121 research outputs found

    The Ophthalmic Experience: Unanticipated Primary Findings in the Era of Next Generation Sequencing

    Full text link
    Next generation sequencing (NGS) technology, with the ability to sequence many genomic regions at once, can provide clinicians with increased information, in the form of more mutations detected. Discussions on broad testing technology have largely been focused on incidental findings, or unanticipated results related to diseases beyond the primary indication for testing. By examining multiple genes that could be responsible for the patient’s presentation, however, there is also the possibility of unexpected results that are related to the reason genetic testing was ordered. We present a case study where multiple potentially causative mutations were detected using NGS technology. This case raises questions of scientific uncertainty, and has important implications for medical management and secondary studies. Clinicians and genetic counselors should be aware of the potential for increased information to affect one’s understanding of genetic risk, and the pre‐ and post‐testing counseling process.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147171/1/jgc40588.pd

    Scotopic and Photopic Visual Thresholds and Spatial and Temporal Discrimination Evaluated by Behavior of Mice in a Water Maze †

    Full text link
    Methods that allow specific manipulations of the mouse genome have made it possible to alter specific aspects of photoreceptor function within the mouse retina. Mice with photoreceptors that have altered photosensitivities and altered photoresponse kinetics are now available. Methods are needed that can show how those perturbations in photoreceptor response characteristics translate into perturbations in visual sensitivity and perception. We have adapted a previously described method to evaluate visual threshold, spatial discrimination and temporal discrimination in mice swimming in a water maze. In this report we describe the sensitivities of rod-mediated and cone-mediated vision using GNAT1–/–and GNAT2–/– mice. Cone-mediated vision is ˜10000 times less sensitive than rod-mediated vision in mice. We also demonstrate that mice can distinguish striped from solid objects in the water maze and that they can distinguish flickering from continuous illumination.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75706/1/j.1751-1097.2006.tb09804.x.pd

    Sudden acquired retinal degeneration syndrome (SARDS) â a review and proposed strategies toward a better understanding of pathogenesis, early diagnosis, and therapy

    Full text link
    Sudden acquired retinal degeneration syndrome (SARDS) is one of the leading causes of currently incurable canine vision loss diagnosed by veterinary ophthalmologists. The disease is characterized by acute onset of blindness due to loss of photoreceptor function, extinguished electroretinogram with an initially normal appearing ocular fundus, and mydriatic pupils which are slowly responsive to bright white light, unresponsive to red, but responsive to blue light stimulation. In addition to blindness, the majority of affected dogs also show systemic abnormalities suggestive of hyperadrenocorticism, such as polyphagia with resulting obesity, polyuria, polydipsia, and a subclinical hepatopathy. The pathogenesis of SARDS is unknown, but neuroendocrine and autoimmune mechanisms have been suggested. Therapies that target these disease pathways have been proposed to reverse or prevent further vision loss in SARDSâ affected dogs, but these treatments are controversial. In November 2014, the American College of Veterinary Ophthalmologists' Vision for Animals Foundation organized and funded a Think Tank to review the current knowledge and recently proposed ideas about disease mechanisms and treatment of SARDS. These panel discussions resulted in recommendations for future research strategies toward a better understanding of pathogenesis, early diagnosis, and potential therapy for this condition.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/122446/1/vop12291.pd

    Hypomethylation of the IL17RC promoter in peripheral blood leukocytes is not a hallmark of age-related macular degeneration

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.Age-related macular degeneration (AMD) is a leading cause of visual impairment worldwide. Aberrant DNA methylation within the promoter of IL17RC in peripheral blood mononuclear cells has recently been reported in AMD. To validate this association, we examined DNA methylation of the IL17RC promoter in peripheral blood. First, we used Illumina Human Methylation450 Bead Arrays, a widely accepted platform for measuring global DNA methylation. Second, methylation status at multiple sites within the IL17RC promoter was determined by bisulfite pyrosequencing in two cohorts. Third, a methylation-sensitive quantitative PCR-based assay was performed on a subset of samples. In contrast to previous findings, we did not find evidence of differential methylation between AMD cases and age-matched controls. We conclude that hypomethylation within the IL17RC gene promoter in peripheral blood is not suitable for use as a clinical biomarker of AMD. This study highlights the need for considerable replication of epigenetic association studies prior to clinical application

    T Helper 1 Cellular Immunity Toward Recoverin Is Enhanced in Patients With Active Autoimmune Retinopathy

