12 research outputs found

    An upper limit on the mass of the circumplanetary disk for DH Tau b

    Full text link
    DH Tau is a young (\sim1 Myr) classical T Tauri star. It is one of the few young PMS stars known to be associated with a planetary mass companion, DH Tau b, orbiting at large separation and detected by direct imaging. DH Tau b is thought to be accreting based on copious Hα{\alpha} emission and exhibits variable Paschen Beta emission. NOEMA observations at 230 GHz allow us to place constraints on the disk dust mass for both DH Tau b and the primary in a regime where the disks will appear optically thin. We estimate a disk dust mass for the primary, DH Tau A of 17.2±1.7M17.2\pm1.7\,M_{\oplus}, which gives a disk-to-star mass ratio of 0.014 (assuming the usual Gas-to-Dust mass ratio of 100 in the disk). We find a conservative disk dust mass upper limit of 0.42MM_{\oplus} for DH Tau b, assuming that the disk temperature is dominated by irradiation from DH Tau b itself. Given the environment of the circumplanetary disk, variable illumination from the primary or the equilibrium temperature of the surrounding cloud would lead to even lower disk mass estimates. A MCFOST radiative transfer model including heating of the circumplanetary disk by DH Tau b and DH Tau A suggests that a mass averaged disk temperature of 22 K is more realistic, resulting in a dust disk mass upper limit of 0.09MM_{\oplus} for DH Tau b. We place DH Tau b in context with similar objects and discuss the consequences for planet formation models.Comment: accepted for publication in A

    The ALMA Early Science View of FUor/EXor objects. IV. Misaligned Outflows in the Complex Star-forming Environment of V1647 Ori and McNeil's Nebula

    Full text link
    We present Atacama Large Millimeter/sub-millimeter Array (ALMA) observations of the star-forming environment surrounding V1647 Ori, an outbursting FUor/EXor pre-MS star. Dust continuum and the (J = 2 - 1) 12^{12}CO, 13^{13}CO, C18^{18}O molecular emission lines were observed to characterize the V1647 Ori circumstellar disc and any large scale molecular features present. We detect continuum emission from the circumstellar disc and determine a radius r = 40 au, inclination i = 17^{\circ}9+6^{+6}_{-9} and total disc mass of Mdisk_{\mathrm{disk}} of ~0.1 M_{\odot}. We do not identify any disc structures associated with nearby companions, massive planets or fragmentation. The molecular cloud environment surrounding V1647 Ori is both structured and complex. We confirm the presence of an excavated cavity north of V1647 Ori and have identified dense material at the base of the optical reflection nebula (McNeil's Nebula) that is actively shaping its surrounding environment. Two distinct outflows have been detected with dynamical ages of ~11,700 and 17,200 years. These outflows are misaligned suggesting disc precession over ~5500 years as a result of anisotropic accretion events is responsible. The collimated outflows exhibit velocities of ~2 km s1^{-1}, similar in velocity to that of other FUor objects presented in this series but significantly slower than previous observations and model predictions. The V1647 Ori system is seemingly connected by an "arm" of material to a large unresolved structure located ~20"" to the west. The complex environment surrounding V1647 Ori suggests it is in the early stages of star formation which may relate to its classification as both an FUor and EXor type object.Comment: 18 pages, 14 figures, 4 tables; accepted for publication in MNRA

    Evolution of protoplanetary disks from their taxonomy in scattered light: Group I vs. Group II

    Get PDF
    High-resolution imaging reveals a large morphological variety of protoplanetary disks. To date, no constraints on their global evolution have been found from this census. An evolutionary classification of disks was proposed based on their IR spectral energy distribution, with the Group I sources showing a prominent cold component ascribed to an earlier stage of evolution than Group II. Disk evolution can be constrained from the comparison of disks with different properties. A first attempt of disk taxonomy is now possible thanks to the increasing number of high-resolution images of Herbig Ae/Be stars becoming available. Near-IR images of six Group II disks in scattered light were obtained with VLT/NACO in Polarimetric Differential Imaging, which is the most efficient technique to image the light scattered by the disk material close to the stars. We compare the stellar/disk properties of this sample with those of well-studied Group I sources available from the literature. Three Group II disks are detected. The brightness distribution in the disk of HD163296 indicates the presence of a persistent ring-like structure with a possible connection with the CO snowline. A rather compact (less than 100 AU) disk is detected around HD142666 and AK Sco. A taxonomic analysis of 17 Herbig Ae/Be sources reveals that the difference between Group I and Group II is due to the presence or absence of a large disk cavity (larger than 5 AU). There is no evidence supporting the evolution from Group I to Group II. Group II are not evolved version of the Group I. Within the Group II disks, very different geometries (both self-shadowed and compact) exist. HD163296 could be the primordial version of a typical Group I. Other Group II, like AK Sco and HD142666, could be smaller counterpart of Group I unable to open cavities as large as those of Group I.Comment: 16 pages, 7 figures, published by A&

