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Abstract

Conventional smoothing methods sometimes perform badly when used to smooth data over complex domains,

by smoothing inappropriately across boundary features, such as peninsulas. Solutions to this smoothing problem

tend to be computationally complex, and not to provide model smooth functions which are appropriate for in-

corporating as components of other models, such as generalized additive models, or mixed additive models. In

this paper we propose a class of smoothers appropriate for smoothing over difficult regions of R2, which can be

represented in terms of a low rank basis and one or two quadratic penalties. The key features of these smoothers

are (i) that they do not ‘smooth across’ boundary features; (ii) that their representation in terms of a basis and

penalties allows straightforward incorporation as components of GAMs, mixed models and other non-standard

models; (iii) that smoothness selection for these model components is straightforward to accomplish in a compu-

tationally efficient manner via GCV, AIC or REML, for example; (iv) that their low rank means that their use is

computationally efficient.

Keywords: Basis penalty smooth, differential equation smoothing, FELSPLINE, finite window smoothing,

known boundary smoothing, spline.
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Figure 1: The Southern Ocean around the Antarctic Peninsula. The grey area represents a typical region over

which spatially resolved whale abundance estimates are required. When modelling such abundances statistically,

it is important not to ‘smooth across’ the Antarctic Peninsula: for whales, distances across land are very different

to distances in water.
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1 Introduction

This paper is about smoothing, primarily over two dimensional domains, when the boundary of the domain matters.

We are interested in two issues: how to estimate a smooth function from scattered noisy data and known boundary

values, and how to smooth in a way that respects complex boundary features (including when the boundary values

are unknown). Figure 1 illustrates a domain that is problematic for conventional methods: the ocean around the

Antarctic peninsula. Conventional smoothing tends to display ‘leakage’ across the peninsula, with estimates on

either side of the peninsula linked inappropriately. To illustrate this issue, Ramsay (2002), provided a simple test

example which perfectly demonstrates the problem, a modification of which is shown in figure 3: most smoothing

methods have considerable difficulty in reconstructing this test function from samples, because of leakage across

the domain boundary.

In assessing what smooth models might be appropriate, we are motivated by four basic considerations.

1. Given the spatial nature of this sort of smoothing problem, the smooths should be rotationally invariant.

2. The notion of smoothness adopted should be such that a ‘completely smooth’ function can be constructed

which exactly meets (almost) any boundary condition on function values.

3. Many domains feature holes or islands, and the method should be general enough to deal with these.

4. Smoothers must be capable of straightforward incorporation as components of other models and must be

computationally cheap enough for routine use.

Point 2 requires some further explanation. Most smoothing methods imply a measure of function wiggliness,

which acts as a penalty on overly wiggly functions when estimating smooth functions from data. If this penalty

is zero then the function is ‘completely smooth’ (e.g. straight lines are completely smooth according to a cubic

spline penalty). Our requirement is that it should be possible to produce a function over the smoothing domain

which can meet any arbitrary boundary condition (subject to some continuity restrictions) and have a zero penalty.

Failure to meet this condition implies situations in which the smoothest possible model has a penalty greater than

zero. This is problematic when using mixed model or (many) Bayesian approaches to smoothing. Such methods

put a negative exponential prior on function wiggliness, and if the penalty can not be zeroed while meeting the

boundary conditions then this prior will ascribe highest probability to model coefficient values that are actually

impossible. The property of being able to zero the penalty is also desirable when boundary conditions are unknown.

Otherwise, as we approach the completely smooth/zero penalty limit, the smooth will tend to show the sort of

boundary-leakage problems we are seeking to avoid. For example, if we use a thin plate spline penalty around the

Antarctic peninsula, then the model zeroing the penalty is a plane over the spatial domain, even if the penalty is
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only integrated over the ocean. This inevitably suggests a degree of correspondence between the two sides of the

peninsula that is unreasonable in the biological situations motivating our work.

To meet objective 4 in practice, we aim to produce smoothing methods that can be implemented using a

basis of relatively low rank, with a quadratic penalty measuring departure from smoothness (wiggliness). Such

basis-penalty smoothers are easily incorporated as components of a wide variety of statistical models, and have

available relatively reliable and computationally efficient methods for smoothness selection. For example such

smooths are easily incorporated as components of generalized linear models to yield ‘semi-parametric models’

and ‘generalized additive models’, which can be estimated by penalized likelihood maximization with smoothness

selected by GCV, AIC or similar criteria (see, for example, Kim and Gu, 2004 or Wood, 2006a). Similarly, the

basis-penalty representation allows straightforward incorporation of such smooths as mixed model components,

with the quadratic penalty matrix playing the role of a random effects inverse covariance matrix (see Ruppert et al.,

2003 for an overview, and Fahrmeir et al. 2004, or Wood 2004 for general strategies). An important motivation for

us is the need to embed penalized models of smooth functions over awkward domains within a somewhat complex

model of Minke whale sightings around the Antarctic peninsula: for this application smoothing methods that can

not be represented using a basis and penalties are quite intractable.

The literature on smoothing is large (see, for example, Wahba, 1990; Hastie and Tibshirani 1990; Green

and Silverman, 1994; Wand and Jones, 1995; Bowman and Azzalini, 1997; Gu, 2002; Ruppert et al. 2003 and

Wood, 2006a, for overviews of just some of the approaches), but the methods of Ramsay (1999, 2002) and Stone

(1988) provide obvious starting points when attempting to build models incorporating finite window smoothers

as components. Stone developed a finite window version of thin plate splines (Duchon, 1977), in which the thin

plate spline penalty is evaluated only over the domain of interest. While preferable to a conventional thin plate

spline for smoothing over complicated domains, this does not meet our objective 2, would require extension to deal

with holes/islands and does not deal with the known boundary case. Ramsay’s approach is demonstrably a huge

improvement on conventional smoothers, such as thin plate splines, over difficult domains. It uses a smoothing

objective that is compatible with our aims 1 and 3, but the method involves a quite complex computational strategy

incompatible with our aim 4. To arrive at the computational approach, Ramsay uses a smoothing objective which

would be compatible with our aim 2, but only under the undesirable assumption that, at the boundary, the gradient

of the estimated function is zero along normals to the boundary. This implies that contours of the estimated function

must meet the boundary at right angles, which is a strong assumption (see section 5.2).

The rest of this paper is structured as follows. We first provide an intuitive motivation of our proposed soap

film smoothers, then we prove some useful results for the known boundary case which motivate the practical soap-

film smoothing methods discussed subsequently. We then demonstrate the smoothers’ performance on simulated
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problems, before providing two example applications.

