, i = 1, 2, . . . .

Theorem VI.6 The following properties hold with respect to the sequence of sets (36):

1) The maximal positively invariant set contained in the safe set X̃U for system (35) with

arbitrary switching is a convex set that contains the origin and is given by

P =
∞⋂
i=0

Xi = lim
i→∞

Xi. (37)

2) If an algorithm based on the recurrent sequence of sets (36) terminates in a finite number of

iterations then the set P defined as in (37) is a polyhedral set.

3) If there exists a λ-contractive set with 0 < λ < 1 for system (35) under arbitrary switching

and if this set contains the origin in its interior, then an algorithm based on the recurrent

sequence of sets (36) terminates in a finite number of iterations.

4) The set P defined as in (37) is a positively invariant set for the PWL system (34).

The proof of Theorem VI.6 is given in the Appendix. If an algorithm based on (36) is used

to calculate a positively invariant for system (34), then a number ofs0 one-step controllable

setsQ1
j(Xi−1) must be computed at each iteration, while the algorithm of [22] requires the

computation ofsi
0 one-step controllable sets at thei-th iteration. Hence, we have overcome the

combinatorial drawback. Moreover,P is directly given by a finite number of linear inequalities.

Thus, no additional Boolean variables need to be added for representing the terminal constraint

set in Problem III.2. However, in this caseP will not be the maximal positively invariant set

for the PWL system (34). Then a larger prediction horizon may be required for feasibility.

Under conditions (23) or the relaxed conditions (28), aλ-contractive set can be obtained by

taking a sublevel set of the PWQ Lyapunov functionF (x) = x>Pjx when x ∈ Ωj. Next, we

present a method for obtainingpiecewise polyhedralpositively invariant sets for asymptotically

stable PWA systems for which there exists a PWQ Lyapunov function.

Theorem VI.7 Consider system (34)and a (piecewise ellipsoidal) sublevel set of a corresponding

PWQ Lyapunov function F , i.e.

E := ∪j∈S0Ej with Ej := {x ∈ XU ∩ Ωj | F (x) ≤ c}, c > 0, j ∈ S0,
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which is contained in the safe set XU. Let α ∈ (0, 1) be such that E is α-contractive. Now assume

that there exist polyhedral sets Pj that satisfy αEj ⊆ Pj ⊆ Ej for all j ∈ S0. Then the piecewise

polyhedral set P := ∪j∈S0Pj is a positively invariant set for system (34) and P ⊆ XU.

Proof: FromαEj ⊆ Pj ⊆ Ej for all j ∈ S0 we have thatαE ⊆ P ⊆ E . Thus,P ⊆ XU. Let

x ∈ P. Hence, there existsj ∈ S0 such thatx ∈ Pj ⊆ Ωj. Takeγj > 1 such thatγjx ∈ ∂Ej.

Then, it follows thatAcl
j (γjx) ∈ αE . Then, because of positive homogeneity of PWL dynamics,

it follows thatAcl
j x ∈ α

γj
E ⊆ αE . SinceαE ⊆ P, P is a positively invariant set for system (34).

The approach of Theorem VI.7 amounts to solving the problem of fitting a polyhedron in

between two closed ellipsoidal sets where one is contained in the interior of the other. A possible

way to solve this problem has been recently developed in [24] in the context of DC programming

(difference of convex functions). Here, a polyhedral set is constructed by treating the ellipsoidal

sets as sublevel sets of convex functions, and by exploiting upper and lower piecewise affine

bounds on such functions. Giving additional structure to the algorithm of [24] such that it

generates a polyhedron with a finite number of facets for each regionΩj, a piecewise polyhedral

positively invariant set is obtained for the PWL system (34). Note that this method yields a

union of at mosts0 polyhedral sets, while the maximal positively invariant set computed with

the algorithm of [22] may be a union of a larger number of polyhedral sets.

Another method to obtain polyhedral or piecewise polyhedral positively invariant sets for

PWA systems, which is based on using∞-norms as Lyapunov functions, will be presented in

Section VII-B.

C. How to choose the prediction horizon - Problem P3

In the case of hybrid MPC based on quadratic costs, Problem III.2 with the terminal constraint

set calculated as in the previous subsection leads to an MIQP problem. The minimum value of the

prediction horizonN needed to ensure thatX0 ⊆ Xf (N) can be calculated using the procedure

presented in [6]. Another way to find the minimum value of theN needed for feasibility is to

use the Hybrid Toolbox [25] or the MPT Toolbox [26] in order to obtain an explicit solution

to Problem III.2. The explicit solution can be calculated for both quadratic forms and∞-norms

based costs (using multiparametric programming) with the Matlab functionexpcon(mpt control)
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of the Hybrid Toolbox (MPT Toolbox), which also returns the feasible state-space region for the

MPC controller, i.e. the setXf (N). Thus, one can check ifX0 ⊆ Xf (N) for a fixedN . Note

that the set of feasible states for the MPC optimization problem does not depend on the type of

MPC cost function (i.e. the feasible set is the same for both quadratic costs and costs based on

∞-norms).

In MPC [9], it is well known that a smaller terminal constraint setXT implies that a larger

N is needed for ensuring feasibility of Problem III.2. Hence, one has to make a trade-off in

choosing one of the two availableXT sets: the maximal positively invariant set, e.g. calculated as

in [22], which is represented by a possibly very large union of polyhedra, or a smaller positively

invariant set, as in Theorem VI.6 (or as in Theorem VI.7), which is polyhedral (or piecewise

polyhedral). Although the use of a larger terminal set obtained as in [22] may require a smaller

prediction horizon for feasibility, the complexity of the resulting MPC problem still increases

considerably with the number of additional Boolean variables needed to specify the terminal

constraint set. The two approaches are comparable and depending on the problem at hand and

the MIQP (MILP) solver one of the choices might turn out more computationally efficient.

