169 research outputs found

    Healing of surgical site after total hip and knee replacements show similar telethermographic patterns

    Get PDF
    BACKGROUND: Isolated reports indicate the efficacy of infrared thermography for monitoring wound healing and septic complications, but no long-term analysis has ever been performed on this, and there are no data on the telethermographic patterns of surgical site healing after uncomplicated total hip prosthesis and after knee prosthesis. MATERIALS AND METHODS: In this prospective, observational, nonrandomized cohort study, two groups with forty consecutive patients each, who were operated on respectively for total hip and for total knee replacements, underwent telethermographic examination of the operated and contralateral joints prior to and at fixed intervals for up to 1\ua0year after uncomplicated surgery. A digital, portable telethermocamera and dedicated software were used for data acquisition and processing. RESULTS: No thermographic difference was observed preoperatively between the affected side and the contralateral side in both groups. After the intervention, a steep increase in the temperature of the operated joint was recorded after total hip replacement and after knee replacement, with a peak mean differential temperature measured three days postoperatively between the operated and unoperated joint of 3.1\ua0\ub1\ua00.8\ub0C after total hip replacement, and 3.4\ua0\ub1\ua00.7\ub0C after total knee replacement. Thereafter, the mean differential temperature declined slowly to 0.7\ua0\ub1\ua01.1\ub0C and to 0.5\ua0\ub1\ua01.3\ub0C at 60\ua0days, and to 0.0\ua0\ub1\ua01.0\ub0C and -0.1\ua0\ub1\ua01.1\ub0C 90\ua0days post-operatively, respectively. No further changes were observed for up to 1\ua0year after surgery. Results were similar when comparing the average telethermographic values of an elliptical area where the main axis corresponded to the surgical wound. CONCLUSIONS: The surgical sites after uncomplicated total hip or total knee replacement show similar telethermographic patterns for up to 1\ua0year from surgery, and can easily be monitored using a portable, digital, telethermocamera

    Natural History, Microbes and Sequences: Shouldn't We Look Back Again to Organisms?

    Get PDF
    The discussion on the existence of prokaryotic species is reviewed. The demonstration that several different mechanisms of genetic exchange and recombination exist has led some to a radical rejection of the possibility of bacterial species and, in general, the applicability of traditional classification categories to the prokaryotic domains. However, in spite of intense gene traffic, prokaryotic groups are not continuously variable but form discrete clusters of phenotypically coherent, well-defined, diagnosable groups of individual organisms. Molecularization of life sciences has led to biased approaches to the issue of the origins of biodiversity, which has resulted in the increasingly extended tendency to emphasize genes and sequences and not give proper attention to organismal biology. As argued here, molecular and organismal approaches that should be seen as complementary and not opposed views of biology

    Understanding the role of growth factors in modulating stem cell tenogenesis

    Get PDF
    Current treatments for tendon injuries often fail to fully restore joint biomechanics leading to the recurrence of symptoms, and thus resulting in a significant health problem with a relevant social impact worldwide. Cell-based approaches involving the use of stem cells might enable tailoring a successful tendon regeneration outcome. As growth factors (GFs) powerfully regulate the cell biological response, their exogenous addition can further stimulate stem cells into the tenogenic lineage, which might eventually depend on stem cells source. In the present study we investigate the tenogenic differentiation potential of human- amniotic fluid stem cells (hAFSCs) and adipose-derived stem cells (hASCs) with several GFs associated to tendon development and healing; namely, EGF, bFGF, PDGF-BB and TGF-β1. Stem cells response to biochemical stimuli was studied by screening of tendon-related genes (collagen type I, III, decorin, tenascin C and scleraxis) and proteins found in tendon extracellular matrix (ECM) (Collagen I, III, and Tenascin C). Despite the fact that GFs did not seem to influence the synthesis of tendon ECM proteins, EGF and bFGF influenced the expression of tendon-related genes in hAFSCs, while EGF and PDGF-BB stimulated the genetic expression in hASCs. Overall results on cellular alignment morphology, immunolocalization and PCR analysis indicated that both stem cell source can be biochemically induced towards tenogenic commitment, validating the potential of hASCs and hAFSCs for tendon regeneration strategies.Authors thank the Portuguese Foundation for Science and Technology (FCT) for the research project BIBS (PTDC/CVT/102972/2008) and for the post-doc fellowship grant: SFRH/BPD/86775/2012. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Search for High Mass Photon Pairs in p-pbar --> gamma-gamma-jet-jet Events at sqrt(s)=1.8 TeV

