53 research outputs found

    Challenges with using primer IDs to improve accuracy of next generation sequencing

    Get PDF
    Next generation sequencing technologies, like ultra-deep pyrosequencing (UDPS), allows detailed investigation of complex populations, like RNA viruses, but its utility is limited by errors introduced during sample preparation and sequencing. By tagging each individual cDNA molecule with barcodes, referred to as Primer IDs, before PCR and sequencing these errors could theoretically be removed. Here we evaluated the Primer ID methodology on 257,846 UDPS reads generated from a HIV-1 SG3Δenv plasmid clone and plasma samples from three HIV-infected patients. The Primer ID consisted of 11 randomized nucleotides, 4,194,304 combinations, in the primer for cDNA synthesis that introduced a unique sequence tag into each cDNA molecule. Consensus template sequences were constructed for reads with Primer IDs that were observed three or more times. Despite high numbers of input template molecules, the number of consensus template sequences was low. With 10,000 input molecules for the clone as few as 97 consensus template sequences were obtained due to highly skewed frequency of resampling. Furthermore, the number of sequenced templates was overestimated due to PCR errors in the Primer IDs. Finally, some consensus template sequences were erroneous due to hotspots for UDPS errors. The Primer ID methodology has the potential to provide highly accurate deep sequencing. However, it is important to be aware that there are remaining challenges with the methodology. In particular it is important to find ways to obtain a more even frequency of resampling of template molecules as well as to identify and remove artefactual consensus template sequences that have been generated by PCR errors in the Primer IDs

    Performance of Ultra-Deep Pyrosequencing in Analysis of HIV-1 pol Gene Variation

    Get PDF
    INTRODUCTION: Ultra-deep pyrosequencing (UDPS) has been used to detect minority variants within HIV-1 populations. Some aspects of the quality and reproducibility of UDPS have been previously evaluated, but comprehensive studies are still needed. PRINCIPAL FINDING: In this study the UDPS technology (FLX platform) was evaluated by analyzing a 120 base pair fragment of the HIV-1 pol gene from plasma samples from two patients and artificial mixtures of molecular clones. UDPS was performed using an optimized experimental protocol and an in-house data cleaning strategy. Nine samples and mixtures were analyzed and the average number of reads per sample was 19,404 (range 8,858-26,846). The two patient plasma samples were analyzed twice and quantification of viral variants was found to be highly repeatable for variants representing >0.27% of the virus population, whereas some variants representing 0.11-0.27% were detected in only one of the two UDPS runs. Bland-Altman analysis showed that a repeated measurement would have a 95% likelihood to lie approximately within ±0.5 log(10) of the initial estimate. A similar level of agreement was observed for variant frequency estimates in forward vs. reverse sequencing direction, but here the agreement was higher for common variants than for rare variants. UDPS following PCR amplification with alternative primers indicated that some variants may be incorrectly quantified due to primer-related selective amplification. Finally, the in vitro recombination rate during PCR was evaluated using artificial mixtures of clones and was found to be low. The most abundant in vitro recombinant represented 0.25% of all UDPS reads. CONCLUSION: This study demonstrates that this UDPS protocol results in low experimental noise and high repeatability, which is relevant for future research and clinical use of the UDPS technology. The low rate of in vitro recombination suggests that this UDPS system can be used to study genetic variants and mutational linkage

    NS5A Resistance-Associated Substitutions in Patients with Genotype 1 Hepatitis C Virus:Prevalence and Effect on Treatment Outcome

