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Abstract

Current treatments for tendon injuries often fail to fully restore joint biomechanics leading to the recurrence of symptoms,
and thus resulting in a significant health problem with a relevant social impact worldwide. Cell-based approaches involving
the use of stem cells might enable tailoring a successful tendon regeneration outcome. As growth factors (GFs) powerfully
regulate the cell biological response, their exogenous addition can further stimulate stem cells into the tenogenic lineage,
which might eventually depend on stem cells source. In the present study we investigate the tenogenic differentiation
potential of human- amniotic fluid stem cells (hAFSCs) and adipose-derived stem cells (hASCs) with several GFs associated
to tendon development and healing; namely, EGF, bFGF, PDGF-BB and TGF-b1. Stem cells response to biochemical stimuli
was studied by screening of tendon-related genes (collagen type I, III, decorin, tenascin C and scleraxis) and proteins found
in tendon extracellular matrix (ECM) (Collagen I, III, and Tenascin C). Despite the fact that GFs did not seem to influence the
synthesis of tendon ECM proteins, EGF and bFGF influenced the expression of tendon-related genes in hAFSCs, while EGF
and PDGF-BB stimulated the genetic expression in hASCs. Overall results on cellular alignment morphology,
immunolocalization and PCR analysis indicated that both stem cell source can be biochemically induced towards
tenogenic commitment, validating the potential of hASCs and hAFSCs for tendon regeneration strategies.

Citation: Gonçalves AI, Rodrigues MT, Lee S-J, Atala A, Yoo JJ, et al. (2013) Understanding the Role of Growth Factors in Modulating Stem Cell Tenogenesis. PLoS
ONE 8(12): e83734. doi:10.1371/journal.pone.0083734

Editor: Nuno M. Neves, University of Minho, Portugal

Received July 11, 2013; Accepted November 14, 2013; Published December 30, 2013
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Introduction

Tendons are highly prone to injury and their intrinsic

hypocellularity and hypovascularity makes their natural healing

extremely slow and inefficient when severely damaged. Surgical

repair with grafts is common but unsuccessful in a long term basis

as the biochemical and mechanical properties of healed tendon

tissue never match those of intact tendon, ultimately resulting in

the progression of degenerative diseases, such as osteoarthritis [1].

The regenerative mechanism underneath the unique organiza-

tion of collagen fibers and resident cell alignment in between the

fibers is still unknown. Thus, the limited ability of tendon to self-

repair and the limitation of treatment regimens have hastened the

motivation to develop stem cell-based strategies that explore the

natural endogenous system of tissue regeneration.

Amniotic fluid stem cells (AFSCs) have shown to be highly

proliferative, exhibiting high self-renewal capability and potential

to differentiate into several lineages [2]. In addition, human

AFSCs are easy to obtain, representing an almost unlimited stem

cell source with immunosuppressive properties [3].

Adipose tissue is also a promising source of stem cells as adipose-

derived stem cells (ASCs) have been explored for therapeutic

applications, and may represent a potential choice for tendon

repair and regeneration [4]. Tissue availability, easy and

minimally invasive access to adipose sources place these cells in

a unique position relative to other MSCs in the tissue engineering

and regenerative medicine (TERM) field. Moreover, human ASCs

(hASCs) isolation is a simple and relatively easy enzyme-based

methodology, and evidences suggest an immune-privileged

behavior [5].

We and others have demonstrated that under appropriate

inductive conditions human AFSCs [2,6,7] and hASCs can be

directed into several skeletal tissue-related lineages, such as bone

[2,6–8] and cartilage [2,6,8].

It is widely accepted that several different environmental factors

contribute to the overall control of stem cell activity [9]. Growth

factors (GFs) are potential agents to target specific tissue reactions

because of their regulatory roles in cellular functions, including

adhesion, proliferation, migration, matrix synthesis, and cell

differentiation [10]. For instance, fibroblast- (FGF), platelet

derived- (PDGF) and transforming- (TGF-b) growth factors are

markedly upregulated throughout tendon repair mechanisms [11].
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Since growth factors such as epidermal-(EGF), FGF, PDGF and

TGF-b have been described to play a role in tendon development

and tendon healing, they are to be investigated in this study.