D. Examples

The methodology developed in this section is illustrated by two examples.

Example 1. Consider the system used in [1]:

xk+1 =

A1xk +Buk if [1 0]xk ≥ 0

A2xk +Buk if [1 0]xk < 0
(38)

subject to the constraintsxk ∈ X = [−5, 5]× [−5, 5] anduk ∈ U = [−1, 1], where

A1 =

 0.35 −0.602

0.6062 0.35

 , A2 =

 0.35 0.6062

−0.6062 0.35

 , B =

0

1

 .
The LMI (25) has been solved forZ1 = Z2 = Z, Y1, Y2 and for the weightsQ = I2, R = 0.4.

We have obtained the terminal weight matrixP = diag([1.4876 2.2434]) and the feedback gains

K1 = [−0.611 − 0.3572], K2 = [0.611 − 0.3572]. We take the safe set with respect to state and

input constraints as̃XU = {x ∈ X | |Kjx| ≤ 1, j = 1, 2}. The polyhedral positively invariant set

obtained with an algorithm based on the recurrent sequence of sets (36) is

XT =

{
x ∈ X̃U |

[ −0.2121 0.373
0.2121 −0.373
0.2121 0.373
−0.2121 −0.373

]
x ≤

[
1
1
1
1

]}
. (39)
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Fig. 1. Example 1: The set of feasible states obtained forN = 4.
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Fig. 2. Example 1: State trajectory - red;XT - blue polyhedron; Input history - blue.

For system (38) and the terminal set (39), a prediction horizon ofN = 4 is required to ensure

that X ⊆ Xf (N). The set of feasible states forN = 4 (obtained using the MPT Toolbox as

indicated in subsection VI-C) is plotted in Figure 1. The simulation results are plotted in Figure 2

for system (38) with initial statex0 = [5 5]> in closed-loop with the MPC control (6) calculated

for N = 4 using the Hybrid Toolbox [25], together with a plot of the terminal constraint set. For

comparison purposes, we calculated the maximal positively invariant set contained in the safe set

XU = ∪j=1,2{x ∈ X∩Ωj | |Kjx| ≤ 1} using the MPT Toolbox (which implements the approach

of [22]). In this case the terminal set consists in the non-convex union of two polyhedra and a

prediction horizon ofN = 4 is required to ensure thatX ⊆ Xf (N).
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Example 2. Consider the following open-loop unstable system:

xk+1 =



A1xk +Buk if E1xk > 0

A2xk +Buk if E2xk ≥ 0

A3xk +Buk if E3xk > 0

A4xk +Buk if E4xk ≥ 0

(40)

subject to the constraintsxk ∈ X = [−10, 10]× [−10, 10], uk ∈ U = [−1, 1], where

A1 =

0.5 0.61

0.9 1.345

 , A2 =

−0.92 0.644

0.758 −0.71

 , B =

1

0

 ,
A3 = A1 andA4 = A2. The partitioning of the system is given by

E1 = −E3 =

−1 1

−1 −1

 , E2 = −E4 =

−1 1

1 1

 .
The weights of the MPC cost areQ = 10−4I2 andR = 10−3. For system (40) the LMIs of

Lemma VI.1 turn out to be infeasible. With theS-procedure approach of Section VI-A we

have obtained the following solution by solving the LMI (30)-(31)-(32) for the tuning factors

ε11 = 0.04, ε21 = 0.3, ε12 = 0.08, ε22 = 1 and for the orthonormal matricesV1, V2 defined as in

(33) for θ1 = 2.4 andθ2 = 0.9:

P1 =

12.9707 10.9974

10.9974 14.9026

 , P2 =

 7.9915 −5.5898

−5.5898 5.3833

 , P3 = P1, P4 = P2,

K1 =
[
−0.7757 −1.0299

]
, K2 =

[
0.6788 −0.4302

]
, K3 = K1, K4 = K2,

U11 =

0.4596 1.9626

1.9626 0.0198

 , U12 =

0.4545 2.0034

2.0034 0.0250

 , U21 =

0.0542 0.0841

0.0841 0.0506

 ,
U22 =

0.0599 0.0914

0.0914 0.0565

 , σ11 = 24.9765, σ21 = 2.8969, σ12 = 12.4273,

σ22 = 0.9475, γ11 = 0.0395, γ21 = 0.2954, γ12 = 0.0791, γ22 = 0.9675. (41)

A piecewise polyhedralpositively invariant set has been computed for system (40) in closed-

loop with (19) (with the feedbacks given in (41)) using the approach of Theorem VI.7 and the

algorithm of [24] for the sublevel setE with c = 14, which satisfiesE ⊆ XU. In this caseE
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Fig. 3. Example 2: The set of feasible states obtained forN = 4.
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Fig. 4. Example 2: State trajectory - red;XT - blue polyhedra.

is α contractive forα = 0.93. The set of feasible states with respect to Problem III.2 obtained

for system (40) with the terminal set given in Figure 4 and a prediction horizon ofN = 4 is

plotted in Figure 3. The state trajectory of system (40) with initial statex0 = [−5 − 3.8]> and

in closed-loop with the MPC control (6) calculated forN = 4 using the Hybrid Toolbox [25] is

plotted in Figure 4. The MPC controller successfully stabilizes the open-loop unstable system

(40) while satisfying the constraints.

