851 research outputs found
Development of reaching to the body in early infancy: from experiments to robotic models
We have been observing how infants between 3 and 21 months react when a vibrotactile stimulation (a buzzer) is applied to different parts of their bodies. Responses included in particular movement of the stimulated body part and successful reaching for and removal of the buzzer. Overall, there is a pronounced developmental progression from general to specific movement patterns, especially in the first year. In this article we review the series of studies we conducted and then focus on possible mechanisms that might explain what we observed. One possible mechanism might rely on the brain extracting “sensorimotor contingencies” linking motor actions and resulting sensory consequences. This account posits that infants are driven by intrinsic motivation that guides exploratory motor activity, at first generating random motor babbling with self-touch occurring spontaneously. Later goal-oriented motor behavior occurs, with self-touch as a possible effective tool to induce informative contingencies. We connect this sensorimotor view with a second possible account that appeals to the neuroscientific concepts of cortical maps and coordinate transformations. In this second account, the improvement of reaching precision is mediated by refinement of neuronal maps in primary sensory and motor cortices—the homunculi—as well as in frontal and parietal corti- cal regions dedicated to sensorimotor processing. We complement this theoretical account with modeling on a humanoid robot with artificial skin where we implemented reaching for tactile stimuli as well as learning the “somatosensory homunculi”. We suggest that this account can be extended to reflect the driving role of sensorimotor contingencies in human development. In our conclusion we consider possible extensions of our current experiments which take account of predictions derived from both these kinds of models
Computerized clinical decision support for the early recognition and management of acute kidney injury: a qualitative evaluation of end-user experience
Background - Although the efficacy of computerized clinical decision support (CCDS) for acute kidney injury (AKI) remains unclear, the wider literature includes examples of limited acceptability and equivocal benefit. Our single-centre study aimed to identify factors promoting or inhibiting use of in-patient AKI CCDS.
Methods - Targeting medical users, CCDS triggered with a serum creatinine rise of ≥25 μmol/L/day and linked to guidance and test ordering. User experience was evaluated through retrospective interviews, conducted and analysed according to Normalization Process Theory. Initial pilot ward experience allowed tool refinement. Assessments continued following CCDS activation across all adult, non-critical care wards.
Results - Thematic saturation was achieved with 24 interviews. The alert was accepted as a potentially useful prompt to early clinical re-assessment by many trainees. Senior staff were more sceptical, tending to view it as a hindrance. ‘Pop-ups’ and mandated engagement before alert dismissal were universally unpopular due to workflow disruption. Users were driven to close out of the alert as soon as possible to review historical creatinines and to continue with the intended workflow.
Conclusions - Our study revealed themes similar to those previously described in non-AKI settings. Systems intruding on workflow, particularly involving complex interactions, may be unsustainable even if there has been a positive impact on care. The optimal balance between intrusion and clinical benefit of AKI CCDS requires further evaluation
Development of reaching to the body in early infancy: From experiments to robotic models
We have been observing how infants between 3 and 21 months react when a vibrotactile stimulation (a buzzer) is applied to different parts of their bodies. Responses included in particular movement of the stimulated body part and successful reaching for and removal of the buzzer. Overall, there is a pronounced developmental progression from general to specific movement patterns, especially in the first year. In this article we review the series of studies we conducted and then focus on possible mechanisms that might explain what we observed. One possible mechanism might rely on the brain extracting “sensorimotor contingencies” linking motor actions and resulting sensory consequences. This account posits that infants are driven by intrinsic motivation that guides exploratory motor activity, at first generating random motor babbling with self-touch occurring spontaneously. Later goal-oriented motor behavior occurs, with self-touch as a possible effective tool to induce informative contingencies. We connect this sensorimotor view with a second possible account that appeals to the neuroscientific concepts of cortical maps and coordinate transformations. In this second account, the improvement of reaching precision is mediated by refinement of neuronal maps in primary sensory and motor cortices—the homunculi—as well as in frontal and parietal corti- cal regions dedicated to sensorimotor processing. We complement this theoretical account with modeling on a humanoid robot with artificial skin where we implemented reaching for tactile stimuli as well as learning the “somatosensory homunculi”. We suggest that this account can be extended to reflect the driving role of sensorimotor contingencies in human development. In our conclusion we consider possible extensions of our current experiments which take account of predictions derived from both these kinds of models
Development of reaching to the body in early infancy: From experiments to robotic models
