191 research outputs found

    Wide antral circumferential vs. ostial pulmonary vein isolation using pulsed field ablation—the butterfly effect

    Get PDF
    BackgroundWide antral circumferential ablation (WACA) in comparison to ostial pulmonary vein (PV) isolation (PVI) has been attributed with improved rhythm outcome. We investigated the feasibility, lesion formation, and rhythm outcome of WACA-PVI in comparison to ostial-PVI using pulsed field ablation (PFA).MethodsSymptomatic atrial fibrillation (AF) patients (69 years, 67% male; 67% paroxysmal AF) were prospectively enrolled into our single-center registry and underwent first-time ostial-PFA or WACA-PFA, N = 15 each. In all patients, eight pulse trains (2 kV/2.5 s, bipolar, biphasic, 4× basket/flower configuration each) were delivered to each PV. In WACA-PFA, two extra pulse trains in a flower configuration were added to the anterior and posterior antrum of the PVs. For comparison of PFA lesion size, pre- and post-ablation left atrial (LA) voltage maps were acquired using a multipolar spiral catheter together with a three-dimensional electroanatomic mapping system.ResultsWACA-PFA resulted in a significant larger lesion formation than ostial-PFA (45.5 vs. 35.1 cm2, p = 0.001) with bilateral overlapping butterfly shape-like lesions and concomitant posterior LA wall isolation in 73% of patients. This was not associated with increased procedure time, sedation dosage, or exposure to radiation. One-year freedom from AF recurrence was numerically higher after WACA-PFA than ostial-PFA (94% vs. 87%) but not statistically significant (p = 0.68). No organized atrial tachycardias (ATs) were observed. Ostial-PFA patients more often underwent re-ablation due to recurrent AF episodes.ConclusionWACA-PFA is feasible and resulted in significantly wider lesion sets than ostial-PFA. Concomitant posterior LA wall isolation occurred as an epiphenomenon in the majority of patients. The WACA approach was associated with neither increased procedure and fluoroscopy times nor statistically significant differences in 1-year rhythm outcome. ATs were absent

    Clinical outcomes of cryoballoon ablation for pulmonary vein isolation: Impact of intraprocedural heart rhythm

    Get PDF
    Background: The current study sought to assess the impact of the intraprocedural heart rhythm (sinus rhythm [SR] vs. atrial fibrillation [AF]) on acute procedural characteristics, durability of pulmonary vein isolation (PVI) and long-term clinical outcomes of cryoballoon (CB) ablation. Methods: A total of 195 patients with symptomatic paroxysmal (n = 136) or persistent AF (n = 59) underwent CB-based PVI. Ablation procedures were either performed in SR (SR group; n = 147) or during AF (AF group; n = 48). Persistent AF was more frequent in the AF group than in the SR group (62% vs. 20%). All other patient baseline characteristics did not differ between the two groups. Results: The nadir temperature during the CB applications was significantly lower in the AF group than in patients in the SR group (–49 [interquartile range, –44; –54]°C vs. –47 [-42; –52]°C, p = 0.002). Median procedure and fluoroscopy times as well as the rate of real-time recordings were not different between the two groups. Repeat ablation for the treatment of atrial arrhythmia recurrence was performed in 60 patients (SR: 44 [30%] patients; AF: 16 [33%] patients), with a trend towards a lower rate of PV reconnections in the AF group (p = 0.07). There was no difference in 3-year arrhythmia-free survival (p = 0.8). Conclusions: Cryoballoon-based PVI during AF results in lower nadir balloon temperatures and a trend towards a higher durability of PVI as compared to procedures performed in SR. The rate of real-time PVI recordings was not affected by the intraprocedural heart rhythm

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    A worldwide survey on incidence, management and prognosis of oesophageal fistula formation following atrial fibrillation catheter ablation: The POTTER-AF study.

    Get PDF
    AIMS Oesophageal fistula represents a rare but dreadful complication of atrial fibrillation catheter ablation. Data on its incidence, management and outcome are sparse. METHODS AND RESULTS This international multicenter registry investigates the characteristics of oesophageal fistulae after treatment of atrial fibrillation by catheter ablation. A total of 553,729 catheter ablation procedures (radiofrequency: 62.9%, cryoballoon: 36.2%, other modalities: 0.9%) were performed at 214 centers in 35 countries. In 78 centers 138 patients (0.025%, radiofrequency: 0.038%, cryoballoon: 0.0015% (p<0.0001)) were diagnosed with an oesophageal fistula. Periprocedural data were available for 118 patients (85.5%). Following catheter ablation, the median time to symptoms and the median time to diagnosis were 18 (7.75, 25; range: 0-60) days and 21 (15, 29.5; range: 2-63) days, respectively. The median time from symptom onset to oesophageal fistula diagnosis was 3 (1, 9; range: 0-42) days. The most common initial symptom was fever (59.3%). The diagnosis was established by chest computed tomography in 80.2% of patients. Oesophageal surgery was performed in 47.4% and direct endoscopic treatment in 19.8%, and conservative treatment in 32.8% of patients. The overall mortality was 65.8%. Mortality following surgical (51.9%) or endoscopic treatment (56.5%) was significantly lower as compared to conservative management (89.5%) (odds ratio 7.463 (2.414, 23.072) p<0.001). CONCLUSIONS Oesophageal fistula after catheter ablation of atrial fibrillation is rare and occurs mostly with the use of radiofrequency energy rather than cryoenergy. Mortality without surgical or endoscopic intervention is exceedingly high