The maximal positively invariant set calculated with the MPT Toolbox [26] (which implements

the approach of [22]) for Example 2 is a non-convex union of8 polyhedra. The resulting set

of feasible states obtained forN = 4 in this case is comparable in size with the set plotted in

Figure 3.
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VII. T ERMINAL COST AND CONSTRAINT SET: INFINITY NORMS

In this section we will consider the case when∞-norms are used to define the cost function,

i.e. F (x) = ‖Pjx‖∞ when x ∈ XT ∩ Ωj andL(x, u) = ‖Qx‖∞ + ‖Ru‖∞. HerePj ∈ Rp×n,

Q ∈ Rq×n andR ∈ Rr×n are assumed to be matrices that have full-column rank. The MPC cost

(3) now becomes:

J(xk,uk) , ‖Pjxk+N‖∞ +
N−1∑
i=0

‖Qxk+i‖∞ + ‖Ruk+i‖∞ when xk+N ∈ Ωj, j ∈ S. (42)

In this setting, contrary to a quadratic forms based MPC cost, we no longer require thatXT ⊆

∪j∈S0Ωj in order to obtain a solution to problem P1. Also, we consider the PWA system (18),

i.e.

xk+1 = Ajxk +Bjuk + fj when xk ∈ XT ∩ Ωj, j ∈ S, (43)

instead of the PWL sub-system (22).

SinceQ has full-column rank there always exists a positive numberγ such that‖Qx‖∞ ≥ γ‖x‖

for all x ∈ Rn. Then it follows that

L(x, u) ≥ ‖Qx‖∞ ≥ γ‖x‖∞, ∀x ∈ Rn, ∀u ∈ Rm.

For the terminal cost we have that

F (x) ≤ max
j∈S

‖Pj‖∞‖x‖∞, ∀x ∈ XT .

Then it follows that the∞-norms based terminal cost and stage cost satisfy Assumption V.1

for w(‖x‖) = γ‖x‖∞, ψ(‖x‖) = maxj∈S ‖Pj‖∞‖x‖∞, which satisfy Assumption IV.1 and

Assumption IV.2 (e.g. Assumption IV.1 is satisfied forδ(ε) = η γ
maxj∈S ‖Pj‖∞ ε, whereη ∈ (0, 1)

ensures thatδ(ε) < ε).

Hence, we have shown that Assumption V.1 applies for∞-norms based hybrid MPC. In the

sequel we provide a method for calculating the terminal costF and the auxiliary control (19)

such that inequality (9) is satisfied for the PWA system (18).

A. Computation of the terminal weight(s) - Problem P1

Let Qji := {x ∈ Ωj | ∃u ∈ U : Ajx + Bju + fj ∈ Ωi}, (j, i) ∈ S × S and letSt :=

{(j, i) ∈ S × S | Qji 6= ∅}. Note that the setSt defined here differs from the setSt0 defined in

Section VI-A, since it also incorporates the indicesj ∈ S1, i.e.St0 = St∩{S0×S0}. The set of
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pairs of indicesSt can be easily determined off-line by solvings2 linear programs. The setSt

contains all discrete mode transitions that can occur in the PWA system (43), i.e. if(j, i) ∈ St

then a transition fromΩj to Ωi can occur.

Substituting (43) andF in (9) yields that it is sufficient to find{(Pj, Kj) | j ∈ S} that satisfy:

‖Pi((Aj +BjKj)xk +fj)‖∞−‖Pjxk‖∞+‖Qxk‖∞+‖RKjxk‖∞ ≤ 0, ∀xk ∈ XT , (j, i) ∈ St,

(44)

for (9) to be satisfied. Now consider the following∞-norm inequalities:

‖Pi(Aj +BjKj)P
−L
j ‖∞ + ‖QP−L

j ‖∞ + ‖RKjP
−L
j ‖∞ ≤ 1− γji, (j, i) ∈ St (45)

and

‖Pifj‖∞ ≤ γji‖Pjx‖∞, ∀x ∈ XT ∩ Ωj, (j, i) ∈ St, (46)

whereγji ∈ [0, 1), (j, i) ∈ St. Note that, because of (20), (46) trivially holds ifS = S0.

Theorem VII.1 Suppose (45)-(46) is solvable in (Pj, Kj, γji) where Pj has full-column rank and

γji ∈ [0, 1) for (j, i) ∈ St. Then (Pj, Kj) with j ∈ S is a solution of the ∞-norm inequality (44).

The proof of Theorem VII.1 is given in the Appendix.

Remark VII.2 If (Pj, Kj), j ∈ S satisfy (44) it follows that

‖Pi(Aj +BjKj)xk + Pifj‖∞ − ‖Pjxk‖∞ ≤ −γ‖xk‖∞ < 0, ∀xk ∈ XT \ {0}, ∀(j, i) ∈ St.

Hence, as indicated in Corollary V.3, thediscontinuousfunctionF (x) = ‖Pjx‖∞ whenx ∈ Ωj

is a local (piecewise linear) Lyapunov function for the dynamicsxk+1 = (Aj + BjKj)xk + fj,

j ∈ S.

Finding the matricesPj and the feedback matricesKj that satisfy the∞-norm inequality

(45) amounts to solving off-line an optimization problem subject to the constraintrank(Pj) = n

for all j ∈ S. Note that this constraint can be replaced by the convex constraintP>j Pj > 0.