    Get PDF
    Background & Aims The efficacy of NS5A inhibitors for the treatment of patients chronically infected with hepatitis C virus (HCV) can be affected by the presence of NS5A resistance-associated substitutions (RASs). We analyzed data from 35 phase I, II, and III studies in 22 countries to determine the pretreatment prevalence of various NS5A RASs, and their effect on outcomes of treatment with ledipasvir-sofosbuvir in patients with genotype 1 HCV. Methods NS5A gene deep sequencing analysis was performed on samples from 5397 patients in Gilead clinical trials. The effect of baseline RASs on sustained virologic response (SVR) rates was assessed in the 1765 patients treated with regimens containing ledipasvir-sofosbuvir. Results Using a 15% cut-off, pretreatment NS5A and ledipasvir-specific RASs were detected in 13% and 8% of genotype 1a patients, respectively, and in 18% and 16% of patients with genotype 1b. Among genotype 1a treatment-naïve patients, SVR rates were 91% (42/46) vs. 99% (539/546) for those with and without ledipasvir-specific RASs, respectively. Among treatment-experienced genotype 1a patients, SVR rates were 76% (22/29) vs. 97% (409/420) for those with and without ledipasvir-specific RASs, respectively. Among treatment-naïve genotype 1b patients, SVR rates were 99% for both those with and without ledipasvir-specific RASs (71/72 vs. 331/334), and among treatment-experienced genotype 1b patients, SVR rates were 89% (41/46) vs. 98% (267/272) for those with and without ledipasvir-specific RASs, respectively. Conclusions Pretreatment ledipasvir-specific RASs that were present in 8–16% of patients have an impact on treatment outcome in some patient groups, particularly treatment-experienced patients with genotype 1a HCV. Lay summary The efficacy of treatments using NS5A inhibitors for patients with chronic hepatitis C virus (HCV) infection can be affected by the presence of NS5A resistance-associated substitutions (RASs). We reviewed results from 35 clinical trials where patients with genotype 1 HCV infection received treatments that included ledipasvir-sofosbuvir to determine how prevalent NS5A RASs are in patients at baseline, and found that ledipasvir-specific RASs were present in 8–16% of patients prior to treatment and had a negative impact on treatment outcome in subset of patient groups, particularly treatment-experienced patients with genotype 1a HCV

    Consistent Effects of Early Remdesivir on Symptoms and Disease Progression Across At-Risk Outpatient Subgroups: Treatment Effect Heterogeneity in PINETREE Study

    Get PDF
    INTRODUCTION: In the PINETREE study, early remdesivir treatment reduced risk of coronavirus disease 2019 (COVID-19)-related hospitalizations or all-cause death versus placebo by 87% by day 28 in high-risk, non-hospitalized patients. Here we report results of assessment of heterogeneity of treatment effect (HTE) of early outpatient remdesivir, focusing on time from symptom onset and number of baseline risk factors (RFs). METHODS: PINETREE was a double-blind, placebo-controlled trial of non-hospitalized patients with COVID-19 who were randomized within 7 days of symptom onset and had ≥ 1 RF for disease progression (age ≥ 60 years, obesity [body mass index ≥ 30], or certain coexisting medical conditions). Patients received remdesivir intravenously (200 mg on day 1 and 100 mg on days 2 and 3) or placebo. RESULTS: In this subgroup analysis, HTE of remdesivir by time from symptom onset at treatment initiation and number of baseline RFs was not detected. Treatment with remdesivir reduced COVID-19-related hospitalizations independent of stratification by time from symptom onset to randomization. Of patients enrolled ≤ 5 days from symptom onset, 1/201 (0.5%) receiving remdesivir and 9/194 (4.6%) receiving placebo were hospitalized (hazard ratio [HR] 0.10; 95% confidence interval [CI] 0.01-0.82). Of those enrolled at > 5 days from symptom onset, 1/78 (1.3%) receiving remdesivir and 6/89 (6.7%) receiving placebo were hospitalized (HR 0.19; 95% CI 0.02-1.61). Remdesivir was also effective in reducing COVID-19-related hospitalizations when stratified by number of baseline RFs for severe disease. Of patients with ≤ 2 RFs, 0/159 (0.0%) receiving remdesivir and 4/164 (2.4%) receiving placebo were hospitalized; of those with ≥ 3 RFs, 2/120 (1.7%) receiving remdesivir and 11/119 (9.2%) receiving placebo were hospitalized (HR 0.16; 95% CI 0.04-0.73). CONCLUSIONS: In the outpatient setting, benefit of remdesivir initiated within 7 days of symptoms appeared to be consistent across patients with RFs. Therefore, it may be reasonable to broadly treat patients with remdesivir regardless of comorbidities. TRIAL REGISTRATION: ClinicalTrials.gov number NCT04501952