2 The motivating physical model

The basic physical motivation for the proposed smoothers is as follows. Consider a loop of wire following the

boundary of the region, Ω, of the x−y plane over which we are interested in smoothing. The vertical displacement

of the loop above the plane gives the known function values at the boundary. An appropriate definition of a

‘completely smooth’ function over this domain can be obtained by considering a soap film supported by this

boundary wire (in zero gravity). If we make the assumption that the vertical displacement of the wire is small then

the height of the soap film, inside the boundary, is given by the function f satisfying

∂2f

∂x2
+

∂2f

∂y2
= 0

and the boundary conditions: i.e. the soap film adopts a minimum surface tension configuration. Now, in order to

smooth data within the domain, the soap film should distort smoothly from its minimum energy configuration by

moving vertically towards the data. An appropriate measure of the total degree of distortion would be:

JΩ(f) =
∫

Ω

(
∂2f

∂x2
+

∂2f

∂y2

)2

dxdy.

Notice that, although isotropic, this differs from the usual thin plate spline penalty functional (Duchon, 1977, or

see e.g. Green and Silverman, 1994) in three respects: it is only integrated over Ω, rather than the whole x, y plane,

there is no mixed second derivative term, and the sum of the second derivative terms is squared, rather than the

terms being separately squared. The latter feature allows the second derivatives with respect to x and y to be traded

off against each other, so that the space of functions for which JΩ(f) is zero is infinite dimensional: this is what

allows functions with zero penalty to be curved enough to meet any boundary condition (aim 2 in the introduction).

So, if we have n data points, zk, which are noisy observations of h(xk, yk) where h is a smooth function over

the domain, we might seek to estimate h by minimizing (subject to the known boundary conditions)

n∑

i=1

{zi − f(xi, yi)}2 + λJΩ(f) (1)

w.r.t. f . Here λ is a tuneable smoothing parameter. As we will see, there is no particular need to employ a least

squares loss function in the objective: any loss measure which depends on f only via evaluations of f at a finite

number of points will do. In the next section we provide a characterization of the minimizer of (1) which allows it

to be computed to arbitrary accuracy by relatively simple numerical methods.
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3 Theory of soap film smoothers

Theorem 1 (Soap film interpolation). Consider a smooth function f∗(x, y) over the x, y plane. Let B be a

collection of closed loops in the x, y plane, such that no two loops intersect and one ‘outer’ loop encloses all

the others. Let Ω be the region made up of all x, y points which are interior to an odd total number these loops.

Suppose that f∗(x, y) is known exactly on B, and that zk = f∗(xk, yk) are observations of f∗ at n locations xk, yk

within Ω. Let f(x, y) be the function which

1. interpolates the known f∗ values on B and the zk’s at the n points (xk, yk);

2. satisfies ∂2f/∂x2 + ∂2f/∂y2 = 0 on B; and

3. minimizes

JΩ(f) =
∫

Ω

(
∂2f

∂x2
+

∂2f

∂y2

)2

dxdy.

Then f is the function, meeting condition 1, such that

∂2f

∂x2
+

∂2f

∂y2
= ρ, (2)

where
∂2ρ

∂x2
+

∂2ρ

∂y2
= 0 (3)

except at the xk, yk points, and ρ = 0 on B. Equations (2) and (3) are the Poisson and Laplace equations,

respectively.

Proof. Various proofs are possible. The following gives some insight into why the interpolant has the given form.

Let R be a rectangle in the x, y plane, which encloses B and the boundary of which never touches B. Assume

w.l.o.g. that each side of R is aligned with either the x or y axis. Now impose a regular rectangular grid on x, y,

aligned with the sides of R and with grid spacing of ∆ (in both x and y directions). Let the grid points be indexed

i in the y direction and j in the x direction. The derivatives in the penalty functional JΩ can now be approximated

by symmetric finite differences on the grid. For example

∂2fi,j

∂x2
' fi,j+1 − 2fi,j + fi,j−1

∆2

with equality in the limit as ∆ → 0, where fi,j denotes f(x, y) at grid point i, j.

Now let f = [f1,1, f1,2, . . . , f2,1, f2,2, . . .]T be the vector of f(x, y) evaluated at all grid points. Suppose

that fxx and fyy are the corresponding second derivative vectors of f w.r.t. x and y respectively. The finite

differencing approximation of the derivatives can be written as fxx = Dxf and fyy = Dyf , where the non-zero
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elements of matrices Dx and Dy are the coefficients involved in finite differencing (plus constants determined by

the assumptions made at the boundary of R, which turn out to be immaterial).

Consider the extended penalty functional

JR(f) =
∫

R

(
∂2f

∂x2
+

∂2f

∂y2

)2

dxdy.

It is easy to see that,

JR(f) ' fT(Dx + Dy)T(Dx + Dy)f∆2,

with equality in the limit as ∆ → 0.

Now we seek the values of f minimizing JR, subject to the interpolation constraints. Clearly the minimizing f

must satisfy each of the system of equations

(Dx + Dy)T(Dx + Dy)f = 0 (4)

which does not correspond to a point on B or an xk, yk point. Correspondence between grid points and boundary

points can be established as follows. A ∆×∆ square with sides aligned with the x, y co-ordinate system is centred

on each gridpoint: any grid point whose square includes part of B or an xk, yk is treated as boundary point. The

error associated with this gridding tends to 0 as ∆ → 0.

Further progress relies on the fact that, away from boundaries of R, partial symmetry of Dx means that DT
x

acts exactly as Dx in producing approximate second derivatives of any quantity gridded in the same way as f ,

i.e. if g is a vector of any smooth function’s values, gridded in the same way as f , then both DT
x g and Dxg will

yield the corresponding vector of finite difference approximations to the functions’s second derivatives w.r.t. x, for

points sufficiently far from the boundary of R. The same holds for DT
y . Hence in the limit as ∆ → 0, in which the

approximation to JR is exact, (4) becomes:

∂4f

∂x4
+

∂4f

∂x2y2
+

∂4f

∂y2x2
+

∂4f

∂y4
= 0

except at the xk, yk (the boundary condition ensures that it also holds on B), and this can be re-written as

∂2f

∂x2
+

∂2f

∂y2
= ρ, where

∂2ρ

∂x2
+

∂2ρ

∂y2
= 0

except at the xk, yk points. From the boundary condition, ρ = 0 on B. Existence, uniqueness and continuity of

solutions f and ρ over Ω, subject to the given boundary conditions, follow from known properties of the Laplace

and Poisson equations (see, e.g. Strauss, 1992 or Evans, 1998 section 2.2).