Once the matricesPj satisfying (45) have been found, one still has to check that they also

satisfy inequality (46), provided thatS 6= S0. For example, this can be verified by checking the

inequality

‖Pifj‖∞ ≤ γj min
x∈XT∩Ωj

‖Pjx‖∞, (j, i) ∈ St(XT ),
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whereSt(XT ) := {(j, i) | XT ∩ Ωj 6= ∅} ∩ S1. In order to overcome the difficulty of solving

(45)-(46) simultaneously, one can require thatXT ⊆ ∪j∈S0Ωj is a positively invariant set only

for the PWL sub-system (22), as done in Section VI for hybrid MPC based on quadratic forms.

Note that the auxiliary control action (19) defines now a local state feedback, instead of a global

state feedback, as in Theorem VII.1. In this case Theorem VII.1 can be reformulated as follows.

Corollary VII.3 Suppose that the inequality

‖Pi(Aj +BjKj)P
−L
j ‖∞ + ‖QP−L

j ‖∞ + ‖RKjP
−L
j ‖∞ ≤ 1 (47)

is solvable in (Pj, Kj) for Pj with full-column rank for (j, i) ∈ St0 and that XT ⊆ ∪j∈S0Ωj . Then

(Pj, Kj) with j ∈ S0 is a solution of the ∞-norm inequality (44).

Proof: SinceXT ⊆ ∪j∈S0Ωj it follows that the inequality (44) only needs to be satisfied

for (j, i) ∈ St0, whereSt0 is the set of indices defined in Section VI-A. From (20) we have that

fj = 0 for all j ∈ S0 and thus, inequality (46) is directly satisfied with equality forγji = 0 and

for all (j, i) ∈ St0. Then the result follows from Theorem VII.1.

B. Computation of the terminal constraint set - Problem P2

From Remark VII.2 it follows that the terminal constraint setXT can be simply obtained in

the case of∞-norms based hybrid MPC as

XT , ∪j∈S{x ∈ Ωj | ‖Pjx‖∞ ≤ ϕ∗}, (48)

whereϕ∗ = supϕ{{x ∈ Ωj | ‖Pjx‖∞ ≤ ϕ} ⊆ XU}. Since this set is a finite union of polyhedra

(at most a union ofs polyhedra), Problem III.2 leads to an MILP problem.

Remark VII.4 The level sets of the Lyapunov functionV (x) = ‖Pjx‖∞ when x ∈ Ωj are

λ-contractive sets [17] and they are finite unions of polyhedra (i.e. they are represented by a

polyhedron in each region of the PWA system). Hence, this yields a new method to obtain (in

finite time) piecewise polyhedralλ-contractive setsfor the class of PWA systems, which takes

into account also the affine termsfj for j ∈ S1. If we setPj = P for all j ∈ S, this yields a

new way to obtainpolyhedralλ-contractive setsfor PWA systems and switched linear systems.

Note that these sets can also be used as terminal constraint sets for hybrid MPC based on a

quadratic cost.
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C. How to choose the prediction horizon - Problem P3

In the case of an∞-norms based MPC cost Problem III.2 with the terminal constraint set

chosen as in Section VII-B leads to an MILP problem [5]. Two procedures for obtaining the

minimum prediction horizon needed to achieve feasibility of Problem III.2 have been indicated

in Section VI-C.

D. Reduction of the computational complexity

This section gives some techniques to approach the computationally challenging problem

associated with inequality (45). If the matricesPj are known in (45), then the optimization

problem associated with the inequality (44) can be recast as a Linear Programming (LP) problem.

In the sequel we will indicate two ways to find “educated guesses” ofPj, j ∈ S. These methods

are based on the observation that a necessary condition for the existence of thePj matrices that

satisfy (45)-(46) is thatF (x) = ‖Pjx‖∞ whenx ∈ Ωj, j ∈ S is a piecewise linear Lyapunov

function of the closed-loop PWA system (43)-(19), as shown in Corollary V.3. Educated guesses

of Pj are now based on functionsF (x) that satisfy this necessary condition and hence, induce

what one might call “feedback controlled positively invariant sets”.

A quadratic approach. One possibility to fix the terminal weight in (45) is to use the approach

of Section VI-B to calculate a common polyhedral positively invariant setP for the PWL sub-

system (22). IfP is symmetric, then a good choice for the terminal weight is the matrixP

that induces the polyhedronP, i.e. P := {x ∈ XU | ‖Px‖∞ ≤ c}, c > 0. Note that this

approach towards fixing the terminal weights is using some feedback matrices{Kj | j ∈ S0}

calculated via semi-definite programming, i.e. as done in Section VI-A or in [16] in order to

obtain acommon quadratic Lyapunov function. However, these feedbacks, although they render

the resulting polyhedral set positively invariant, do not necessarily satisfy the inequality (45).

Fixing Pj = P for all j ∈ S0 in (45) and solving the remaining LP problem in{Kj | j ∈ S0}

amounts to searching for a different state feedback control law, which not only renders the

employed set positively invariant, but also ensures that inequality (45) is satisfied.

“Squaring the circle”. Another way to obtain polyhedral (or piecewise polyhedral) controlled

positively invariant sets for PWA systems that admit a common (or a piecewise) quadratic

Lyapunov function is based on the result of Theorem VI.7. Giving additional structure to the

algorithm of [24] such that it generates a symmetric polyhedron with a finite number of facets,
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a polyhedral or a piecewise polyhedral positively invariant set can be obtained for system (22)

and thenPj can be chosen as the matrices that induce the corresponding polyhedra.