EGF is a potent mitogen that participates in MSCs and

fibroblast proliferation [12,13], and is also involved in the initial

phase of tendon healing. Besides MSCs proliferation, EGF

treatment also preserves early progenitors within a MSC

population [12], and increases the paracrine activity of stem cells.

bFGF was recently described to maintain an undifferentiated

state of ligament stem cells (LSCs) [14]. Also, LSCs proliferate

faster with bFGF treatment [12,14]. FGF signaling is required for

the early stages of differentiation in a number of lineages and is

also an essential mediator of self-renewal in human stem cells [14].

Additionally, bFGF stimulates the production of collagenous and

non-collagenous ECM [15], thus evidencing a role in proliferation

and tendon commitment.

In vitro studies suggest that bFGF and PDGF not only stimulate

tendon fibroblast proliferation but promote changes in the

expression of matrix genes showing promise for improving tendon

healing [16]. PDGF also plays a role in the migration and

proliferation of the tenocytes, fibroblasts, and MSCs responsible

for tissue homeostasis. Furthermore, PDGF modulates the

synthesis of ECM [17] and supports the formation of a vascular

network, which sustains biofunctional and physiological integrity

[18] of the tissue. Its biological action highlights the PDGF

potential to treat and enhance the biologic response of injured

tendons and ligaments [19].

TGF-b has also been attracting attention in the tenogenic

regenerative field as TGF-b participates in all three phases of

tendon healing process: inflammation, proliferation and remodel-

ing [20]. Moreover, TGF-b has been described to be involved in

tendon formation [21], to induce tendon markers in mesenchymal

cells [22] and to stimulate upregulation of gene expression and

production of ECM in LSCs [14], playing a role in tendon cell

fate. The three isoforms of TGF-b (TGF-b1, TGF-b2, TGF-b3)
were shown to participate on collagen production and cell viability

[23]. In particular, TGF-b1 increased the production of collag-

enous and non-collagenous extracellular matrix protein in LSCs

[16].

Expanding and culturing cells while maintaining a tenogenic

phenotype would be useful in producing a more efficient tendon

bioengineered substitute. Although EGF, FGF, PDGF and TGF-b
were described to contribute to tendon and ligament development

and healing [1,21], the exact nature of tendon regeneration

remains unknown. Furthermore, the exogenous addition of GFs to

the cellular microenvironment could provide a trigger to assist the

differentiation of multipotent cells into a tenogenic lineage, and

establish a biochemical link between cells and native tissue, thus

participating in the process of restoring tendon functionality.

In this study we propose to assess the tenogenic potential of

human amniotic fluid-derived stem cells (hAFSCs) and human

adipose-derived stem cells (hASCs) in the presence of specific

biochemical culture conditions that might be used in cell-based

strategies for tendon repair.

We hypothesize that the exposure to the proper biochemical

cues, that is, GFs that participate in tendon formation and ECM

synthesis, would potentially stimulate tenogenic differentiation of

stem cells. Furthermore, the inclusion of these GFs in the culture

medium would enhance the expression of tendon- related markers

and the synthesis of tendon-like ECM. The successful tenogenic

differentiation of stem cells also outcomes for cell-laden scaffolding

strategies towards assisting and/or improving regeneration in locus.

An accelerated proliferation and remodeling process could

improve gliding and strength enhancement at the injury site and

simultaneously reduce the risk of fibrosis and tendon failure during

the repair/regenerative process.

Materials and Methods

Stem Cell Isolation and Expansion
Human amniotic fluid stem cells (hAFSCs) were obtained from

human amniotic fluid specimens collected during amniocentesis

procedures. The amniotic fluid was obtained under an IRB

protocol approved by Wake Forest School of Medicine. Back-up

human amniocentesis cultures, that would otherwise be discarded,

were harvested by trypsinization. Within the pool of hAFSCs the

c-Kit (CD117) positive population was immunoselected with

magnetic microspheres, whose protocol has been described in

detail elsewhere [2]. hAFSCs were assessed for several markers by

flow cytometry and showed to be negative for CD45, CD33 and

CD 133, and positive for CD73, CD90, CD105, CD29 and CD44

[2]. Then, hAFSCs were expanded and cryopreserved. The basic

amniotic fluid cell (BAFC) medium was composed by a-MEM

(Invitrogen) plus 15% embryonic screened FBS (ES-FBS, Fisher

Scientific), 1% glutamine (Sigma), 1% antibiotic/antimycotic (A/

A) solution (Gibco), 18% Chang B (Izasa/C101) and 2% Chang C

(Izasa/C108) at 37uC with 5% CO2 atmosphere.

