1,051 research outputs found

    Mainstreaming and the Classroom Teacher: A Practical Approach

    Get PDF
    Classroom teachers have always had exceptional students in regular classrooms; many of these children could not be placed due to overcrowding of special education classes. Some were undiagnosed and unrecognized in terms of specific disability. The parents of others would not allow separation from regular learning settings. Often these handicapped learners in normative educational settings were relegated to marginal roles and ignored. Special learners were sometimes the focus of annoyance of teachers and classmates, who did not understand their disability and could not effectively aid special learning. Much of the time, handicapped children were successfully taught by the ingenious teacher, who utilized make-do arrangements, but was effective in reaching students with special needs. Further, there is research to indicate that some exceptional learners whose disability is not extreme do learn very well in regular classrooms and do not profit educationally or socially by being separated from their more normative peers (Dunn, 1968, Goldstein, Moss and Johnson, 1965)

    Odontoameloblastoma with extensive chondroid matrix deposition in a guinea pig

    Get PDF
    Odontoameloblastomas (previously incorporated within ameloblastic odontomas) are matrix-producing odontogenic mixed tumors and are closely related in histologic appearance to the 2 other types of matrix-producing odontogenic mixed tumors: odontomas and ameloblastic fibro-odontomas. The presence or absence of intralesional, induced non-neoplastic tissue must be accounted for in the diagnosis. Herein we describe a naturally occurring odontoameloblastoma with extensive chondroid cementum deposition in a guinea pig (Cavia porcellus). Microscopically, the mass featured palisading neoplastic odontogenic epithelium closely apposed to ribbons and rings of a pink dental matrix (dentinoid), alongside extensive sheets and aggregates of chondroid cementum. The final diagnosis was an odontoameloblastoma given the abundance of odontogenic epithelium in association with dentinoid but a paucity of pulp ectomesenchyme. Chondroid cementum is an expected anatomical feature of cavies, and its presence within the odontoameloblastoma was interpreted as a response of the ectomesenchyme of the dental follicle to the described neoplasm. Our case illustrates the inductive capabilities of odontoameloblastomas while highlighting species-specific anatomy that has resulted in a histologic appearance unique to cavies and provides imaging and histologic data to aid diagnosis of these challenging lesions

    COMMUNICATING MULTILEVEL EVACUATION CONTEXT USING SITUATED AUGMENTED REALITY

    Get PDF
    Emergency preparedness is a fundamental component of a successful emergency management strategy. This includes a proactive communication strategy that informs all stakeholders of the emergency plan and helps translate that knowledge to real spaces. Communicating multilevel built environments can be difficult, as the architectural complexity creates problems for both visual and mental representations of networks in 3D space. Modern mobile technology offers emerging opportunities for emergency managers to develop and deploy 3D visualizations of multilevel spaces that preserve the topology of those spaces while adding the spatial context that allows the individual to better understand their position within it. In this paper, we present a collection of mixed reality (specifically augmented reality) geovisualizations that overcome the visual limitations associated with the traditional static 2D methods of communicating the evacuation plans of multilevel structures. We demonstrate how this technology can provide spatially contextualized 3D geovisualizations that promote spatial knowledge acquisition and support cognitive mapping. These geovisualizations are designed as a proactive emergency management tool to educate and prepare at risk populations prior to the occurrence of a hazardous event

    Soap film smoothing

    Get PDF

    P08.36 Radioresistance of glioblastoma stem-like cells is associated with DNA replication stress, which is a promising therapeutic target