Example 3. Consider the following PWA chain of integrators:

xk+1 =


A1xk +B1uk if [0 1 1]xk < 0 , [1 0 0]xk < 2 , [−1 0 0]xk < 2

A2xk +B2uk if [0 1 1]xk ≥ 0 , [1 0 0]xk < 2 , [−1 0 0]xk < 2

A3xk +B3uk + f otherwise

(49)

subject to the constraintsxk ∈ X = [−10, 10]3 anduk ∈ U = [−2, 2], where

A1 =


1 0.4 0.08

0 1 0.4

0 0 1

 , A2 =


1 0.7 0.245

0 1 0.7

0 0 1

 , A3 =


1 0.8 0.32

0 1 0.8

0 0 1

 ,

B1 =


0.0107

0.08

0.4

 , B2 =


0.0572

0.245

0.7

 , B3 =


0.0853

0.32

0.8

 , f =


0.3

0.1

0.1

 .
The weights of the MPC cost areQ = I3 andR = 0.1. The following solution to the inequality

(45) has been found using a min-max formulation and the Matlabfmincon solver (CPU time

was5.65 seconds for a Pentium IV at 1.7GHz):

P =


24.1304 20.3234 4.9959

20.3764 35.9684 10.5832

6.3709 9.21 9.9118

 , K3 =
[
−0.8434 −2.063 −1.9809

]
, γ = 0.174,

K1 =
[
−2.3843 −4.5862 −3.1858

]
, K2 =

[
−0.8386 −2.1077 −2.1084

]
. (50)

The terminal set has been obtained as in (48) forϕ∗ = 2.64 and is plotted in Figure 5. Due

to the input constraints we have thatXT ⊂ ∪j∈S0Ωj for system (49). However, it can be easily

checked that inequality (46) holds for system (49) and allx ∈ X. The simulation results are

plotted in Figure 6 for system (49) with initial statex0 = [1.9 − 1 1]> and in closed-loop with

the MPC control (6) calculated for the matricesP , Q andR given above,N = 5 (obtained

using the Hybrid Toolbox as in subsection VII-C) and with a polyhedral terminal set (i.e. the set

plotted in Figure 5). As guaranteed by Theorem V.2, the MPC control law (6) stabilizes system

(49) while satisfying the state and input constraints.
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Fig. 5. Example 3:XT - blue polyhedron.
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Fig. 6. Example 3: State trajectory (up) and input history (down).

The maximal positively invariant set obtained with the MPT Toolbox [26] for Example 3 is

a non-convex union of 13 polyhedra. In this case, a prediction horizon ofN = 2 is required to

ensure thatx0 ∈ Xf (N).

VIII. T ERMINAL EQUALITY CONSTRAINT

In this section we consider the case when a terminal equality constraint is employed to

guarantee stability, e.g. see [9] for details on this method. In this setting the terminal costF (x) is

set equal to zero for allx and the terminal constraint set is taken asXT = {0} in Problem III.2.

This implies that the terminal constraint from Definition III.1 now becomesxk+N = 0. On one

hand, this method has the advantage that the problems P1 and P2 are solved directly. On the

other hand, the terminal equality constraint method usually requires a larger prediction horizon

for feasibility of the Problem III.2, which increases the computational complexity of the MPC

algorithm (e.g., for Example 3 a prediction horizon ofN = 35 is required for feasibility with
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respect to the considered initial state).

Note that the terminal equality constraint method, although it has been used since the early

stages of hybrid MPC [1] has only been proven to guarantee attractivity for the closed-loop

system (e.g. see Theorem 1 of [1]). We show that under suitable assumptions Lyapunov stability

can also be achieved in this setting using the theory developed in Subsection V-B.

Consider an optimal sequence of controls obtained by solving Problem III.2 at timek ≥ 0, i.e.

u∗k = (u∗k, u
∗
k+1, . . . , u

∗
k+N−1) and letx∗k(xk,u

∗
k) := (x∗k+1, . . . , x

∗
k+N) denote the state sequence

generated by system (2) from initial statexk and by applying the input sequenceu∗k. Note that

x∗k+N = 0. Let ‖ · ‖p denote an arbitraryp-norm and consider the following assumption.

Assumption VIII.1 There exist positive numbersβi such that‖u∗k+i‖p ≤ βi‖xk‖p for all xk ∈

Xf (N), and alli = 0, . . . , N − 1.

We will use the following result.

Lemma VIII.2 Under Assumption VIII.1 there exist positive numbers αi such that

‖x∗k+i‖p ≤ αi‖xk‖p, for all xk ∈ Xf (N) and for all i = 0, . . . , N − 1. (51)

The proof of Lemma VIII.2 is given in the Appendix. In the sequel we will show that the stage

costL satisfies Assumption V.5 for both the quadratic forms case and thep-norms case.

Theorem VIII.3 Suppose that Assumption VIII.1 holds andL(x, u) = x>Qx+u>Ru orL(x, u) =

‖Qx‖p + ‖Ru‖p. Then the stage cost L(x, u) satisfies Assumption V.5.

Proof: We have already proven in Section VI and Section VII thatL satisfies the first part

of Assumption V.5 forw(‖x‖) = λmin(Q)‖x‖2
2 in the quadratic forms case andw(‖x‖) = γ‖x‖∞

in the∞-norms case. Note that the proof given in the∞-norms case applies for anyp-norm.