It remains to establish that the minimizer of JR minimizes JΩ when considered over Ω alone, but this is

straightforward. If f were not the minimizer of JΩ then we could replace f by the minimizer of JΩ over Ω and

thereby reduce JR, since JR is simply JΩ integrated over a larger domain, and since
(
∂2f/∂x2 + ∂2f/∂y2

)2 = 0
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on B, so that the function inside Ω has no influence on
(
∂2f/∂x2 + ∂2f/∂y2

)2
outside Ω. But this reduction in

JR leads to a contradiction unless the same f(x, y) over Ω minimizes both JΩ and JR.

Remarks.

1. The Laplace and Poisson equations are among the most well studied in the theory of PDEs, due in part to

their frequent occurrence in physics. See Evans, (1998 section 2.2) or Strauss (1992 chapter 6) for theoretical

introductions, and Press et al. (1992 chapter 19) or Strauss (1992 chapter 8) for an introduction to numerical

solution methods.

2. Essentially the same construction can be used to derive interpolants over smoothly bounded domains in

Rk, where k is any positive integer. However as k increases above 2 it is necessary to increase the order,

m say, of the derivatives in the wiggliness measure, if the defining PDEs and boundary conditions are to

constitute a well posed problem. For example, the singularities in the Laplace equation in 3 dimensions are

not integrable, so a 3 dimensional soap film interpolant using a second derivative based JΩ is not practical.

A third derivative based penalty would not cause a problem, but the corresponding PDEs would be much

less well studied, and might be harder to solve numerically, as well as requiring extra boundary conditions.

A formal theory for the general, k > 2, case could be constructed using general Sobolev space theory (see

Evans, 1998, Chapter 5), but since we know of no applications for k > 2 we do not pursue this further.

3. The structure of the theorem’s proof immediately suggests the form of the defining equations for a ‘soap

film’ smoother in 2 dimensions but using a third derivative based JΩ. A referee has pointed out that this

might be helpful for establishing convergence rates for the soap film smoother.

4. Over a one dimensional region the soap film penalty would become the cubic spline penalty
∫

f ′′(x)2dx. In

that case the soap film interpolant of xk, zk data on [a, b] is defined by ∂2f/∂x2 = ρ where ∂2ρ/∂x2 = 0,

except at the xk, f(xk) = zk ∀k and there are boundary conditions that f(a) and f(b) are known while

f ′′(a) = f ′′(b) = 0. So ρ, the second derivative of f , is piecewise linear with derivative discontinuities at

the xk, but in that case f is a natural cubic spline interpolant. See Wahba (1990) for more on splines.

5. An alternative proof can be constructed by writing any alternative interpolant as f̃ = f + h where f

is the soap film interpolant. Writing gab for ∂2g/∂a∂b, we have JΩ(f̃) =
∫ ∫

Ω
(fxx + fyy)2 dxdy +

∫ ∫
Ω

(hxx + hyy)2 dxdy + 2
∫ ∫

Ω
hxx(fxx + fyy) + hyy(fxx + fyy)dxdy. Repeated integration by parts

establishes that, under the boundary conditions given in the theorem, the final integral is zero, from which

the theorem follows easily. This is somewhat similar to the integration by parts proof of the cubic spline’s

smoothest interpolation property.
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6. The theorem’s characterization can be generalized to the case where the zk are observed with noise and we

wish to smooth rather than interpolate. This is the subject of the following lemma.

Lemma 1 (Soap film smoothing). Let the setup be exactly as for Theorem 1, except that the zk are now measured

with error, and f is now the vector f = [f(x1, y1), f(x2, y2), . . . , f(xn, yn)]T. The function, f(x, y), minimizing

‖z− f‖2 + λfJΩ(f) (5)

subject to the known conditions on B must satisfy (2) and (3).

Proof. If the minimizing function were f̃ , different to f , then we could interpolate the values in f using a soap film

interpolant, thereby leaving ‖z− f‖2 unchanged but reducing JΩ, by the minimum JΩ interpolant property of the

soap film interpolant. i.e. there is a contradiction unless f̃ = f .

The proof generalizes trivially to the case where ‖z − f‖2 is replaced by any measure of lack of fit, D(z, f),

which depends on f only through f .

4 Actual smoother construction

The characterization of the minimizer of (5) in terms of solutions to (2) and (3) is the key to convenient computation

of soap film smoothers and to deriving the basis-penalty representation that is needed if these smoothers are to be

useful as components of mixed models, additive models and other more general models. Here we provide the main

results, while the appendix fills in some of the computational details required for practical computation.

Let ρk(x, y) denote the function which is zero on B, satisfies (3) everywhere in Ω except at the single point

xk, yk (the kth data location) and satisfies
∫
Ω

ρk(x, y)dxdy = 1. Then any function which satisfies (3) everywhere

in Ω except at the set of points {xk, yk : k = 1, . . . , n}, can be written as

ρ(x, y) =
n∑

k=1

γkρk(x, y).

where the γk are coefficients, by the linearity of (3).

It is then straightforward to confirm that

JΩ(f) = γTSγ,

where S is a matrix of fixed coefficients given by

Si,j =
∫

Ω

ρi(x, y)ρj(x, y)dxdy.

The function f can also be written in terms of the γk. Let a(x, y) be the solution to (2) with ρ(x, y) = 0 ∀ x, y,

and subject to the boundary condition that f(x, y) is known on B. Now define gi(x, y) as the solution to (2) with
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ρk(x, y)

yx

− gk(x, y)

yx

a(x, y)

Figure 2: Example basis functions for a soap film smoother (known boundary case), as introduced in section 4.

The basis functions relate to the smoothing problem considered in section 5.3, of reconstructing functions over a

smoothly bounded subregion of the unit square. In all cases the basis functions have been evaluated by solving

their defining PDEs on a 50 × 50 grid which is also the plotting grid. The left panel shows an example ρk(x, y)

for the case where x∗k = 0.4 and y∗k = 0.6. Notice the spike corresponding to ρk(x, y)’s integrable singularity

at x∗k, y∗k. The ρk(x, y)s are not basis functions of the soap film itself, but are used to define the actual basis

functions gk(x, y), and the penalty matrix S. The middle panel shows the negative of the basis function gk(x, y)

corresponding to the ρk(x, y) shown in the left panel. The right panel shows a(x, y) for the known boundary

example in section 5.3.

