355 research outputs found

    Cornesti-Iarcuri - a Bronze Age town in the Romanian Banat?

    Get PDF
    ©2011 Antiquity PublicationsA massive Late Bronze Age fortified settlement in Central Europe has been the subject of a new and exemplary investigation by excavation and site survey. This prehistoric enclosure, nearly 6km across, had a complex development, dense occupation and signs of destruction by fire. It can hardly be other than a capital city playing a role in the determinant struggles of its day — weighty and far reaching events of the European continent now being chronicled by archaeology.Funding for the project has been provided by the Fritz-Thyssen-Stiftung, K¨oln, the County Council of Timis¸ and the Muzeul Banatului Timis¸oara

    Partical Melting of bulk Bi-2212

    Get PDF
    Dense and textured Bi-2212 bulk samples have been produced by the partial melting process. The appropriate amount of liquid phase necessary for complete densification has been adjusted by controlling the maximum processing temperature. The maximum temperature itself has to be adapted to several parameters as powder stoichiometry, silver addition and oxygen partial pressure. Prolonged annealing at 850 and 820 C and cooling in N2 atmosphere led to nearly single phase material with T(sub c) = 92 K. Critical current densities j(sub c) of 2'200 A/sq cm at 77 K/0 T have been achieved in samples of more than 1 mm thickness. Reducing the thickness below 0.4 mm enhances j(sub c) considerably to values is greater than 4'000 A/sq cm. The addition of 2 wt% Ag decreases the solidus temperature of the Bi-2212 powder by 21 C. Therefore, the maximum heat treatment temperature of Ag containing samples can be markedly lowered leading to a reduction of the amount of secondary phases. In addition, Ag enhances slightly the texture over the entire cross section and as a result j(sub c) at 77 K/0 T

    Microstructure of melt-processed Bi2Sr2CaCu2Oy and reaction mechanisms during post heat treatment

    Get PDF
    Phase compositions and microstructures of melt processed 2212 were studied. 2212 starting powder was cooled from temperatures between 910 °C and 1100 °C in air at rates ranging from 350 K/min to 0.083 K/min. The solidification sequence was established for all cooling rates. Under all conditions the Bi-free (Sr, Ca)CuO2 (01x1) is the primary phase. The one-layer solid solution 11905 nucleates on this phase. The residual liquid solidifies to a glassy state, decomposes into the eutectic of Cu2O and Bi2Sr2.1Ca0.9Ox, or reacts with the primary phase and the 11905 forming 2212 at high, intermediate, or low cooling rates, respectively. Post solidification heat treatment at 850 °C in air leads to partial remelting. The Cu-rich liquid reacts with 11905 and 01x1 forming 2212. Subsequent solid/solid reactions lead to a high volume fraction of 2212 with almost ideal 2 : 2 : 1 : 2 stoichiometr

    From imperfect to perfect Bi2Sr2CaCu2Ox (Bi-2212) grains

    Get PDF
    The 2212 phase formation during annealing of melt textured Bi-2212 (Bi2Sr2CaCu2Ox) was investigated using differential thermal analysis, thermal gravimetric analysis, x-ray diffraction, scanning electron microscopy, energy dispersive x-ray analysis, and high resolution transmission electron microscopy. After zone melting, the material is multiphase consisting of 2212, 2201, Sr1−xCaxCuO2, and the eutectic. The 2212 phase formed is highly perfect with less than 5% intergrowths of 2201 layers; the 2201 phase shows no intergrowth of 2212 at all. In the first period of the annealing, remelting of the eutectic leads to fast oxygen diffusion and a high 2212 formation rate. The 2201 → 2212 transformation proceeds via intermediate states of high defect density. The 2212 grains contain up to 30-70% 2201 intergrowths. Further heat treatments lead to an annihilation of the great majority of intergrown 2201 layers. We propose a model for the formation of 2212 grains with a low planar defect density, based on frequent stacking faults, that allows diffusion of Ca- and Cu-atoms over a short distance. The model provides a schematic description of this solid-state process and correlates it to the characteristic microstructural features of melt-processed Bi-221

    Tape casting and partial melting of Bi-2212 thick films

    Get PDF
    To produce Bi-2212 thick films with high critical current densities tape casting and partial melting is a promising fabrication method. Bi-2212 powder and organic additives were mixed into a slurry and tape casted onto glass by the doctor blade tape casting process. The films were cut from the green tape and partially molten on Ag foils during heat treatment. We obtained almost single-phase and well-textured films over the whole thickness of 20 microns. The orientation of the (a,b)-plane of the grains was parallel to the substrate with a misalignment of less than 6 deg. At 77 K/0T a critical current density of 15, 000 A/sq cm was reached in films of the dimension 1 cm x 2 cm x 20 microns (1 micron V/cm criterion, resistively measured). At 4 K/0T the highest value was 350,000 A/sq cm (1 nV/cm criterion, magnetically measured)

    Magnetism and superconductivity of strongly correlated electrons on the triangular lattice