Now we prove that the second part of Assumption V.5 is satisfied. Consider the quadratic forms

stage cost, i.e.L(x, u) = x>Qx + u>Ru. From Lemma VIII.2 and by Assumption VIII.1 it

follows that:

L(x∗k+i, u
∗
k+i) ≤ λmax(Q)‖x∗k+i‖2

2 + λmax(R)‖u∗k+i‖2
2 ≤

≤ (α2
iλmax(Q) + β2

i λmax(R))‖xk‖2
2 =: ci‖xk‖2

2, ∀xk ∈ Xf (N), i = 0, . . . , N − 1,

(52)
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whereci > 0 for all i = 0, . . . , N −1. By applying the same reasoning for ap-norms stage cost,

i.e. L(x, u) = ‖Qx‖p + ‖Ru‖p, it follows that:

L(x∗k+i, u
∗
k+i) ≤ ‖Q‖p‖x∗k+i‖p + ‖R‖p‖u∗k+i‖p ≤

≤ (αi‖Q‖p + βi‖R‖p)‖xk‖p =: ai‖xk‖p, ∀xk ∈ Xf (N), i = 0, . . . , N − 1,

(53)

whereai > 0 for all i = 0, . . . , N − 1.

Hence, the stage costL(x, u) satisfies Assumption V.5 forw(‖x‖) = λmin(Q)‖x‖2
2 and

ϕ(‖x‖) = maxi=0,...,N−1 ci‖x‖2
2, for the quadratic forms case, andw(‖x‖) = γ‖x‖p andϕ(‖x‖) =

maxi=0,...,N−1 ai‖x‖p for the p-norms case.

We have shown that Assumption V.5 holds for both quadratic forms andp-norms based hybrid

MPC. Hence, it follows from Theorem VIII.3 and Theorem V.7 that Lyapunov stability can be

achieved forterminal equality constrainthybrid MPC. It is worth pointing out that in [19]

it has been shown that Lyapunov stability is achieved for terminal equality constraint MPC

of Lipschitz continuous nonlinear systems, based on the assumption that the controlsu∗k+i are

Lipschitz continuous functions of the state (see Corollary 1 of [19] for details).

IX. CONCLUSIONS

In this paper we have derived sufficienta priori conditions for Lyapunov asymptotic stability

and exponential stability of hybrid Model Predictive Control. We developed a general theory

which shows that Lyapunov stability can be achieved even if the considered Lyapunov function

and the system dynamics are discontinuous. This has been proven for bothterminal cost and

constraint setandterminal equality constrainthybrid MPC. In the particular case of constrained

PWA systems and quadratic forms or∞-norms based cost functions, new procedures for cal-

culating the terminal cost and the terminal constraint set have been developed. If the MPC

cost is defined using quadratic forms, then the terminal cost is calculated via semi-definite

programming. For an∞-norm based cost, the terminal cost is obtained by solving off-line

an optimization problem. Novel algorithms for calculating polyhedral or piecewise polyhedral

positively invariant sets for PWA systems have also been developed. The off-line computation of

these positively invariant sets is numerically more friendly in comparison with the computation

of the maximal positively invariant set. The theory has been illustrated by several examples.
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In summary, next to a general theory on stability of hybrid MPC, we provide a complete

framework for both quadratic forms and∞-norms MPC schemes for PWA systems with ana

priori stability guarantee.

APPENDIX

A. Proof of Lemma VI.1

First we prove that the matrix inequality (24) and the LMI (25) are equivalent. We start by

applying the Schur complement to (25), which yields:

Zj −
(
Zj Y >

j (AjZj +BjYj)
>
) 

Q 0 0

0 R

0 0 Z−1
i




Zj

Yj

(AjZj +BjYj)

 > 0

and


Q−1 0 0

0 R−1

0 0 Zi

 > 0 for all (j, i) ∈ St0. SinceQ > 0 andR > 0 it follows that

Zi 0

0 Zj − ZjQZj − Y >
j RYj − (AjZj +BjYj)

>Z−1
i (AjZj +BjYj)

 > 0.

SubstitutingZj := P−1
j , Zi := P−1

i andYj := KjP
−1
j in the above matrix inequality and pre-

multiplying and post-multiplying with

Pi 0

0 Pj

 > 0 yields the equivalent matrix inequality

(24).

The proof that (24) and the LMI (26) are equivalent can be obtained by applying the method

used in the proof of Theorem 1 from [27] (in [27] the proof is only given for a common terminal

weightP and a linear feedbackK due to constraints imposed by robustness). Finally, it can be

proven that (24) and the LMI (27) are equivalent by combining the technique used in the proof

of Theorem 2 from [28] (which deals with the stability of feedback controlled switched linear

systems) with the technique used above to prove the equivalency between (24) and (25).

B. Proof of Theorem VI.3

Since{(σ1j, . . . , σnj), (γ1i, . . . , γni), Kj, Uji | (j, i) ∈ St0} satisfy the LMI (30)-(31)-(32) we

can apply the Schur complement to (30), which yields

VjΣjV
>
j − (Aj +BjKj)

>ViΓ
−1
i V >

i (Aj +BjKj)−Q−K>
j RKj − E>

jiUjiEji > 0.
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By adding and subtracting(Aj +BjKj)
>ViΣiV

>
i (Aj +BjKj) in the above inequality we obtain

the equivalent

VjΣjV
>
j − (Aj +BjKj)

>ViΣiV
>
i (Aj +BjKj)−Q−K>

j RKj − E>
jiUjiEji >

> (Aj +BjKj)
>ViΓ

−1
i V >

i (Aj +BjKj)− (Aj +BjKj)
>ViΣiV

>
i (Aj +BjKj). (54)

From (31b) we have that1− σljγlj ≥ 0 for all l = 1, . . . , n and allj ∈ S0. Then, the inequality

Γ−1
i − Σi =


1−γ1iσ1i

γ1i
. . . 0

...
. ..