ρ(x, y) = ρi(x, y) and the boundary condition that f is zero on B; linearity of (2) implies that the soap film

smoother can be written as

f(x, y) = a(x, y) +
n∑

k=1

γkgk(x, y). (6)

Efficient numerical solution of the Poisson (2) and Laplace (3) equations is an exceedingly well studied prob-

lem. As a result, evaluation of the a, gk, ρk and hence S is computationally straightforward: the appendix provides

further details, while figure 2 plots some evaluated basis functions.

Given the basis and penalty, (5) becomes the standard penalized regression problem of minimizing

‖z− a−Xγ‖2 + λfγTSγ

w.r.t. γ, where aT = [a(x1, y1), a(x2, y2), . . . , a(xn, yn)] and Xi,j = gj(xi, yi). Several computationally efficient

λf selection methods for such problems are also routinely available (Wood, 2006a, is one reference among many).

The evaluated basis functions and penalty make it easy to incorporate soap film smooths as components of other

models.

For large data sets it is unlikely to be practically worthwhile to work with the full soap film basis, and a

penalized regression smoothing approach is computationally preferable. In this case one would select a moderate
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sized set of x, y values, {x∗k, y∗k : k = 1, . . . , K}, spread ‘nicely’ among the xk, yk values (K is substantially less

than the number of data, n, of course). The basis functions and penalty matrix are then evaluated as if the x∗k, y∗k

were the data locations. If g∗k(x, y) is the kth resulting (regression) basis function, then the only substantive change

in the fitting problem is that X is now an n ×K matrix where Xi,j = g∗j (xi, yi). Given that, for any practically

useful model, the degrees of freedom will be suppressed to well below n by the penalty term, the reduction in basis

dimension typically has very limited effect on the fitted model, provided only that we do not make K too small

(see the appendix). In what follows we will always use x∗k, y∗k to denote the points at which (3) does not hold (the

‘knots’), even when this is all the observation points (but we will not ‘star’ the corresponding basis functions).

4.1 Unknown boundaries

While the known boundary case is useful, there are many applications in which data lie within a problematic

boundary region, but we do not have special knowledge about the function’s value on that boundary. In this case

it is natural to model the function values on the boundary. Purely for simplicity of presentation, assume that B

consists of a single closed loop, parameterized in terms of r, the distance along the loop from some arbitrary fixed

starting point on B: hence the co-ordinates of B are given by {xB(r), yB(r)}, say. Now define the ‘boundary

function’ fb(r) = f(xB(r), yB(r)). One approach is to model fb(r) using a cyclic penalized regression spline

smoother in r (e.g. Wood, 2006a section 4.1.3). Suppose that such a smoother has basis expansion

fb(r) =
J∑

j=1

αjδj(r), (7)

where the αj are parameters and the δj(r) are known basis functions. Associated with the smoother is some

penalty functional Jb(fb) = αTSbα, where Sb is a matrix of known coefficients. Typically the functional would

be something like
∫

B
f ′′b (r)2dr.

It can then be shown that the boundary condition induced function a(x, y) has a basis function representation

a(x, y) =
J∑

j=1

αjaj(x, y)

where aj(x, y) is the solution to (2) with ρ(x, y) ≡ 0 and the boundary condition that results from setting αj = 1

and αi = 0 ∀ i 6= j in (7). Again, the aj(x, y) are easily evaluated, using the same numerical method as for the

gk(x, y) (see the appendix for details).

Given the basis functions and penalty for the boundary model, and defining Ai,j = aj(xi, yi), then a suitable

fitting objective for this smoother would be to minimize

‖z−Aα−Xγ‖2 + λfγTSγ + λbα
TSbα
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w.r.t. α and γ. Here λf and λb are smoothing parameters (which can be selected by GCV, REML or similar).

Although not essential, it would be usual to use a regression basis rather than a full basis for construction of X, to

avoid rank deficiency problems at low λf/b.

The presentational restriction to the case where B is a single closed loop can be relaxed without introducing

any extra technical difficulties: a cyclic smooth can be used for each loop of B (each with an associated penalty).

Similarly, dealing with the case in which f is known along only part of B involves extra computer coding, but

requires no additional theory.

4.2 Variance estimation

Once expressed in terms of a basis and quadratic penalties, soap film smoothers can be treated just like any other

such smooth. For example, writing β for the vector of all smooth coefficients and ST as the ‘total penalty matrix’

so that βTST β ≡ λfγTSγ + λbα
TSbα, then the Bayesian covariance matrix (Silverman, 1985) for β is given

by

Vβ = (XTX + ST )−1σ2

where σ2 is the response variable variance. The effective number of degrees of freedom for the smooth is given by

tr
{
(XTX + ST )−1XTX

}
.

Wood (2006a) is one source for the derivation of these results, and the generalizations beyond penalized least

squares estimation.

Given a ready means for evaluating the basis functions of the soap film smoothers it is also very easy to derive

variances of any quantity that can be computed from the fitted model. For convenience write bi(x, y) for the ith

basis function (each bi being one of the ak’s or gk’s). Now consider the example of the predicted value of f at a

new data point X ,Y . The predicted value is given by

bTβ

where b = [b1(X ,Y), b2(X ,Y), . . .]T. The posterior variance of the prediction is simply

bTVβb.

The generalizations to vector predictions or other linear functionals of f are obvious.

The preceding expressions are usually employed in a smoothing parameter conditional manner, by plugging

the estimated smoothing parameters in to the expression for ST . This neglects smoothing parameter uncertainty,

thereby potentially underestimating variances. See Wood (2006b) for a possible fix.
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4.3 Comparison with alternative approaches

With the replacement of the known boundary values by the rather strong boundary condition that the normal

derivative of f must be zero on the boundary of Ω, (1) is the objective used to motivate the FELSPLINE (finite

element spline) approach: see Ramsay (2002) expression (3). Ramsay seeks an approximation to the minimiser

in a finite element space (see Strauss, 1992, section 8.5 for a brief introduction) of functions in which the second

derivatives in the penalty JΩ are not well defined. To do this he finds a condition that must be satisfied by the

minimizer of (1), subject to his boundary condition, but which only involves first derivatives. Specifically, writing

ax for ∂a/∂x and ay for ∂a/∂y, he seeks functions f and g such that

∑

i

f(xi, yi)u(xi, yi)−λ

∫

Ω

gxux + gyuydxdy =
∑

i

u(xi, yi)zi, and
∫

Ω

gvdxdy +
∫

Ω

fxvx + fyvydxdy = 0

for all functions u, v in the space. f and u are required to meet the normal derivative zero boundary conditions

(this is Ramsay’s expression 11). This new problem can conveniently be solved by finite element methods, and the

resulting f is the FELSPLINE. The objective reformulation trick is a very neat way of enabling an approximation

to the minimizer of (1) to be found in a convenient finite element space, without the need to obtain derivatives

undefined in that space, but it embeds a strong boundary condition into the method: contours of the FELSPLINE

must meet the boundary orthogonally. In consequence FELSPLINE smooths towards the zero function, in contrast

to the soap film smoother which smooths towards the, much less restrictive, null space of functions of the form of

the a(x, y) term in (6). As we show in section 5.2, this difference has quite big practical implications.