Human ASCs were obtained from lipoaspirate samples of the

abdominal region, under protocols previously established with

Hospital da Prelada (Porto, Portugal) and with informed consent

of the patients. The content of the written informed consent and

related procedures were reviewed and approved by the Hospital

Ethics Committee.

Cells were isolated from tissue samples and cultured as

described before [22], and have been previously characterized

by RT-PCR for CD44, STRO-1, CD105 and CD90 markers

[22]. Briefly, the tissue was rinsed in phosphate-buffered saline

(PBS, Sigma-Aldrich) containing 10% of an antibiotic-antimycotic

solution (Gibco). The fat solution was immersed in a 0.05%

collagenase type II (Sigma/C6885) solution for 45 minutes at 37uC
under mild agitation. The digested tissue was centrifuged at 304 g

for 10 minutes at 4uC, after which the supernatant was eliminated.

Lysis buffer was used to dissolve the pellet followed by a

centrifugation at 304 g for 5 minutes. Cells were expanded in

basic medium composed of a-MEM (Invitrogen) supplemented

with 10% FBS (Alfagene), and 1% A/A solution (Alfagene).

The data obtained from amniocentesis back-up cultures and

from lipoaspirate samples was analyzed anonymously.

After reaching a sufficient cell number (approximately 380,000

cells),hAFSCs and hASCs were cultured in media conditioned

with different growth factors known to participate in tendon

healing mechanisms [1], as described in Table 1. The growth

factor’s concentration of 10 ng/mL was selected with basis on

previously published reports on tendon and ligament regeneration

strategies [14,24–26]. Thus, in this work we considered 10 ng/mL

studied as the minimum concentration of growth factor to likely

influence cellular differentiation.

The inclusion of ascorbic acid in the culture medium has been

associated with an increased MSCs proliferation and human

collagen synthesis, thus a positive and promising factor aiming at a

successful tenogenic medium.

Tenogenic differentiation was weekly evaluated up to 28 days

based on cell morphology and on the presence of Tenascin C,

Collagen I and Collagen III proteins, as well as on PCR analysis

for tendon-related markers (scleraxis, tenascin C, decorin, collagen

type I and collagen type III), as described in detail below.

Biochemically-Induced Tenogenesis of Stem Cells
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Morphological Analysis
Human AFSCs and hASCs were monitored daily and

photographs were obtained from live cells collected weekly using

a phase contrast microscope (Axiovert 40 CFL, Zeiss) (Figure S1

and S2). Multiple regions within each sample well were observed

and representative sections captured by a digital camera (Power-

Shot G11, Canon).

Immunolocalization of ECM Proteins: Collagen I, Collagen
III and Tenascin C
Samples from each culture condition were rinsed in PBS, fixed

in a 10% buffered formalin solution (43.05-k01009, INOPAT)

overnight and kept in PBS at 4uC until usage.

Collagen I (Rabbit polyclonal Anti-Collagen I, ab292, Abcam),

Collagen III (Monoclonal Anti-Collagen, Type III, C7805, Sigma-

Aldrich) and Tenascin C (Mouse monoclonal Anti-Tenascin C

antibody [BC-24], ab6393, Abcam) expression was assessed on

cells cultured onto tissue culture treated 6-well plates (Falcon).

After cell permeabilization with 0.025% Triton-X100 (Sigma/

X100)/PBS solution, the blocking step was performed using RTU

Normal Horse Serum (RTU Vectastain Kit, PK-7200, Vector).

Then, cells were incubated overnight with the primary antibodies

above mentioned, diluted in antibody diluent with background

reducing components from Dako (Dako) at 4uC.
The dilution ratio was optimized to 1:3000, 1:500, 1:3000 for

Tenascin C, Collagen I and Collagen III antibodies, respectively.

Afterwards, samples were rinsed in PBS, following inactivation

of endogenous peroxidase activity with hydrogen peroxide solution

(0.3% w/v, Panreac). The samples were incubated for 1 hour at

room temperature with the respective fluorescent secondary

antibody (rabbit anti-mouse Alexa Fluor 488/A11059, or donkey

anti-mouse Alexa Fluor 594/A21203, Invitrogen; dilution 1:200),

considering the host species of the primary antibodies.