    Observations of gas flows inside a protoplanetary gap

    Get PDF
    Gaseous giant planet formation is thought to occur in the first few million years following stellar birth. Models predict that giant planet formation carves a deep gap in the dust component (shallower in the gas). Infrared observations of the disk around the young star HD142527, at ~140pc, found an inner disk ~10AU in radius, surrounded by a particularly large gap, with a disrupted outer disk beyond 140AU, indicative of a perturbing planetary-mass body at ~90 AU. From radio observations, the bulk mass is molecular and lies in the outer disk, whose continuum emission has a horseshoe morphology. The vigorous stellar accretion rate would deplete the inner disk in less than a year, so in order to sustain the observed accretion, matter must flow from the outer-disk into the cavity and cross the gap. In dynamical models, the putative protoplanets channel outer-disk material into gap-crossing bridges that feed stellar accretion through the inner disk. Here we report observations with the Atacama Large Millimetre Array (ALMA) that reveal diffuse CO gas inside the gap, with denser HCO+ gas along gap-crossing filaments, and that confirm the horseshoe morphology of the outer disk. The estimated flow rate of the gas is in the range 7E-9 to 2E-7 Msun/yr, which is sufficient to maintain accretion onto the star at the present rate

    NaCo polarimetric observations of Sz 91 transitional disc: a remarkable case of dust filtering

    Get PDF
    We present polarized light observations of the transitional disc around Sz 91 acquired with VLT/NaCo at H (1.7μm) and Ks (2.2μm) bands. We resolve the disc and detect polarized emission up to ∼0.5 arcsec (∼80 au) along with a central cavity at both bands. We computed a radiative transfer model that accounts for the main characteristics of the polarized observations. We found that the emission is best explained by small, porous grains distributed in a disc with a ∼45 au cavity. Previous ALMA observations have revealed a large sub-mm cavity (∼83 au) and extended gas emission from the innermost (<16 au) regions up to almost 400 au from the star. Dynamical clearing by multiple low-mass planets arises as the most probable mechanism for the origin of Sz 91’s peculiar structure. Using new L - band ADI observations, we can rule out companions more massive than Mp ≥ 8 MJup beyond 45 au assuming hot-start models. The disc is clearly asymmetric in polarized light along the minor axis, with the north side brighter than the south side. Differences in position angle between the disc observed at sub-mm wavelengths with ALMA and our NaCo observations were found. This suggests that the disc around Sz 91 could be highly structured. Higher signal-to-noise near-IR and sub-mm observations are needed to confirm the existence of such structures and to improve the current understanding of the origin of transitional discs.Indexación: Scopu

    Imaging the water snow-line during a protostellar outburst

    Get PDF
    A snow-line is the region of a protoplanetary disk at which a major volatile, such as water or carbon monoxide, reaches its condensation temperature. Snow-lines play a crucial role in disk evolution by promoting the rapid growth of ice-covered grains^1, 2, 3, 4, 5, 6. Signatures of the carbon monoxide snow-line (at temperatures of around 20 kelvin) have recently been imaged in the disks surrounding the pre-main-sequence stars TW Hydra^7, 8, 9 and HD163296 (refs 3, 10), at distances of about 30 astronomical units (au) from the star. But the water snow-line of a protoplanetary disk (at temperatures of more than 100 kelvin) has not hitherto been seen, as it generally lies very close to the star (less than 5 au away for solar-type stars^11). Water-ice is important because it regulates the efficiency of dust and planetesimal coagulation5, and the formation of comets, ice giants and the cores of gas giants^12. Here we report images at 0.03-arcsec resolution (12 au) of the protoplanetary disk around V883 Ori, a protostar of 1.3 solar masses that is undergoing an outburst in luminosity arising from a temporary increase in the accretion rate^13. We find an intensity break corresponding to an abrupt change in the optical depth at about 42 au, where the elevated disk temperature approaches the condensation point of water, from which we conclude that the outburst has moved the water snow-line. The spectral behaviour across the snow-line confirms recent model predictions^14: dust fragmentation and the inhibition of grain growth at higher temperatures results in soaring grain number densities and optical depths. As most planetary systems are expected to experience outbursts caused by accretion during their formation^15, 16, our results imply that highly dynamical water snow-lines must be considered when developing models of disk evolution and planet formation

    Sparse aperture masking observations of the FL Cha pre-transitional disk

    Get PDF
    We present deep Sparse Aperture Masking (SAM) observations obtained with the ESO Very Large Telescope of the pre-transitional disk object FL Cha (SpT = K8, d = 160 pc), the disk of which is known to have a wide optically thin gap separating optically thick inner and outer disk components. We find non-zero closure phases, indicating a significant flux asymmetry in the KS -band emission (e.g., a departure from a single point source detection). We also present radiative transfer modeling of the spectral energy distribution of the FL Cha system and find that the gap extends from 0.06+0.05- 0.01 AU to 8.3 ± 1.3 AU. We demonstrate that the non-zero closure phases can be explained almost equally well by starlight scattered off the inner edge of the outer disk or by a (sub)stellar companion. Single-epoch, single-wavelength SAM observations of transitional disks with large cavities that could become resolved should thus be interpreted with caution, taking the disk and its properties into consideration. In the context of a binary model, the signal is most consistent with a high-contrast (ΔKS ∼ 4.8 mag) source at a ∼40 mas (6 AU) projected separation. However, the flux ratio and separation parameters remain highly degenerate and a much brighter source (ΔKS ∼ 1 mag) at 15 mas (2.4 AU) can also reproduce the signal. Second-epoch, multi-wavelength observations are needed to establish the nature of the SAM detection in FL Cha
    corecore