The other major difference between FELSPLINE and soap film smooths is the basis-penalty representation

of the latter, which allows convenient incorporation of soap films as components of other models, ready access

to computationally efficient smoothing parameter selection methods, and straightforward variance calculations.

Purely practically, successive over relaxation (SOR) on a grid (see the appendix) is very much easier to code than

the finite element methods required for FELSPLINE.

In place of (1), Stone’s (1988) method used the objective function

n∑

i=1

{zi − f(xi, yi)}2 + λ

∫

Ω

(
∂2f

∂x2

)2

+ 2
(

∂2f

∂x∂y

)2

+
(

∂2f

∂y2

)2

dxdy.

Lacking any more direct characterization of the minimizing f , he sought an approximate minimizer directly in a

space spanned by tensor products of B-splines. Again this lacks the relative computational simplicity of the soap

film, but a more serious objection is that the penalty still shrinks f towards a plane over the x, y domain, and this

is not an appropriate smoothest model for many situations, including those discussed in sections 5.2, 5.1 and 6.2.

Very recently Eilers (2006) has proposed what might be viewed as an approximate version of Stone’s method

based on tensor products of P-splines (Eilers and Marx, 1996). It involves manually modifying the P-spline smooth-

ing penalty to avoid enforcing smoothness across boundary features. This seems quite effective, but again smooths

13
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Figure 3: The horseshoe shaped test region used in section 5.1, with the test function shown as a colour map and

contour plot over the region.

towards a plane over the domain. Eilers also examines a conformal mapping approach in which the original do-

main is mapped onto a rectangle, before smoothing. This solves some problems, but means that it is no longer

clear what the smoothness penalty is measuring (it will be different for each domain). Wang and Ranalli (2007),

take a somewhat similar approach, by modifying the measure of distance employed in the radial basis function

components of a thin plate regression spline. Rather than employ conventional Euclidian distances between points,

they employ shortest distances within the domain. For many applications this is intuitively appealing, but it is

again not clear what the resulting smoothness penalty means in terms of function shape. Wang and Ranalli do not

modify the linear basis components of the thin plate spline, so this method again smooths towards a plane over the

domain.

5 Some simulated examples

This section compares soap film smoothers, thin plate splines and Ramsay’s (2002) FELSPLINE method, using

simulated datasets constructed to highlight the relative strengths and weaknesses of the different approaches.

5.1 A modified Ramsay horseshoe

This example modifies the simulation test presented in Ramsay (2002, section 5.2). Figure 3 shows the test func-

tion, which is similar to Ramsay’s except that it bulges across the test region. The modification is a slightly more

interesting test problem, since the true function can not be well approximated by a(x, y) from (6), alone.

Around 600 function values were sampled from x, y points randomly located within the domain of interest,

and were perturbed by Gaussian noise with a standard deviation of 0.1, 1 or 10 (recall, from figure 3, that the test

14
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Figure 4: Example reconstructions of the test function from figure 3. On the top row are reconstructions using

soap film smooths, while the bottom row shows the equivalent using thin plate splines. The columns relate to the

standard deviation of the i.i.d. N(0, σ2) noise, added to the data sampled from the test function. The left column

is for σ = 0.1, the middle column for σ = 1 and the right column for σ = 10. The dots on the plots show the

data locations in the x, y plane. For each column, both reconstructions are from the same data set. All smoothing

parameters were selected by GCV.

function ranges from -4 to 4, approximately), with 200 replicates performed at each noise level. For each replicate

we attempted to reproduce the test function using a thin plate spline (actually a thin plate regression spline, Wood,

2003, with basis dimension 100), and with a soap-film smooth with 32 interior knots (x∗k, y∗k) and a rank 39 (40

knot) cyclic penalized cubic regression spline as the boundary curve. For each replicate, smoothing parameters

were selected by GCV and the mean squared error in reconstructing the true function at the sampled points was

calculated.

Figure 4 shows randomly selected (but reasonably typical) reconstructions for the thin plate spline and soap

film smoothers at each noise level. Note how the thin plate splines’ poor performance is clearly related to the need

to smooth across the central gap in the domain. Also at high noise, the thin plate spline (lower right) is tending

towards a wholly inappropriate plane, as a result of appropriately high penalization: this reflects a fundamental

problem with the thin plate spline penalty which can not be wholly removed by simply evaluating that penalty over

the domain of interest.

Figure 5 summarizes the mean square error performance of the two types of smoothing. As expected, the soap

film smoother shows substantially better performance, with the relative difference declining with increasing noise.
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Figure 5: Boxplots of log10 of the root mean square error (RMSE) over 200 replicates for soap film (‘soap’) and

thin plate spline (‘tps’) smoothers, when reconstructing the test function shown in figure 3 from noisy data. This

example presents an obvious difficulty for a thin plate spline, which is clearly reflected in the soap film smoother’s

comparatively good performance. Note that in this case the boundary of the soap film smooth was treated as

unknown.

5.2 Comparison with FELSPLINE

We also compared soap film smooths with Ramsay’s (2002) FELSPLINE method, using code kindly provided

by Tim Ramsay. For the test function illustrated in figure 3, soap film reconstructions look visually better than

FELSPLINE reconstructions, because the FELSPLINE boundary conditions force contours to meet the boundary

at right angles, but the MSE performance of both methods is very similar (soap films do a little better for high

signal to noise ratio, whereas the FELSPLINE boundary condition actually provides a helpful constraint in low

signal to noise ratio settings, where FELSPLINE tends to achieve slightly better MSE performance). However, Tim

Ramsay pointed out to us that if a linear trend in y is added to the test function then the soap film performance is

virtually unchanged, while the FELSPLINE MSE performance deteriorates markedly as the strength of the trend is

increased. This is because increasing the trend term makes the FELSPLINE boundary condition ever less tenable.

The obvious alternative of smoothing using a linear regression plane plus FELSPLINE helps for extreme linear

trends, but leads to a marked MSE deterioration relative to soap film smoothing on the figure 3 test function itself

(or indeed on Ramsay’s original 2002 test function).