After the incubation with secondary antibodies, samples were

rinsed in PBS and stained with 4,6-Diamidino-2-phenyindole,

dilactate (DAPI, 5 mg/ml, D9564, Sigma) for 10 minutes. Negative

controls assessed for immunofluorescence detection were incubat-

ed in Dako diluent in the absence of the primary antibody.

Finally, samples were incubated with a Phalloidin–Tetra-

methylrhodamine B isothiocyanate (Phalloidin) solution, which

was prepared accordingly to manufacturer’s instructions (P1951,

Sigma; dilution 1:200).

All samples were observed under a microscope (Imager Z1m,

Zeiss) and images were acquired using a digital camera (AxioCam

MRm5). The total growth surface area (9.6 cm2) of each well was

screened under the microscope. A minimum of 2 wells per sample,

condition and endpoint were analyzed. Also, a minimum of 2

samples per independent experiment (n = 3) were investigated for

protein detection by immunofluorescence.

RNA Isolation and Gene Expression Analysis
Total RNA was extracted using TRI ReagentH RNA Isolation

Reagent (T9424, Sigma) following the manufacture’s instruction.

RNA was quantified on a NanodropH ND-1000 spectrophotom-

eter (Thermo Scientific) and first-strand complementary DNA was

synthesized from 1 mg of RNA of each sample (qScriptTM cDNA

Synthesis Kit, Quanta Biosciences) in a 20 mL reaction using a

MastercyclerH ep realplex gradient S machine (Eppendorf).

Reverse transcription followed by the polymerase chain reaction

(RT-PCR) was the technique selected to analyze mRNA

expression derived from cells cultured in different media. RT-

PCR was performed to assess the gene expression of typical

markers for tenogenic differentiation, namely collagen type I,

collagen type III, tenascin C, decorin and scleraxis. The transcript

expression of target genes was analyzed and normalized to the

expression of endogenous housekeeping gene GAPDH (glyceral-

dehyde-3-phosphate dehydrogenase) (n = 3). The primers were

designed with Primer 3 software (Table 2) and synthesized by

MWG Biotech.

A 22DDCt method was used to evaluate the relative expression

level for each target gene. DCt values were obtained by the

difference between the Ct values of target genes and the GAPDH

gene. These values were then normalized by subtracting the DCt
value of the calibrator sample, their respective Ct value in basic

medium condition, to obtain DDCt values. Results are represented
as relative gene expression in comparison to calibrator sample that

is equal to 1.

Statistical Analysis
All quantitative results are expressed as the mean 6 standard

deviation.

Two-Way ANOVA followed by Bonferroni’s Multiple Com-

parison test were assessed to determine whether differences

between sample groups were significant. Differences were consid-

ered significant when the p value was ,0.05.

Table 1. Description of the culture medium composition to induce the tenogenic potential of hAFSCs and hASCs.

Medium Description

A) Basic medium: a-MEM, FBS (10%), A/A (1%)

B) AFSCs expansion medium (BAFC): a-MEM +15% ES-FBS, 1% glutamine, 1% antibiotic, 18% Chang B and 2% Chang C

C) hASCs: basic medium A+glutamine (2 mM) and ascorbic acid (0.2 mM)

D) Basic medium A+glutamine (2 mM)+ascorbic acid (0.2 mM)+EGF (10 ng/ml)

E) Basic medium A+glutamine (2 mM)+ascorbic acid (0.2 mM)+bFGF (10 ng/ml)

F) Basic medium A+glutamine (2 mM)+ascorbic acid (0.2 mM)+PDGF-BB (10 ng/ml)

G) Basic medium A+glutamine (2 mM)+ascorbic acid (0.2 mM)+TGF-b1 (10 ng/ml)

a-MEM: Minimum Essential Medium Eagle - Alpha Modification; FBS: fetal bovine serum; A/A: antibiotic/antimicotic solution; FBS-ES: fetal bovine serum embryonic screened;
EGF: endothelial growth factor (Peprotech/100-15); bFGF: basic-fibroblast growth factor (Peprotech/100-18B); PDGF-BB: platelet-derived growth factor (eBioscience/14-8501);
TGF-b1: transforming growth factor-b1 (eBioscience/14-8348).
doi:10.1371/journal.pone.0083734.t001

Biochemically-Induced Tenogenesis of Stem Cells
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Results and Discussion

Morphological Analysis and Cytoskeletal Arrangement of
Tenogenic Induced Cells
The typical morphology of tendon cells corresponds to a

spindle–like shape longitudinally oriented to tendon axis [21].