...

0 . . . 1−γniσni

γni

 ≥ 0

holds for all i ∈ S0 and from (54) it follows that the inequality

VjΣjV
>
j − (Aj +BjKj)

>ViΣiV
>
i (Aj +BjKj)−Q−K>

j RKj − E>
jiUjiEji > 0

is satisfied for all(j, i) ∈ St0. The matrix inequality (28) is obtained by lettingPj = VjΣjV
>
j > 0

for all j ∈ S0 in the above inequality.

C. Proof of Theorem VI.6

1) If x ∈ P thenx ∈ Xi for all i. Hence, we have thatAcl
j x ∈ Xi−1 for all j ∈ S0 and all i.

ThenAcl
j x ∈ P for all j ∈ S0. So,P is a positively invariant set for system (35) with arbitrary

switching. In order to prove that the setP is maximal letP̃ ⊆ X̃U = X0 be a positively invariant

set for system (35) with arbitrary switching. In order to use induction, we assume thatP̃ ⊆ Xi

for somei. Due to the positive invariance of̃P, for anyx ∈ P̃ we have thatAcl
j x ∈ P̃ ⊆ Xi for

all j ∈ S0. Hence,x ∈ Xi+1. Thus,P̃ ⊂ Xi+1 and by inductionP̃ ⊂ Xi for all i, which yields

P̃ ⊂
⋂∞

i=0Xi = P.

Now we prove thatP is a convex set. Assume thatP is the maximal positively invariant

set for system (35) with arbitrary switching. Then we have thatP is a positively invariant set

for any linear system in (35) and then it follows from [29] that the convex hull ofP is also a

positively invariant set for any linear system in (35). Hence, the convex hull ofP is a positively

invariant set for system (35) under arbitrary switching. SinceX̃U is a convex set, it follows that

the convex hull ofP is included inX̃U. By maximality, the convex hull ofP is also included in

P and thus,P is convex. As the origin is an equilibrium forxk+1 = Acl
j x, ∀j ∈ S0, P contains

the origin.
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2) Assume that the algorithm (36) terminates ini∗ steps. Then, it follows directly fromXi ⊆

Xi−1 for all i > 0 that Xi = Xi∗ for all i ≥ i∗ andP = Xi∗. Since X̃U is a polyhedral set

and from the fact that the intersection of polyhedra produces polyhedra, it follows that the sets

X j
0 := Q1

j(X̃U)
⋂
X̃U are polyhedra for allj ∈ S0. Then it follows that the setX1 is a polyhedral

set and, for the same reason,Xi, i = 2, 3, . . . , are polyhedral sets. Then, it follows thatP is

also a polyhedral set.

3) The proof is essentially due to [23]. LetE denote aλ-contractive set with0 < λ < 1 for

system (35) under arbitrary switching that contains the origin in its interior. Then there exist

c2 > c1 > 0 such thatc1E ( X̃U ( c2E . Sincec2E is λ-contractive, we have that any state

trajectory starting on the boundary ofc2E reaches ini discrete-time steps the setλic2E . Hence,

there exists ani∗ such that all the states trajectories starting insideX̃U ( c2E lie in c1E within

i∗ discrete-time steps. Sincec1E is λ-contractive and thus, positively invariant, it follows that if

a state trajectory staysi∗ discrete-time steps insidẽXU, then it stays in forever. Hence,Xi∗ ⊆ P

and thus,Xi∗ = P.

4) This follows directly from 1) and from Lemma VI.5.

D. Proof of Theorem VII.1

Since{(Pj, Kj, γji) | (j, i) ∈ St} satisfy (45) it follows that

‖Pi(Aj +BjKj)P
−L
j ‖∞ + ‖QP−L

j ‖∞ + ‖RKjP
−L
j ‖∞ + γji − 1 ≤ 0, (j, i) ∈ St. (55)

Right multiplying the inequality (55) with‖Pjxk‖∞ and using the inequality (46) yields:

0 ≥ ‖Pi(Aj +BjKj)P
−L
j ‖∞‖Pjxk‖∞ + ‖QP−L

j ‖∞‖Pjxk‖∞

+ γji‖Pjxk‖∞ + ‖RKjP
−L
j ‖∞‖Pjxk‖∞ − ‖Pjxk‖∞ ≥

≥ ‖Pi(Aj +BjKj)P
−L
j Pjxk‖∞ + ‖QP−L

j Pjxk‖∞

+ ‖Pifj‖∞ + ‖RKjP
−L
j Pjxk‖∞ − ‖Pjxk‖∞ ≥

≥ ‖Pi(Aj +BjKj)xk + Pifj‖∞ + ‖RKjxk‖∞ + ‖Qxk‖∞ − ‖Pjxk‖∞. (56)

Hence, inequality (44) holds.
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E. Proof of Lemma VIII.2

We will use induction to prove Lemma VIII.2. Fori = 0, the inequality‖x∗k+i‖p ≤ αi‖xk‖p

holds for anyα0 ≥ 1. Suppose‖x∗k+i‖p ≤ αi‖xk‖p holds for some0 ≤ i ≤ N − 2. Now we will

prove that it holds fori+ 1. We have that

‖x∗k+i+1‖p = ‖Ajx
∗
k+i +Bju

∗
k+i + fj‖p when x∗k+i ∈ Xf (N) ∩ Ωj, j ∈ S.