The problems with the FELSPLINE boundary condition are perhaps best illustrated by changing the test func-

tion over the horseshoe domain, to the one shown at top left in figure 6. Following Ramsay (2002), the test function
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Figure 6: Results from the comparison of soap film smoothing and Ramsay’s (2002) FELSPLINE, reported in

section 5.2. At top left is a modified test function on a horseshoe domain. The top right shows a typical soap film

reconstruction, while the lower left shows the FELSPLINE reconstruction from the same data (also typical). All

smoothing parameters were chosen by GCV. The black dots show the 100 sample locations. At lower right are

boxplots, over 100 replicates, of mean square error in reconstructing the truth (evaluated over a fine regular grid of

points covering the whole horseshoe domain). The relatively poor performance of FELSPLINE appears to relate

to its boundary condition, which states that contours must meet the boundary at right angles.
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Figure 7: Simulation results from section 5.3, with the true function inset at top left. Each boxplot summarizes the

MSE performance of one smoothing method at one noise level over 200 replicates. ‘free’ is a free boundary soap

film. ‘known’ is a known boundary soap film and ‘tps’ is a penalized thin plate regression spline.

was sampled with added i.i.d. N(0, 0.052) noise from 100 locations in the test domain (shown as black dots on the

top right and bottom left panels of figure 6). These data were used to reconstruct the true test function shown at

top left of figure 6, using FELSPLINE with GCV selected smoothing parameter, and using a free boundary soap

film smoother (rank 39 boundary smooth, 40 γi parameters) with smoothing parameters selected by GCV. 100

replicates were generated (each using the same x, y locations, in order to reduce the otherwise prohibitive compu-

tational expense of evaluating the effective degrees of freedom of the FELSPLINE, which is needed for GCV). For

each replicate of each method the MSE in reconstructing the true function across the domain was calculated, using

a fine regularly spaced grid of around 3000 points. The lower right panel of figure 6 shows the MSE results.

The relatively poor FELSPLINE MSE performance is related to the boundary condition as is clearly illustrated

by the typical FELSPLINE reconstruction shown at lower left of figure 6. Forcing contours to meet the boundary

at right angles is not appropriate for this test function, and results in reconstructions that are visually much worse

than the equivalent soap film reconstruction (top right of figure 6).
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5.3 Smooth surface over a simple domain

The section 5.1 example illustrates that the soap film smoother is a considerable improvement in cases where the

thin plate spline is expected to perform poorly. The simulations in this section are designed to investigate what can

potentially be lost if a soap film smoother is used when it is not needed.

The panel inset at top left of figure 7 shows a smooth true function over an uncomplicated region (boundary

shown), where a thin plate spline smooth should have no difficulty. We attempted to reconstruct this function from

evaluations of the function at, on average, 382 random locations in the domain of interest. The function values

were perturbed by i.i.d. N(0, σ2) random deviates where σ was 0.01, 0.05 or 0.2, with 200 replicates performed

at each noise level. To each replicate we fitted (i) a thin plate (regression) spline (basis dimension 100); (ii) a

soap film smoother with a free boundary (dim(γ) = 100 and a rank 39 cyclic penalized cubic regression spline

for the boundary) and (iii) a soap film smoother with known boundary condition (again dim(γ) = 100). All

smoothing parameters were estimated by GCV. Typically, reconstructions appear to differ little between methods

when plotted.

The mean squared error in reconstruction was evaluated at the sample points for each method applied to each

replicate and the results are summarized in figure 7. The differences in MSE performance are modest relative to

the average MSE, but the known boundary soap film smoother always has the best performance, followed by the

thin plate spline, followed by the free boundary soap film smoother (these differences are all highly statistically

‘significant’ at all noise levels using pairwise tests).

The fact that the known boundary soap film has the best MSE performance is expected, given the amount

of extra information that knowledge of the boundary provides. Similarly, it is unsurprising that there is some

performance cost associated with treating the boundary curve as ‘special’ when there is no reason to do so: but it

is encouraging that, for these examples at least, this cost appears to be relatively modest.

Timings were also recorded for this example. By far the most computer intensive part of the smoothing exercise

is the soap film basis and penalty setup. Using a 2.1Ghz Pentium M processor this took approximately 40 seconds

with a 150 × 150 PDE solution grid. It should be possible to substantially reduce this by using a more efficient

PDE solver than SOR (see the appendix).

6 Real examples

Completing the motivating whale example of figure 1 would double the length of this paper. Instead we present

two simple applications of soap film smoothers, in order to illustrate their practical utility.
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Figure 8: Illustration of the Sole egg data and models discussed in section 6.1. The top left panel shows the

region of interest in the Bristol Channel, United Kingdom with the sampling station locations shown as + symbols

and raw egg density data shown as open circles with area proportional to egg density (per m2 sea surface). The

top right panel shows the thin plate spline fit to the density data: notice the unrealistically high densities at the

coast. The lower left panel shows a full soap film smooth fit to the density data, with the density set to zero at the

boundary. The lower right panel shows a soap film smooth fit with a free boundary. The three panels showing the

model estimates also show the sampling stations as open circles proportional to the observed egg density (with a

dot showing the sample location, even at zero density).

6.1 Egg survey data

Marine fish egg surveys are undertaken for the purposes of stock assessment. It is difficult to directly survey adult

fish in a way that allows good inference of abundance (or total mass), but eggs are more easily sampled, and from

egg abundance it is possible to infer the total mass of adults required to produce such a number. Given the expense

of gathering the egg data, it is worth being careful when constructing models to use in abundance estimation. The

top left panel of figure 8 shows egg data collected from one short research cruise in the Bristol Channel, UK (see

figure caption for symbol meanings). The data relate to the first egg developmental stage and are in the form of

effective densities per m2 of sea surface. Dixon (2003), Horwood (1993) and Horwood and Greer Walker (1990)

provide further details.
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Three alternative models were estimated from the egg density data. All had the basic form:

√
yi = f(km.ei, km.ni) + εi

where yi is the observed egg density at the sampling station located at km.ei kilometres east of the longitudinal line

through longitude -5.5 and km.ni kilometres north of the latitudinal line through latitude 51. The εi are independent

zero mean random variables with constant variance. (The nearly square co-ordinate system overstates the extent to

which the situation is really isotropic: north-south is not really the same as east-west here, and in fact smoothers

based on longitude and latitude give barely distinguishable results.) The square root transform stabilizes variances.

In all cases the smoothness of f was estimated using GCV, but the details of f ’s representation differed.