    Bayesian Comparison of Neurovascular Coupling Models Using EEG-fMRI

    Get PDF
    Functional magnetic resonance imaging (fMRI), with blood oxygenation level-dependent (BOLD) contrast, is a widely used technique for studying the human brain. However, it is an indirect measure of underlying neuronal activity and the processes that link this activity to BOLD signals are still a topic of much debate. In order to relate findings from fMRI research to other measures of neuronal activity it is vital to understand the underlying neurovascular coupling mechanism. Currently, there is no consensus on the relative roles of synaptic and spiking activity in the generation of the BOLD response. Here we designed a modelling framework to investigate different neurovascular coupling mechanisms. We use Electroencephalographic (EEG) and fMRI data from a visual stimulation task together with biophysically informed mathematical models describing how neuronal activity generates the BOLD signals. These models allow us to non-invasively infer the degree of local synaptic and spiking activity in the healthy human brain. In addition, we use Bayesian model comparison to decide between neurovascular coupling mechanisms. We show that the BOLD signal is dependent upon both the synaptic and spiking activity but that the relative contributions of these two inputs are dependent upon the underlying neuronal firing rate. When the underlying neuronal firing is low then the BOLD response is best explained by synaptic activity. However, when the neuronal firing rate is high then both synaptic and spiking activity are required to explain the BOLD signal

    A Dynamic Neural Field Model of Mesoscopic Cortical Activity Captured with Voltage-Sensitive Dye Imaging

    Get PDF
    A neural field model is presented that captures the essential non-linear characteristics of activity dynamics across several millimeters of visual cortex in response to local flashed and moving stimuli. We account for physiological data obtained by voltage-sensitive dye (VSD) imaging which reports mesoscopic population activity at high spatio-temporal resolution. Stimulation included a single flashed square, a single flashed bar, the line-motion paradigm – for which psychophysical studies showed that flashing a square briefly before a bar produces sensation of illusory motion within the bar – and moving squares controls. We consider a two-layer neural field (NF) model describing an excitatory and an inhibitory layer of neurons as a coupled system of non-linear integro-differential equations. Under the assumption that the aggregated activity of both layers is reflected by VSD imaging, our phenomenological model quantitatively accounts for the observed spatio-temporal activity patterns. Moreover, the model generalizes to novel similar stimuli as it matches activity evoked by moving squares of different speeds. Our results indicate that feedback from higher brain areas is not required to produce motion patterns in the case of the illusory line-motion paradigm. Physiological interpretation of the model suggests that a considerable fraction of the VSD signal may be due to inhibitory activity, supporting the notion that balanced intra-layer cortical interactions between inhibitory and excitatory populations play a major role in shaping dynamic stimulus representations in the early visual cortex

    Phrenic Nerve Injury During Cryoballoon-Based Pulmonary Vein Isolation: Results of the Worldwide YETI Registry.

    Get PDF
    BackgroundCryoballoon-based pulmonary vein isolation (PVI) has emerged as an effective treatment for atrial fibrillation. The most frequent complication during cryoballoon-based PVI is phrenic nerve injury (PNI). However, data on PNI are scarce.MethodsThe YETI registry is a retrospective, multicenter, and multinational registry evaluating the incidence, characteristics, prognostic factors for PNI recovery and follow-up data of patients with PNI during cryoballoon-based PVI. Experienced electrophysiological centers were invited to participate. All patients with PNI during CB2 or third (CB3) and fourth-generation cryoballoon (CB4)-based PVI were eligible.ResultsA total of 17 356 patients underwent cryoballoon-based PVI in 33 centers from 10 countries. A total of 731 (4.2%) patients experienced PNI. The mean time to PNI was 127.7±50.4 seconds, and the mean temperature at the time of PNI was -49±8°C. At the end of the procedure, PNI recovered in 394/731 patients (53.9%). Recovery of PNI at 12 months of follow-up was found in 97.0% of patients (682/703, with 28 patients lost to follow-up). A total of 16/703 (2.3%) reported symptomatic PNI. Only 0.06% of the overall population showed symptomatic and permanent PNI. Prognostic factors improving PNI recovery are immediate stop at PNI by double-stop technique and utilization of a bonus-freeze protocol. Age, cryoballoon temperature at PNI, and compound motor action potential amplitude loss >30% were identified as factors decreasing PNI recovery. Based on these parameters, a score was calculated. The YETI score has a numerical value that will directly represent the probability of a specific patient of recovering from PNI within 12 months.ConclusionsThe incidence of PNI during cryoballoon-based PVI was 4.2%. Overall 97% of PNI recovered within 12 months. Symptomatic and permanent PNI is exceedingly rare in patients after cryoballoon-based PVI. The YETI score estimates the prognosis after iatrogenic cryoballoon-derived PNI. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03645577. Graphic Abstract: A graphic abstract is available for this article

    First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform

    Get PDF
    The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2× 6.1× 7.0 m3. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP\u27s performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP\u27s successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design
    corecore