Since the morphologic features are important for achieving a

functional tissue, we investigated stem cell morphology when

cultured in the different conditioned media. To reveal the

cytoskeleton organization in response to the various GFs

supplemented media, cells were stained with phalloidin (Figure 1).

Differential Cytoskeleton Alignment in Distinct Stem Cell
Sources
Overall, both hAFSCs and hASCs developed an extensive

network of actin fibers by 14 days in culture. Nevertheless, cell

alignment was more evident in hAFSCs than in hASCs cultures.

By 21 days, both hAFSCs and hASCs evidenced an alignment

pattern in culture medium with PDGF-BB and TGF-b1. This
pattern was also observed in basic medium (A) and in medium

with bFGF in hAFSCs, but slightly faded in hASCs cultured in

basic medium (C). After 28 days in culture, hASCs alignment

could be detected in all culturing media, although in medium with

PDGF-BB the phalloidin stain was less intensive. For hAFSCs the

evidence of aligned distribution was only observed in medium

supplemented with EGF and PDGF-BB.

Interestingly, hAFSCs and hASCs evidenced an aligned

distribution in basic medium by 14 days and 28 days in culture,

respectively, indicating that these GFs are important but not

essential in achieving an aligned morphology of these cells.

Phalloidin selectively binds cell actin filaments and the actin

cytoskeleton has been suggested to have a relevant participation in

the alignment and organization of the collagenous ECM in

embryonic tendon [27]. Moreover, the longitudinal organization

of actin fibers within cell rows (observed in Figure S1 and Figure

S2) is a promising feature for sensing the tensile loads naturally

exerted by the muscle to the bone, transmitted to the tendon

tissue. Since actin fibers and cytoskeletal tension are often

associated, the synthesis of cytoplasmic mechanical fibers (resultant

from cytoskeletal rearrangement to meet the extracellular envi-

ronmental conditions) will ultimately be translated into biochem-

ical signals, which would trigger cell differentiation mechanisms.

Immunolocalization of ECM Proteins: Collagen I, Collagen
III and Tenascin C
The resident cells of mechanically functional tissues are often

responsible for the production and maintenance of the ECM,

including the collagen fibers. Collagen type I, Collagen type III

and Tenascin C are present and play a role in the ECM of native

tendon tissues. Thus, the immunolocalization of these proteins was

assessed as a tool to characterize the tendon-like matrix

synthesized by stem cells and stimulated into the tenogenic lineage.

Stem Cells Develop a Collagen I Rich Extracellular Matrix
in Different Supplement Media
During tendon development, collagen fibrillogenesis generates a

tendon-specific ECM that determines the functional intrinsic

mechanic properties of the tissue through cellular deposition of

parallel arrays of collagen fibrils.

The immunofluorescence analysis revealed that both hAFSCs

and hASCs developed a Collagen I-rich matrix in a timeline

sequence (Figure 1). The synthesis of collagen fibrils occurred first

as an intracellular step with assembly and secretion of procollagen

[28]. By 7 days in culture, Collagen I fluorescence signal was

concentrated around the nuclei, which likely corresponds to the

synthesized pro-collagen chains. Despite variations in the fluores-

cence signal, it occurred in both hAFSCs and hASCs and in all

conditioned media. Beyond 14 days, Collagen I was detected

outside hASCs in basic medium (C) and in media supplemented

with EGF, bFGF and PDGF-BB. Only in GFs supplemented

media the extracellular collagen synthesized by hAFSCs was

observed, and seemed to have an aligned fibrillar-like shape

(Figure 1). This process can be associated to the extracellular step

of collagen matrix production, where the pro-collagen is converted

into collagen and subsequent incorporation into stable cross-linked

collagen fibrils [28].

Extracellular collagen showed two distinct distribution patterns,

corresponding to a either aligned or randomly oriented matrix

network (Figure 1). The aligned pattern of Collagen I in hASCs

was widely observed in supplemented culture media with the

exception of medium with TGF-b1 after 14 days in culture. In

basic media (A and C) the collagen matrix was more randomly

dispersed. In hAFSCs the collagen distribution was more

randomly oriented after 21 days in culture, despite the saturation

of collagen outside the cells.