The top right panel of figure 8 shows f estimated using a thin plate spline. Notice how the egg density is

estimated to be quite substantial right up to the north coast of the Cornish peninsula (although suppressed in the

plots, the model even estimates non-negligible egg densities south of the peninsula, where no eggs are found). In

fact egg densities are zero at the coast, and the model is quite unrealistic in this respect. The lower left panel of

figure 8 shows the f estimate that results from using a soap film smooth with a zero boundary condition at the

edge of the coloured area. This boundary condition is realistic: the survey is designed to completely cover the

spatial distribution of the eggs, and egg densities are zero ‘at the beach’. The resulting f estimate is much more

reasonable than the thin plate spline estimate. Note that in this case the fully optimal soap film smoother has been

used with one parameter per datum. At the lower right of figure 8 is the f estimate that results from using a soap

film smoother with an estimated boundary condition. In this case the smooth had 40 γi parameters and employed

a rank 39 cyclic penalized cubic regression spline as the boundary smooth.

Notice how much more closely the soap film smooth reflects what is known about the sole egg density, and

also how the free boundary version of the soap-film smoother suggests that the data really support a sharp decline

in density towards the coast, rather than the rather high coastal density suggested by the thin plate spline (which

has to try and ensure smoothness of the estimated function beyond the region of interest).

6.2 Aral sea chlorophyll

The final example concerns remote sensed chlorophyll data from the Aral sea. Chlorophyll estimates from satel-

lite sensors tend to be somewhat noisy, and some smoothing of the available data can help to clarify the spatial

pattern of chlorophyll density. The top left panel of figure 9 shows chlorophyll data from the SeaWifs satel-

lite for the 38th 8 day observation period of the year in the Aral sea, which has a somewhat complicated shape.

The data are in fact averages for this period over the years 1998 to 2002, but even so are rather noisy. See

http://seawifs.gsfc.nasa.gov/SEAWIFS for further information about the NASA SeaWifs program.
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Figure 9: Modelling chlorophyll in the Aral sea. The top row relates to the full set of data available for the Aral

sea, while the lower row simulates very uneven data coverage, by deletion of a high proportion of the data in the

western arm of the sea. The first column illustrates the (logged) raw data. The second column shows thin plate

spline estimates of the log chlorophyll concentrations. The rightmost column shows soap-film estimates of the

log chlorophyll concentrations. The colour scale is the same in all plots. Notice the leakage across the central

isthmus, which is apparent in the thin plate spline smooths, but not in the soap film smooths. Smoothing was

performed using a nearly square co-ordinate system, but results based simply on longitude and latitude are almost

indistinguishable.
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Aral sea chlorophyll concentrations are expected to vary smoothly within the water of the sea, but there is

no reason to expect smooth variation across the isthmus of the peninsula that projects northwards into the sea at

longitude 59, for example. Two versions of the model:

log{E(chli)} = f(km.ei, km.ni), chli ∼ Gamma

were fitted to the raw satellite measurements. In one a thin plate spline was used to represent f , and in the second

a soap film smoother was used (with 150 γ parameters and a rank 49 cyclic cubic penalized regression spline used

to represent the boundary). The km.ei, km.ni nearly square co-ordinate system is as for the sole egg example, but

with reference lines passing through location (59.5, 45).

Estimation and GCV smoothness selection was by the method of Wood (2008). The first row of figure 9 plots,

from left to right, the raw data, the estimate of f using a thin plate spline and finally the estimate of f using a

soap film smoother. Notice the way in which the thin plate spline smooths, inappropriately, across the isthmus of

the central peninsula, so that relatively high chlorophyll densities are estimated for the southern part of the eastern

shore of the western basin of the sea. These elevated densities have no support from the observed data. Similarly,

the thin plate spline estimates a decline in chlorophyll abundance towards the southern half of the western shore of

the eastern basin: again this is unsupported by data. The soap film avoids such artefacts.

We have exceptionally even data coverage in this example: in many applications much less even coverage is

the norm. As a quick illustration of how uneven coverage can exaggerate artefacts when smoothing over difficult

domains, we randomly removed most of the data south of latitude 45.5 in the western basin of the Aral sea. We

then fitted the same models to these thinned data as had been fitted to the full data set. The lower row of figure

9 illustrates the result. The sparsity of data in the western basin causes the thin plate spline to extrapolate across

the isthmus from the data rich eastern basin. As a result very high densities are estimated for large parts of the

western basin, and in this case we know that these densities are wrong. The soap film smoother, on the other hand,

produces an estimate that is very similar to the estimate from the full data.

7 Discussion

The soap film smoothers proposed here meet the four objectives listed in the introduction. Given that we are

writing the paper after completing the work the reader may find this unsurprising, but in any case the performance

of the method, evident from the examples in sections 5 and 6, is encouraging. As important, in practice, are the

computational efficiency and convenience of the approach. These rest on the fact that we are able to evaluate basis

functions and a quadratic wiggliness penalty for the smoothers, which allows us to use all the computational and

theoretical machinery available for such basis-penalty smoothers, and to incorporate the smoothers as components
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of a wide variety of statistical models. The characterization of the smoothers provided by section 3 is the key to the

basis-penalty representation and turns out to make the soap film basis computation rather straightforward: reliable

solvers for the basis defining PDEs are readily available and easily coded. The results of section 3 also provide a

nice example of the link between smoothing and differential equations highlighted by Ramsay (2000).

In the introduction we discussed why new methods were required beyond the work of Stone (1988) and Ramsay

(2002), and it is worth revisiting this topic in the light of the examples presented in sections 5 and 6. Stone’s

approach uses a thin plate spline penalty integrated only over the domain of interest. Although this does avoid the

un-modified thin plate spline’s tendency to be influenced by the need to meet smoothness objectives completely

outside the region of interests, the penalty still shrinks the smooth towards a plane over the domain of interest.

This is not appropriate in the Aral sea example, where the straight line distances between points in the model co-

ordinate system only relate to ‘biological distance’ if the straight line does not cross land. Similarly a plane over

the x, y plane is not a good ‘smoothest model’ for the figure 3 test function. The original test function of Ramsay

(2002, figure 2) was completely flat on shortest paths across the domain (i.e. contours were almost all straight

lines orthogonal to the boundary). It provides an even clearer example of the difficulty with Stone’s method, which

can not simultaneously allow this flatness within the domain of interest, while also allowing the function to follow

the correct curve on the boundary. In contrast the separation of boundary and interior smoothness of the soap film

smoother makes this easy to accommodate.