    Full text link
    We investigate the phase diagram of the \tj Model on a triangular lattice using a Variational Monte-Carlo approach. We use an extended set of Gutzwiller projected fermionic trial wave-functions allowing for simultaneous magnetic and superconducting order parameters. We obtain energies at zero doping for the spin-1/2 Heisenberg model in very good agreement with the best estimates. Upon electron doping (with a hopping integral t<0t<0) this phase is surprisingly stable variationally up to n≈1.4n\approx 1.4, while the dx2−y2+idxyd_{x^{2}-y^{2}}+i d_{xy} order parameter is rather weak and disappears at n≈1.1n\approx 1.1. For hole doping however the coplanar magnetic state is almost immediately destroyed and dx2−y2+idxyd_{x^{2}-y^{2}}+i d_{xy} superconductivity survives down to n≈0.8n\approx 0.8. For lower nn, between 0.2 and 0.8, we find saturated ferromagnetism. Moreover, there is evidence for a narrow spin density wave phase around n≈0.8n\approx 0.8. Commensurate flux phases were also considered, but these turned out {\em not} to be competitive at finite doping.Comment: 11 pages; 11 figure

    Design, Manufacture and Wind Tunnel Test of a Modular FishBAC Wing with Novel 3D Printed Skins

    Get PDF
    This paper introduces a new modular Fish Bone Active Camber morphing wing with novel 3D printed skin panels. These skin panels are printed using two different Thermoplastic Polyurethane (TPU) formulations: a soft, high strain formulation for the deformable membrane of the skin, reinforced with a stiffer formulation for the stringers and mounting tabs. Additionally, this is the first FishBAC device designed to be modular in its installation and actuation. Therefore, all components can be removed and replaced for maintenance purposes without having to remove or disassemble other parts. A 1 m span, 0.27 m chord morphing wing with a 25% chord FishBAC was built and tested mechanically and in a low-speed wind tunnel. Results show that the new design is capable of achieving the same large changes in airfoil lift coefficient (approximate ΔCL≈0.55) with a low drag penalty seen in previous FishBAC work, but with a much simpler, practical and modular design. Additionally, the device shows a change in the pitching moment coefficient of ΔCM≈0.1, which shows the potential that the FishBAC has as a control surface

    Economic space: On the analysis and interpretation of pottery production and distribution

    Get PDF
    Ceramics are particularly well suited for investigating general patterns of the distribution of premodern products. Archaeometric methods, used to determine raw materials and production techniques, permit the identification of places of production. The work of the research group presented here pursues two objectives: (i) to investigate the usefulness of portable X-ray fluorescence equipment for the analysis of ceramics and (ii) to identify, interpret and study distribution areas of ceramic products in comparative prospective. The paper discusses key economic concepts, sets out the archaeometric methodology and presents initial results in the context of two examples

    Singlet Stripe Phases in the planar t-J Model

    Full text link
    The energies of singlet stripe phases in which a plane is broken up into spin liquid ladders by lines of holes, is examined. If the holes were static then patterns containing spin liquids with a finite spin gap are favored. The case of dynamic holes is treated by assembling t-J ladders oriented perpendicular to the stripes. For a wide region around J/t≈1J/t \approx 1 the hole-hole correlations in a single ladder are found to be predominantly charge density wave type but an attraction between hole pairs on adjacent ladders leads to a stripe phase. A quantum mechanical melting of the hole lines at smaller J/tJ/t values leads to a Bose condensate of hole pairs, i.e. a superconducting phase.Comment: 5 pages, uuencoded compressed PostScript file including 5 figures, ETH-TH/942

    Material-specific gap function in the high-temperature superconductors

    Full text link
    We present theoretical arguments and experimental support for the idea that high-Tc superconductivity can occur with s-wave, d-wave, or mixed-wave pairing in the context of a magnetic mechanism. The size and shape of the gap is different for different materials. The theoretical arguments are based on the t-J model as derived from the Hubbard model so that it necessarily includes three-site terms. We argue that this should be the basic minimal model for high-Tc systems. We analyze this model starting with the dilute limit which can be solved exactly, passing then to the Cooper problem which is numerically tractable, then ending with a mean field approach. It is found that the relative stability of s-wave and d-wave depends on the size and the shape of the Fermi surface. We identify three striking trends. First, materials with large next-nearest-neighbor hopping (such as YBa(2)Cu(3)O(7-x)) are nearly pure d-wave, whereas nearest-neighbor materials (such as La(2-x)Sr(x)CuO(4)) tend to be more s-wave-like. Second, low hole doping materials tend to be pure d-wave, but high hole doping leads to s-wave. Finally, the optimum hole doping level increases as the next-nearest-neighbor hopping increases. We examine the experimental evidence and find support for this idea that gap function in the high-temperature superconductors is material-specific.Comment: 20 pages; requires revtex.sty v3.0, epsf.sty; includes 6 EPS figures; Postscript version also available at http://lifshitz.physics.wisc.edu/www/koltenbah/papers/gapfunc2.ps . This version contains an extensive amount of new work including theoretical background, an additional mean field treatment with new figures, and a more thorough experimental surve
    • …
    corecore