Since there exists a positive numberµ such that‖x‖p ≥ µ for all x ∈ ∪j∈S1Ωj andfj = 0 for

j ∈ S0, it follows that there exists a positive numberθ such that‖fj‖p ≤ θ‖x‖p for all x ∈ Rn

and all j ∈ S. Then, by Assumption VIII.1 it follows that

‖x∗k+i+1‖p ≤ ‖Aj‖p‖x∗k+i‖p + ‖Bj‖p‖u∗k+i‖p + ‖fj‖p ≤

≤ max
j∈S

(‖Aj‖p + βi‖Bj‖p + θ)‖x∗k+i‖p. (57)

Hence, by the induction hypothesis it follows that

‖x∗k+i+1‖p ≤ αi+1‖xk‖p,

for αi+1 := maxj∈S(‖Aj‖p + βi‖Bj‖p + θ)αi > 0.

REFERENCES

[1] A. Bemporad and M. Morari, “Control of systems integrating logic, dynamics, and constraints,”Automatica, vol. 35, pp.

407–427, 1999.

[2] E. Sontag, “Nonlinear regulation: the piecewise linear approach,”IEEE Transactions on Automatic Control, vol. 26, no. 2,

pp. 346–357, 1981.

[3] W. Heemels, B. De Schutter, and A. Bemporad, “Equivalence of hybrid dynamical models,”Automatica, vol. 37, pp.

1085–1091, 2001.

[4] A. Bemporad, “Efficient conversion of mixed logical dynamical systems into an equivalent piecewise affine form,”IEEE

Transactions on Automatic Control, vol. 49, no. 5, pp. 832–838, 2004.

[5] A. Bemporad, F. Borrelli, and M. Morari, “Optimal controllers for hybrid systems: Stability and piecewise linear explicit

form,” in 39th IEEE Conference on Decision and Control, Sydney, Australia, 2000, pp. 1810–1815.

[6] E. Kerrigan and D. Mayne, “Optimal control of constrained, piecewise affine systems with bounded disturbances,” in41st

IEEE Conference on Decision and Control, Las Vegas, Nevada, 2002, pp. 1552–1557.

[7] M. Lazar, W. Heemels, S. Weiland, and A. Bemporad, “Stabilization conditions for model predictive control of constrained

PWA systems,” in43rd IEEE Conference on Decision and Control, Paradise Island, Bahamas, 2004, pp. 4595–4600.

[8] S. Qin and T. Badgwell, “A survey of industrial model predictive control technology,”Control Engineering Practice,

vol. 11, pp. 733–764, 2003.

[9] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Constrained model predictive control: Stability and optimality,”

Automatica, vol. 36, pp. 789–814, 2000.

September 1, 2005 DRAFT



40

[10] H. Freeman,Discrete-time systems. John Wiley & Sons, Inc., 1965.

[11] W. Hahn,Stability of motion. Springer-Verlag, 1967.

[12] J. LaSalle, “The stability of dynamical systems,” inRegional Conference Series in Applied Mathematics, SIAM, Ed.,

no. 25, Philadelphia, 1976.

[13] P. Grieder, “Efficient computation of feedback controllers for constrained systems,” Ph.D. dissertation, Swiss Federal

Institute of Technology (ETH) Z̈urich, Switzerland, 2004.

[14] F. Christophersen, M. Baotic, and M. Morari, “Stability analysis of hybrid systems with a linear performance index,” in

43rd IEEE Conference on Decision and Control, Paradise Island, Bahamas, 2004, pp. 4589–4594.

[15] M. Johansson and A. Rantzer, “Computation of piecewise quadratic Lyapunov functions for hybrid systems,”IEEE

Transactions on Automatic Control, vol. 43, no. 4, pp. 555–559, 1998.

[16] D. Mignone, G. Ferrari-Trecate, and M. Morari, “Stability and stabilization of piecewise affine systems: An LMI approach,”

Automatic Control Laboratory, ETH Z̈urich, Switzerland, Tech. Rep. AUT00-12, 2000.

[17] F. Blanchini, “Ultimate boundedness control for uncertain discrete-time systems via set-induced Lyapunov functions,”IEEE

Transactions on Automatic Control, vol. 39, no. 2, pp. 428–433, 1994.

[18] G. Golub and C. Van Loan,Matrix computations. The Johns Hopkins University Press, 1989.

[19] P. Scokaert, J. Rawlings, and E. Meadows, “Discrete-time stability with perturbations: Application to model predictive

control,” Automatica, vol. 33, no. 3, pp. 463–470, 1997.

[20] G. Goodwin, M. Seron, and J. De Dona,Constrained control and estimation An optimization approach, ser. Communications

and control engineering. Springer, 2005.

[21] M. Lazar, W. Heemels, S. Weiland, and A. Bemporad, “Stabilizing receding horizon control of PWL systems: An LMI

approach,” in16th Symposium on Mathematical Theory of Networks and Systems, Leuven, Belgium. Paper downloadable

from http://www.mtns2004.be/database/papersubmission/277.pdf or from http://www.cs.ele.tue.nl/MLazar/MTNSpaper.pdf.,

2004.

[22] S. Rakovic, P. Grieder, M. Kvasnica, D. Mayne, and M. Morari, “Computation of invariant sets for piecewise affine

discrete time systems subject to bounded disturbances,” in43nd IEEE Conference on Decision and Control, Paradise

Island, Bahamas, 2004, pp. 1418–1423.

[23] I. Kolmanovsky and E. Gilbert, “Theory and computation of disturbance invariant sets for discrete-time linear systems,”

Mathematical Problems in Engineering, vol. 4, pp. 317–367, 1998.

[24] A. Alessio and A. Bemporad, “A Recursive Algorithm for DC Programming and Applications in Computational Geometry,”
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