    No Remdesivir Resistance Observed in the Phase 3 Severe and Moderate COVID-19 SIMPLE Trials

    Get PDF
    Remdesivir (RDV) is a broad-spectrum nucleotide analog prodrug approved for the treatment of COVID-19 in hospitalized and non-hospitalized patients with clinical benefit demonstrated in multiple Phase 3 trials. Here we present SARS-CoV-2 resistance analyses from the Phase 3 SIMPLE clinical studies evaluating RDV in hospitalized participants with severe or moderate COVID-19 disease. The severe and moderate studies enrolled participants with radiologic evidence of pneumonia and a room-air oxygen saturation of ≤94% or >94%, respectively. Virology sample collection was optional in the study protocols. Sequencing and related viral load data were obtained retrospectively from participants at a subset of study sites with local sequencing capabilities (10 of 183 sites) at timepoints with detectable viral load. Among participants with both baseline and post-baseline sequencing data treated with RDV, emergent Nsp12 substitutions were observed in 4 of 19 (21%) participants in the severe study and none of the 2 participants in the moderate study. The following 5 substitutions emerged: T76I, A526V, A554V, E665K, and C697F. The substitutions T76I, A526V, A554V, and C697F had an EC50 fold change of ≤1.5 relative to the wildtype reference using a SARS-CoV-2 subgenomic replicon system, indicating no significant change in the susceptibility to RDV. The phenotyping of E665K could not be determined due to a lack of replication. These data reveal no evidence of relevant resistance emergence and further confirm the established efficacy profile of RDV with a high resistance barrier in COVID-19 patients

    Dynamics of HIV-1 Quasispecies during Antiviral Treatment Dissected Using Ultra-Deep Pyrosequencing

    Get PDF
    Background: Ultra-deep pyrosequencing (UDPS) allows identification of rare HIV-1 variants and minority drug resistance mutations, which are not detectable by standard sequencing. Principal Findings: Here, UDPS was used to analyze the dynamics of HIV-1 genetic variation in reverse transcriptase (RT) (amino acids 180–220) in six individuals consecutively sampled before, during and after failing 3TC and AZT containing antiretroviral treatment. Optimized UDPS protocols and bioinformatic software were developed to generate, clean and analyze the data. The data cleaning strategy reduced the error rate of UDPS to an average of 0.05%, which is lower than previously reported. Consequently, the cut-off for detection of resistance mutations was very low. A median of 16,016 (range 2,406–35,401) sequence reads were obtained per sample, which allowed detection and quantification of minorit

    HIV co‐infection is associated with increased transmission risk in patients with chronic hepatitis C virus

    No full text
    Molecular epidemiological analysis of viral pathogens can identify factors associated with increased transmission risk. We investigated the frequency of genetic clustering in a large data set of NS34A, NS5A, and NS5B viral sequences from patients with chronic hepatitis C virus (HCV). Within a subset of patients with longitudinal samples, Receiver Operator Characteristic (ROC) analysis was applied which identified a threshold of 0.02 substitutions/site as most appropriate for clustering. From the 7457 patients with chronic HCV infection included in this analysis, we inferred 256 clusters comprising 541 patients (7.3%). We found that HCV/HIV co-infection, young age, and high HCV viral load were all associated with increased clustering frequency, an indicator of increased transmission risk. In light of previous work on HCV/HIV co-infection in acute HCV cohorts, our results suggest that patients with HCV/HIV co-infection may disproportionately be the source of new HCV infections and treatment efforts should be geared towards viral elimination in this vulnerable population

    Alignment containing HCV 1b full genomes and recombinant 2k/1b hemigenomes

    No full text
    All publicly available HCV 1b sequences were downloaded from GenBank and the Los Alamos National Laboratories (LANL). These were aligned with 2k/1b hemigenomes, representing the 1b portion of the coding region separated at the Recombination Detection Program (RDP)-inferred breakpoint, using the fast option in MAFFT version 7 in AliView and edited manually. Recombinant genomes were acquired from this study or these databases
    corecore