    Get PDF
    A search has been carried out for events in the channel p-barp --> gamma gamma jet jet. Such a signature can characterize the production of a non-standard Higgs boson together with a W or Z boson. We refer to this non-standard Higgs, having standard model couplings to vector bosons but no coupling to fermions, as a "bosonic Higgs." With the requirement of two high transverse energy photons and two jets, the diphoton mass (m(gamma gamma)) distribution is consistent with expected background. A 90(95)% C.L. upper limit on the cross section as a function of mass is calculated, ranging from 0.60(0.80) pb for m(gamma gamma) = 65 GeV/c^2 to 0.26(0.34) pb for m(gamma gamma) = 150 GeV/c^2, corresponding to a 95% C.L. lower limit on the mass of a bosonic Higgs of 78.5 GeV/c^2.Comment: 9 pages, 3 figures. Replacement has new H->gamma gamma branching ratios and corresponding new mass limit

    On the Evolution of Hexose Transporters in Kinetoplastid Potozoans

    Get PDF
    Glucose, an almost universally used energy and carbon source, is processed through several well-known metabolic pathways, primarily glycolysis. Glucose uptake is considered to be the first step in glycolysis. In kinetoplastids, a protozoan group that includes relevant human pathogens, the importance of glucose uptake in different phases of the life cycles is well established, and hexose transporters have been proposed as targets for therapeutic drugs. However, little is known about the evolutionary history of these hexose transporters. Hexose transporters contain an intracellular N- and C- termini, and 12 transmembrane spans connected by alternate intracellular and extracellular loops. In the present work we tested the hypothesis that the evolutionary rate of the transmembrane span is different from that of the whole sequence and that it is possible to define evolutionary units inside the sequence. The phylogeny of whole molecules was compared to that of their transmembrane spans and the loops connecting the transmembrane spans. We show that the evolutionary units in these proteins primarily consist of clustered rather than individual transmembrane spans. These analyses demonstrate that there are evolutionary constraints on the organization of these proteins; more specifically, the order of the transmembrane spans along the protein is highly conserved. Finally, we defined a signature sequence for the identification of kinetoplastid hexose transporters

    Systematic review of the epidemiological evidence comparing lung cancer risk in smokers of mentholated and unmentholated cigarettes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>US mentholated cigarette sales have increased considerably over 50 years. Preference for mentholated cigarettes is markedly higher in Black people. While menthol itself is not genotoxic or carcinogenic, its acute respiratory effects might affect inhalation of cigarette smoke. This possibility seems consistent with the higher lung cancer risk in Black men, despite Black people smoking less and starting smoking later than White people. Despite experimental data suggesting similar carcinogenicity of mentholated and non-mentholated cigarettes, the lack of convincing evidence that mentholation increases puffing, inhalation or smoke uptake, and the similarity of lung cancer rates in Black and White females, a review of cigarette mentholation and lung cancer is timely given current regulatory interest in the topic.</p> <p>Methods</p> <p>Epidemiological studies comparing lung cancer risk in mentholated and non-mentholated cigarette smokers were identified from MedLine and other sources. Study details were extracted and strengths and weaknesses assessed. Relative risk estimates were extracted, or derived, for ever mentholated use and for long-term use, overall and by gender, race, and current/ever smoking, and meta-analyses conducted.</p> <p>Results</p> <p>Eight generally good quality studies were identified, with valid cases and controls, and appropriate adjustment for age, gender, race and smoking. The studies afforded good power to detect possible effects. However, only one study presented results by histological type, none adjusted for occupation or diet, and some provided no results by length of mentholated cigarette use.</p> <p>The data do not suggest any effect of mentholation on lung cancer risk. Adjusted relative risk estimates for ever use vary from 0.81 to 1.12, giving a combined estimate of 0.93 (95% confidence interval 0.84-1.02, n = 8), with no increase in males (1.01, 0.84-1.22, n = 5), females (0.80, 0.67-0.95, n = 5), White people (0.87, 0.75-1.03, n = 4) or Black people (0.90, 0.73-1.10, n = 4). Estimates for current and ever smokers are similar. The combined estimate for long-term use (0.95, 0.80-1.13, n = 4) again suggests no effect of mentholation.</p> <p>Conclusion</p> <p>Higher lung cancer rates in Black males cannot be due to their greater preference for mentholated cigarettes. While some study weaknesses exist, the epidemiological evidence is consistent with mentholation having no effect on the lung carcinogenicity of cigarettes.</p

    MicroRNA-277 Modulates the Neurodegeneration Caused by Fragile X Premutation rCGG Repeats

    Get PDF
    Fragile X-associated tremor/ataxia syndrome (FXTAS), a late-onset neurodegenerative disorder, has been recognized in older male fragile X premutation carriers and is uncoupled from fragile X syndrome. Using a Drosophila model of FXTAS, we previously showed that transcribed premutation repeats alone are sufficient to cause neurodegeneration. MiRNAs are sequence-specific regulators of post-transcriptional gene expression. To determine the role of miRNAs in rCGG repeat-mediated neurodegeneration, we profiled miRNA expression and identified selective miRNAs, including miR-277, that are altered specifically in Drosophila brains expressing rCGG repeats. We tested their genetic interactions with rCGG repeats and found that miR-277 can modulate rCGG repeat-mediated neurodegeneration. Furthermore, we identified Drep-2 and Vimar as functional targets of miR-277 that could modulate rCGG repeat-mediated neurodegeneration. Finally, we found that hnRNP A2/B1, an rCGG repeat-binding protein, can directly regulate the expression of miR-277. These results suggest that sequestration of specific rCGG repeat-binding proteins could lead to aberrant expression of selective miRNAs, which may modulate the pathogenesis of FXTAS by post-transcriptionally regulating the expression of specific mRNAs involved in FXTAS