    Get PDF
    Introduction: The inevitability of tumour recurrence in glioblastoma (GBM) patients despite multi-modality treatment consisting of surgery, radiotherapy and chemotherapy, is reflected by a median survival of only 14 months. Tumour recurrence is thought to be driven by a small population of glioblastoma stem-like cells (GSCs) that are resistant to conventional therapies. DNA damage response (DDR) pathways have been shown to be up-regulated in GSCs and implicated in radioresistance and treatment failure. However the precise cause of enhanced DDR signalling in GSCs and the extent to which these signalling networks contribute to therapy resistance remains elusive. The objectives of this study were to investigate the underlying cause of DDR upregulation and treatment resistance in GSCs with a view to identifying novel and promising therapeutic targets. Materials and Methods: A panel of primary patient derived GBM cell lines cultured under conditions to enrich for or deplete the tumour stem cell population (GSC vs bulk respectively) were utilised in order to investigate enhanced GSC DDR under basal conditions and in response to ionising radiation. Confirmatory studies were also performed in cells sorted for the putative GSC marker CD133. The effects of a panel of small molecule DDR inhibitor agents on cell survival in GSC and bulk cells were quantified. Results: GSCs exhibited higher levels of total and activated DDR targets ATR, CHK1, ATM and PARP1 under basal conditions and were radioresistant compared to paired bulk populations. This was not due to increased levels of reactive oxygen species (ROS). Instead, we show that RPA is significantly higher in replicating GSCs and confirm by DNA fibre assays that GSCs and CD133+ cells have increased numbers of stalled replication forks, fewer new origins and slower DNA replication compared to bulk or CD133- populations, demonstrating for the first time that replication stress (RS) is a hallmark of GSCs. We identify increased expression of long neural genes as a likely mechanism for RS and DNA double strand breaks (DSBs) in GSCs and show that their radioresistance is reversed by dual inhibition of key RS and DDR proteins ATR and PARP. Conclusions: This study demonstrates the novel finding that replication stress is a hallmark of GSCs and resonates with recently published studies in neural progenitor cells showing that RS preferentially induces DNA DSB in long neural genes. Taken together, we implicate RS as a driver of enhanced DDR in GSCs and identify novel therapeutics with potential to improve clinical outcomes by overcoming the radioresistance of GB

    Fermi Surface as the Driving Mechanism for Helical Antiferromagnetic Ordering in Gd-Y Alloys

    Full text link
    The first direct experimental evidence for the Fermi surface (FS) driving the helical antiferromagnetic ordering in a gadolinium-yttrium alloy is reported. The presence of a FS sheet capable of nesting is revealed, and the nesting vector associated with the sheet is found to be in excellent agreement with the periodicity of the helical ordering.Comment: 4 pages, 4 figure

    TERMINAL FLOWER-1/CENTRORADIALIS inhibits tuberization via protein interaction with the tuberigen activation complex

    Get PDF
    This work was funded by the Scottish Government Rural and Environment Science and Analytical Services Division as part of the Strategic Research Programme 2016-2021, by a GCRF Foundation Awards for Global Agricultural and Food Systems Research funded by the BBSRC project BB/P022553/1 and also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska-Curie grant agreement number 835704. Research in Prat’s lab was funded by the Spanish Ministerio de Economía y Competitividad BIO2015-73019-EXP, and the aligned Japan EIG CONCERT (PIA102017-1) projects.Potato tuber formation is a secondary developmental program by which cells in the subapical stolon region divide and radially expand, to further differentiate into starch accumulating parenchyma. Whilst some details of the molecular pathway that signals tuberization are known, important gaps in our knowledge persist. Here the role of a member of the TERMINAL FLOWER 1/ CENTRORADIALIS gene family (termed StCEN ) in the negative control of tuberization is demonstrated for the first time. It is shown that reduced expression of StCEN accelerates tuber formation whereas transgenic lines over‐expressing this gene display delayed tuberization and reduced tuber yield. Protein‐protein interaction studies (yeast two hybrid and bimolecular fluorescence complementation) demonstrate that StCEN binds components of the recently described tuberigen activation complex. Using transient transactivation assays we show that the StSP6A tuberization signal is an activation target of the tuberigen activation complex, and that co‐expression of StCEN blocks StFD‐Like‐1 activation of the StSP6A gene. Transcriptomic analysis of transgenic lines mis‐expressing StCEN identify early transcriptional events in tuber formation. These results demonstrate that StCEN suppresses tuberization by directly antagonizing StSP6A function in stolons, identifying StCEN as a breeding marker to improve tuber initiation and yield, through the selection of genotypes with reduced StCEN expression.Publisher PDFPeer reviewe

    Antibiotic Review Kit for Hospitals (ARK-Hospital): study protocol for a stepped-wedge cluster-randomised controlled trial.