Ramsay’s FELSPLINE is a substantial improvement over thin plate spline based smoothing, for smoothing

over complex domains, but it requires a quite complex computational approach, making it difficult to incorporate

a FELSPLINE as a component of another model. Section 5.2 also suggests that FELSPLINE can perform sub-

stantially less well than soap film smoothing when the FELSPLINE boundary condition is inappropriate. Forcing

contours of the smooth to meet the boundary curve at right angles is a quite strong restriction.

In the known boundary case we are able to obtain the (numerically) exact minimizer of (5), and in that sense

have the optimal solution to the problem posed. For the unknown boundary case our solution is not so elegant, in

that we model the boundary condition and estimate it as part of fitting. This leaves open the question of whether

an alternative formulation of the problem might enable the boundary model to be eliminated while still meeting

our basic objectives. Our attempts to do this using (5) or close relatives, without our current boundary condition,

proved fruitless. Some regularization at the boundary is surely necessary given that the null space of JΩ is not

finite dimensional, but the FELSPLINE boundary artefacts evident in figure 6 are not encouraging with regard to

finding simpler alternatives to boundary model based regularization. In any case the soap film boundary model can

have the practical advantage of controlling otherwise poor boundary behaviour.

To summarize, we believe that good finite domain smoothing relies on using a penalty like the soap film penalty
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JΩ, with an infinite dimensional null space, otherwise smoothing is penalizing towards a low dimensional function

which tends to inappropriately smooth across boundary features. When using JΩ, its infinite dimensional null

space means that some boundary condition is needed to regularize the solution to the smoothing problem. The

improved MSE performance of soap films relative to FELSPLINE (which both use JΩ, at least approximately)

rests on the former’s relatively flexible boundary condition, which in effect regularizes the penalty null space in a

data adaptive manner.

Note: The code used here is freely available as an R package.
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Appendix. Computational details

This appendix fills in some of the computational details that are glossed over in the main paper, but are important

for practical implementation.

PDE solution method. In the work reported here we used a successive over-relaxation (SOR) method, with

Chebyshev acceleration, adapted from Press et al. (1992, section 19.5). This method solves a discretized version

of the PDE concerned on a rectangular grid, at a computational cost of O(N3) for an N ×N grid. One alternative

is to use a multi-grid method: these are more complicated to code than SOR, but have a computational cost of

O(N2) for an N × N grid (e.g. Press et al. 1992, section 19.6). Given that we typically use N around 100-200,

there is scope for substantial improvement in computational efficiency by using a multi-grid method.

PDE solution grid. The grid spacing, ∆, used to solve the defining PDEs has to be chosen, and affects the

numerical accuracy with which the soap film smoother can be computed. The discretization of the PDEs involves

O(∆2) truncation errors, but in the absence of convergence rates for soap films, it is difficult to say much that is

useful for setting up coarsest solution grids. However, the adequacy of any particular ∆ choice can be checked by

halving ∆ and examining the effect on the computed soap film smoother. In the examples presented in section 5.1,
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doubling the resolution of the solution grid, from 200 to 400 in the x direction, leads to a mean absolute change

in fitted model predictions across the domain of < 10−3. In any case, to avoid possible basis degeneracy, ∆ must

generally be smaller than the minimum distance between the x∗k, y∗k points used to generate the basis.

Basis dimension choice. The other practical choice to make is the number of x∗k, y∗k values, K. Provided K is

not overly restrictive the choice is not generally critical, since the smoothing parameter determines the effective

degrees of freedom of the soap film, rather than K. However a small K is more computationally efficient than a

large one. In practice a simple check that K is not overly restrictive is provided by refitting a smooth with, e.g.

basis dimension 2K to the residuals of the original model, in order to check for missed pattern with respect to x

and y. Note the difference in type between the choice of the basis dimension, K, and the solution grid spacing ∆.

K determines how many basis functions there will be, and hence how many pairs of PDEs must be solved, while

∆ determines the accuracy with which those PDEs will be solved.

The ρk(x, y) singularity. An important issue is the handling of the singularity in the solution of (3) to find the

basis functions ρk(x, y). When discretizing (3) onto a grid with spacing ∆ it is necessary to view the gridded

values of the solution in the interior of Ω as representing averages of ρ over the ∆ × ∆ square centered on each

grid node. This quantity is finite everywhere within Ω, since the fundamental solution of Laplace’s equation (see

e.g. Evans, 1998, section 2.2.1) has finite integral over any small region of the x − y plane. In that case the ρk

can be evaluated by solving (3) subject to the zero boundary condition on B and the internal boundary condition

that the gridded value associated with the ‘knot’ x∗k, y∗k is fixed at 1. The result is then normalized to obtain the

numerical estimate of ρk, and this estimate will converge to ρk as ∆ → 0. In fact, for practical computation,

nothing is gained by actually normalizing the ρk — the normalizing constant may as well be absorbed into the γk.

Note that for 3 dimensional domains the singularity would present an insurmountable problem: the solution in the

vicinity of a ‘knot’ does not have a finite integral over any volume enclosing the knot.

Defining the boundary. The most tedious part of the soap film smoother construction to implement is the handling

of the boundary B (this is not unique to soap films). In the work reported here the boundary was discretized into a

continuous sequence of line segments. Which solution grid points should count as lying ‘on’ the boundary is then

determined by exactly the method outlined after equation (4), in section 3. Whether an x, y point lies within Ω is

determined by how many boundary line segments have to be crossed along any straight line from x, y to beyond

the edge of the solution grid: if the number is odd then the point is within Ω.

Prediction. Predictions at the observation points requires only the model matrix, and hence no further PDEs need

be solved. For prediction away from the observation points there are several alternatives. If the points at which

predictions will be required are known from the outset, then a ‘prediction matrix’ can be set up at very little cost at

the same time as the model matrix is produced. Another option is that the model basis functions are stored ‘whole’
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in gridded form, so that

f̂(x, y) =
∑

J

α̂jaj(x, y) +
∑

k

γ̂kgk(x, y)

can be evaluated by bi-linear interpolation of the gridded functions, but this can be expensive in terms of storage.

Alternatively the basis functions are re-computed one at a time, just as in the initial model set up, and the previ-

ous expression for f̂(x, y) accumulated. Finally, if the un-normalized grid dependent parameterization suggested

earlier in this section is employed, and variance estimates are not needed, then (2) and (3) can be solved directly

for f , by solving (3) with internal boundary points at every x∗k, y∗k. The average values of the approximate solu-

tion in the side ∆ square surrounding the kth such internal boundary point are given by γ′k, where γ′ = Eγ and

Eij = ρj(x∗i , y
∗
i ) for i 6= j and Eii = 1. E is computed when the initial basis function computations are performed.
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