    Changes in Brain MicroRNAs Contribute to Cholinergic Stress Reactions

    Get PDF
    Mental stress modifies both cholinergic neurotransmission and alternative splicing in the brain, via incompletely understood mechanisms. Here, we report that stress changes brain microRNA (miR) expression and that some of these stress-regulated miRs regulate alternative splicing. Acute and chronic immobilization stress differentially altered the expression of numerous miRs in two stress-responsive regions of the rat brain, the hippocampal CA1 region and the central nucleus of the amygdala. miR-134 and miR-183 levels both increased in the amygdala following acute stress, compared to unstressed controls. Chronic stress decreased miR-134 levels, whereas miR-183 remained unchanged in both the amygdala and CA1. Importantly, miR-134 and miR-183 share a common predicted mRNA target, encoding the splicing factor SC35. Stress was previously shown to upregulate SC35, which promotes the alternative splicing of acetylcholinesterase (AChE) from the synapse-associated isoform AChE-S to the, normally rare, soluble AChE-R protein. Knockdown of miR-183 expression increased SC35 protein levels in vitro, whereas overexpression of miR-183 reduced SC35 protein levels, suggesting a physiological role for miR-183 regulation under stress. We show stress-induced changes in miR-183 and miR-134 and suggest that, by regulating splicing factors and their targets, these changes modify both alternative splicing and cholinergic neurotransmission in the stressed brain

    Twenty-first century brain banking. Processing brains for research: the Columbia University methods

    Get PDF
    Carefully categorized postmortem human brains are crucial for research. The lack of generally accepted methods for processing human postmortem brains for research persists. Thus, brain banking is essential; however, it cannot be achieved at the cost of the teaching mission of the academic institution by routing brains away from residency programs, particularly when the autopsy rate is steadily decreasing. A consensus must be reached whereby a brain can be utilizable for diagnosis, research, and teaching. The best diagnostic categorization possible must be secured and the yield of samples for basic investigation maximized. This report focuses on integrated, novel methods currently applied at the New York Brain Bank, Columbia University, New York, which are designed to reach accurate neuropathological diagnosis, optimize the yield of samples, and process fresh-frozen samples suitable for a wide range of modern investigations. The brains donated for research are processed as soon as possible after death. The prosector must have a good command of the neuroanatomy, neuropathology, and the protocol. One half of each brain is immersed in formalin for performing the thorough neuropathologic evaluation, which is combined with the teaching task. The contralateral half is extensively dissected at the fresh state. The anatomical origin of each sample is recorded using the map of Brodmann for the cortical samples. The samples are frozen at −160°C, barcode labeled, and ready for immediate disbursement once categorized diagnostically. A rigorous organization of freezer space, coupled to an electronic tracking system with its attached software, fosters efficient access for retrieval within minutes of any specific frozen samples in storage. This report describes how this achievement is feasible with emphasis on the actual processing of brains donated for research

    Coping with Temperature at the Warm Edge – Patterns of Thermal Adaptation in the Microbial Eukaryote Paramecium caudatum

    Get PDF
    Ectothermic organisms are thought to be severely affected by global warming since their physiological performance is directly dependent on temperature. Latitudinal and temporal variations in mean temperatures force ectotherms to adapt to these complex environmental conditions. Studies investigating current patterns of thermal adaptation among populations of different latitudes allow a prediction of the potential impact of prospective increases in environmental temperatures on their fitness.In this study, temperature reaction norms were ascertained among 18 genetically defined, natural clones of the microbial eukaryote Paramecium caudatum. These different clones have been isolated from 12 freshwater habitats along a latitudinal transect in Europe and from 3 tropical habitats (Indonesia). The sensitivity to increasing temperatures was estimated through the analysis of clone specific thermal tolerances and by relating those to current and predicted temperature data of their natural habitats. All investigated European clones seem to be thermal generalists with a broad thermal tolerance and similar optimum temperatures. The weak or missing co-variation of thermal tolerance with latitude does not imply local adaptation to thermal gradients; it rather suggests adaptive phenotypic plasticity among the whole European subpopulation. The tested Indonesian clones appear to be locally adapted to the less variable, tropical temperature regime and show higher tolerance limits, but lower tolerance breadths.Due to the lack of local temperature adaptation within the European subpopulation, P. caudatum genotypes at the most southern edge of their geographic range seem to suffer from the predicted increase in magnitude and frequency of summer heat waves caused by climate change
    corecore