We have been observing how infants between 3 and 21 months react when a vibrotactile stimulation (a buzzer) is applied to different parts of their bodies. Responses included in particular movement of the stimulated body part and successful reaching for and removal of the buzzer. Overall, there is a pronounced developmental progression from general to specific movement patterns, especially in the first year. In this article we review the series of studies we conducted and then focus on possible mechanisms that might explain what we observed. One possible mechanism might rely on the brain extracting “sensorimotor contingencies” linking motor actions and resulting sensory consequences. This account posits that infants are driven by intrinsic motivation that guides exploratory motor activity, at first generating random motor babbling with self-touch occurring spontaneously. Later goal-oriented motor behavior occurs, with self-touch as a possible effective tool to induce informative contingencies. We connect this sensorimotor view with a second possible account that appeals to the neuroscientific concepts of cortical maps and coordinate transformations. In this second account, the improvement of reaching precision is mediated by refinement of neuronal maps in primary sensory and motor cortices—the homunculi—as well as in frontal and parietal corti- cal regions dedicated to sensorimotor processing. We complement this theoretical account with modeling on a humanoid robot with artificial skin where we implemented reaching for tactile stimuli as well as learning the “somatosensory homunculi”. We suggest that this account can be extended to reflect the driving role of sensorimotor contingencies in human development. In our conclusion we consider possible extensions of our current experiments which take account of predictions derived from both these kinds of models
Sperm death and dumping in Drosophila
Mating with more than one male is the norm for females of many species. In addition to generating competition between the ejaculates of different males, multiple mating may allow females to bias sperm use. In Drosophila melanogaster, the last male to inseminate a female sires approximately 80% of subsequent progeny. Both sperm displacement, where resident sperm are removed from storage by the incoming ejaculate of the copulating male, and sperm incapacitation, where incoming seminal fluids supposedly interfere with resident sperm, have been implicated in this pattern of sperm use. But the idea of incapacitation is problematic because there are no known mechanisms by which an individual could damage rival sperm and not their own. Females also influence the process of sperm use, but exactly how is unclear. Here we show that seminal fluids do not kill rival sperm and that any 'incapacitation' is probably due to sperm ageing during sperm storage. We also show that females release stored sperm from the reproductive tract (sperm dumping) after copulation with a second male and that this requires neither incoming sperm nor seminal fluids. Instead, males may cause stored sperm to be dumped or females may differentially eject sperm from the previous mating
Financial Regulation in a Pandemic The Consequences of Short-Selling Bans on Different Market Capitalizations in Europe
This thesis examines the impact of the short-selling bans implemented across six European countries during the Covid-19 pandemic in March 2020, with a focus on their effects on firms of different market capitalizations. Utilizing a difference-in-difference methodology, this study assesses the effects of these bans on market liquidity and returns, exploring whether these interventions served as protective measures or merely reactive strategies. The results indicate that the short-selling bans led to increased bid-ask spreads and higher levels of Amihud illiquidity measure. The bans disproportionately impacted smaller market-cap stocks, both in terms of returns and market quality. Additionally, the bans are associated with a statistically significant positive announcement effect on stock prices; however, this effect diminishes over the entire ban period, with abnormal returns becoming negative for stocks affected by the ban. Lastly, the study explores the determinant factors of these regulatory decisions, revealing that economic vulnerability and systemic financial risks were significant determinants in the enactment of short-selling bans. This research contributes to the ongoing debate about the efficacy of short-selling bans, suggesting that such interventions might have unintended adverse effects on market dynamics
Hands behind your back: effects of arm posture on tactile attention in the space behind the body
Previous research has shown that tactile-spatial information originating from the front of the body is remapped from an anatomical to an external-spatial coordinate system, guided by the availability of visual information early in development. Comparably little is known about regions of space for which visual information is not typically available, such as the space behind the body. This study tests for the first time the electrophysiological correlates of the effects of proprioceptive information on tactile-attentional mechanisms in the space behind the back. Observers were blindfolded and tactually cued to detect infrequent tactile targets on either their left or right hand and to respond to them either vocally or with index finger movements. We measured event-related potentials (ERPs) to tactile probes on the hands in order to explore tactile-spatial attention when the hands were either held close together or far apart behind the observer's back. Results show systematic effects of arm posture on tactile-spatial attention different from those previously found for front space. While attentional selection is typically more effective for hands placed far apart than close together in front space, we found that selection occurred more rapidly for close than far hands behind the back, during both covert attention and movement preparation tasks. This suggests that proprioceptive space may ‘wrap’ around the body, following the hands as they extend horizontally from the front body midline to the centre of the back
- …