    Get PDF
    BACKGROUND: To ensure patients continue to get early access to antibiotics at admission, while also safely reducing antibiotic use in hospitals, one needs to target the continued need for antibiotics as more diagnostic information becomes available. UK Department of Health guidance promotes an initiative called 'Start Smart then Focus': early effective antibiotics followed by active 'review and revision' 24-72 h later. However in 2017, < 10% of antibiotic prescriptions were discontinued at review, despite studies suggesting that 20-30% of prescriptions could be stopped safely. METHODS/DESIGN: Antibiotic Review Kit for Hospitals (ARK-Hospital) is a complex 'review and revise' behavioural intervention targeting healthcare professionals involved in antibiotic prescribing or administration in inpatients admitted to acute/general medicine (the largest consumers of non-prophylactic antibiotics in hospitals). The primary study objective is to evaluate whether ARK-Hospital can safely reduce the total antibiotic burden in acute/general medical inpatients by at least 15%. The primary hypotheses are therefore that the introduction of the behavioural intervention will be non-inferior in terms of 30-day mortality post-admission (relative margin 5%) for an acute/general medical inpatient, and superior in terms of defined daily doses of antibiotics per acute/general medical admission (co-primary outcomes). The unit of observation is a hospital organisation, a single hospital or group of hospitals organised with one executive board and governance framework (National Health Service trusts in England; health boards in Northern Ireland, Wales and Scotland). The study comprises a feasibility study in one organisation (phase I), an internal pilot trial in three organisations (phase II) and a cluster (organisation)-randomised stepped-wedge trial (phase III) targeting a minimum of 36 organisations in total. Randomisation will occur over 18 months from November 2017 with a further 12 months follow-up to assess sustainability. The behavioural intervention will be delivered to healthcare professionals involved in antibiotic prescribing or administration in adult inpatients admitted to acute/general medicine. Outcomes will be assessed in adult inpatients admitted to acute/general medicine, collected through routine electronic health records in all patients. DISCUSSION: ARK-Hospital aims to provide a feasible, sustainable and generalisable mechanism for increasing antibiotic stopping in patients who no longer need to receive them at 'review and revise'. TRIAL REGISTRATION: ISRCTN Current Controlled Trials, ISRCTN12674243 . Registered on 10 April 2017

    Systematic mechanical assessment of consolidants for canvas reinforcement under controlled environment

    Get PDF
    In conservation, adhesives are commonly used for the consolidation of canvases, yet their impact upon the canvas longevity has raised some concerns amongst conservators. As such, this study presents a testing protocol developed to assess the performance of commonly-used adhesives (natural animal glue and synthetic Beva¼ 371) and a newly developed nanocellulose consolidant, nanofibrillated nanocellulose (CNF). This includes their effect on the visual appearance, consolidation, and response of the mechanical properties of the treated canvases to programmed changes in relative humidity (RH). Scanning electron microscopy (SEM) images of animal glue- and Beva¼ 371-treated canvases revealed the presence of adhesive and consolidant on and in-between cotton fibres. The consolidants form bridges linking and connecting the cotton fibres and holding them together, whereas the CNF treatment, formed a visible continuous and dense surface coating. None of the treatments induced any discernible colour change. Controlled environment mechanical testing was performed in two ways: by applying a linearly increasing static force at fixed RH (Young’s modulus) and by applying a dynamic force together with a programmed RH cycling between 20 and 80% (RH dependent viscoelastic properties). CNF gave a higher value of Young’s modulus than either of the two commonly-used materials. Measurements at different values of RH (20 and 80%) demonstrated for all the treated canvases that at the lower value (RH 20%) Young’s modulus values were higher than at the higher value (RH 80%). Besides, the dynamic mode showed that the rate of response in all cases was rapid and reversible and that the nanofibrillated cellulose treated sample showed the highest variation in storage (or elastic) modulus measured at the end of RH plateaux (20 and 80% RH). Thus CNF appears to be a promising material given its higher mechanical performance. The protocol developed in this study has enabled us to examine and compare candidate materials for the consolidation of canvases systematically, using testing parameters that remained relevant to the field of canvas conservation
    • 

    corecore