    Get PDF
    Autoimmune retinopathy (AIR) causes rapidly progressive vision loss that is treatable but often is confused with other forms of retinal degeneration including retinitis pigmentosa (RP). Measurement of anti-retinal antibodies (ARA) by Western blot is a commonly used laboratory assay that supports the diagnosis yet does not reflect current disease activity. To search for better diagnostic indicators, this study was designed to compare immune biomarkers and responses toward the retinal protein, recoverin, between newly diagnosed AIR patients, slow progressing RP patients and healthy controls. All individuals had measurable anti-recoverin IgG and IgM antibodies by ELISA regardless of disease status or Western blot results. Many AIR patients had elevated anti-recoverin IgG1 levels and a strong cellular response toward recoverin dominated by IFNγ. RP patients and controls responded to recoverin with a lower IFNγ response that was balanced by IL-10 production. Both AIR and RP patients displayed lower levels of total peripheral blood mononuclear cells that were due to reductions of CD4+ TH cells. A comparison of messenger RNA (mRNA) for immune-related genes in whole blood of AIR patients versus RP patients or controls indicated lower expression of ATG5 and PTPN22 and higher expression of several genes involved in TH cell signaling/transcription and adhesion. These data indicate that an immune response toward recoverin is normal in humans, but that in AIR patients the balance shifts dramatically toward higher IFNγ production and cellular activation

    Genomic rearrangements of the PRPF31 gene account for

    Get PDF
    PURPOSE. To determine whether genomic rearrangements in the PRPF31 (RP11) gene are a frequent cause of autosomal dominant retinitis pigmentosa (adRP) in a cohort of patients with adRP. METHODS. In a cohort of 200 families with adRP, disease-causing mutations have previously been identified in 107 families. To determine the cause of disease in the remaining families, linkage testing was performed with markers for 13 known adRP loci. In a large American family, evidence was found of linkage to the PRPF31 gene, although DNA sequencing revealed no mutations. SNP testing throughout the genomic region was used to determine whether any part of the gene was deleted. Aberrant segregation of a SNP near exon 1 was observed, leading to the testing of additional SNPs in the region. After identifying an insertion-deletion mutation, the remaining 92 families were screened for genomic rearrangements in PRPF31 with multiplex ligation-dependent probe amplification (MLPA). RESULTS. Five unique rearrangements were identified in the 93 families tested. In the large family used for linkage exclusion testing, an insertion-deletion was found that disrupts exon 1. The other four mutations identified in the cohort were deletions, ranging from 5 kb to greater than 45 kb. Two of the large deletions encompass all PRPF31 as well as several adjacent genes. The two smaller deletions involve either 5 or 10 completely deleted exons. CONCLUSIONS. In an earlier long-term study of 200 families with adRP, disease-causing mutations were identified in 53% of the families. Mutation-testing by sequencing missed large-scale genomic rearrangements such as insertions or deletions. MLPA was used to identify genomic rearrangements in PRPF31 in five families, suggesting a frequency of approximately 2.5%. Mutations in PRPF31 now account for 8% of this adRP cohort

    De novo intrachromosomal gene conversion from OPN1MW to OPN1LW in the male germline results in Blue Cone Monochromacy

    Get PDF
    X-linked cone dysfunction disorders such as Blue Cone Monochromacy and X-linked Cone Dystrophy are characterized by complete loss (of) or reduced L- and M- cone function due to defects in the OPN1LW/OPN1MW gene cluster. Here we investigated 24 affected males from 16 families with either a structurally intact gene cluster or at least one intact single (hybrid) gene but harbouring rare combinations of common SNPs in exon 3 in single or multiple OPN1LW and OPN1MW gene copies. We assessed twelve different OPN1LW/MW exon 3 haplotypes by semi-quantitative minigene splicing assay. Nine haplotypes resulted in aberrant splicing of ≥20% of transcripts including the known pathogenic haplotypes (i.e. ‘LIAVA’, ‘LVAVA’) with absent or minute amounts of correctly spliced transcripts, respectively. De novo formation of the ‘LIAVA’ haplotype derived from an ancestral less deleterious ‘LIAVS’ haplotype was observed in one family with strikingly different phenotypes among affected family members. We could establish intrachromosomal gene conversion in the male germline as underlying mechanism. Gene conversion in the OPN1LW/OPN1MW genes has been postulated, however, we are first to demonstrate a de novo gene conversion within the lineage of a pedigree
    corecore