Overall, Collagen I was detected in both cell types and in all

conditioned media throughout the experimental timeline and the

collagenous matrix seemed to increase throughout the time in

culture.

Collagen III
Besides Collagen I, Collagen III has also an important role in

fibril formation. Collagen III copolymerizes with Collagen I, and

despite its low amount in the ECM, it provides tissue elasticity.

Table 2. Primers used for quantitative RT-PCR analysis.

Target gene Gene Abbreviation Forward Primer Reverse Primer Accession number

GAPDH GAPDH tgtaccaccaactgcttagc ggcatggactgtggtcatgag MN 002046.4

collagen, type I,
alpha 1

COL1A1 agccagcagatcgagaacat acacaggtctcaccggtttc NM_000088.3

collagen, type III,
alpha 1

COL3A1 gggaacatcctccttcaaca gcagggaacaacttgatggt NM_000090.3

tenascin C TNC gttaacgccctgactgtggt ccacaatggcagatccttct NM_002160.3

decorin DCN gccattgtcaacagcagaga cgagtggtccagtgttctga NM_001920.3

scleraxis homolog A SCXA tgccttgcagcctcttactt ctcccagtggagtgtggagt BK_000280.1

doi:10.1371/journal.pone.0083734.t002

Biochemically-Induced Tenogenesis of Stem Cells
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Figure 1. Collagen I immunolocation in hAFSCs and hASCs cultured up to 28 days in different supplemented media. DAPI (blue)and
phalloidin-conjugate (red) stain cell nucleus and cytoskeleton, respectively. Collagen I is stained in green and represents the major tendon ECM
protein. Scale bar represents 100 mm. Magnification: 200 x.
doi:10.1371/journal.pone.0083734.g001

Biochemically-Induced Tenogenesis of Stem Cells
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Although the immunolocalization of Collagen III was assessed in

this study, in general its fluorescence signal was very mild (data was

not shown).

Tenascin C
Tenascin C is an ECM protein highly regulated by the tissue

microenvironment [29]. Although rarely present in most adult

tissues, Tenascin C is upregulated in embryonic and developing

tissues, or in tissues experiencing a fast rate of growth, and

influences cell adhesion and migration.

The fluorescent signal of Tenascin C was neglectable in

hAFSCs by 7 days in culture (Figure 2). After 2 weeks, the

expression increased in all culture conditions except in the

presence of bFGF. After 21 days, Tenascin C was not detected

in basic media (A and B) or in TGF-b1 supplemented medium.

Thus, medium supplemented with EGF, bFGF or PDGF-BB

seemed to influence Tenascin C production in hAFSCs for longer

periods of culture.

Similarly, Tenascin C was residually detected in hASCs after 7

days in the conditioned cultures. Nevertheless, the protein

detection tended to increase with the time in culture up to 21

days, being the strongest signal detected in EGF, PDGF-BB and

TGF-b1 culture media.

The expression of Tenascin C did not seem to be associated to

the alignment of cells per se. Another supportive data for this

statement relied on the fact that the Tenascin C protein network is

continuously synthesized, as observed by an increased fluorescence

signal in later time points, especially in hAFSCs. Despite the fact

that cells were proliferating, especially in longer culturing times,

the confluence of the cells on did not show to arrest proliferation

or detaching from the culture plate’s surface, as it is commonly

reported for other cell types.

Real Time RT-PCR
The immunolocalization procedures for ECM detection were

complemented with RT-PCR analysis of tendon-related markers

in order to enhance information and eventually establish a

timeline event for tenogenic differentiation on a molecular biology

and protein basis.

Decorin
Decorin is a proteoglycan that regulates tendon structure by

stabilizing and aligning collagen fibrils [30].

The decorin expression in hAFSCs was evident as early as 7

days in basic (A) and in EGF supplemented medium (Figure 3).
By 14 days, decorin values were similar to the GAPDH’s, and

increased again by 21 days in EGF and bFGF media. Only in

basic medium (A) hAFSCs expressed decorin after 4 weeks in

culture.

Conversely, decorin expression of hASCs only increased after

21 days in culture (Figure 3). The highest values were detected in

PDGF-BB and basic (C) media, followed by TGF-b1, bFGF and

EGF, respectively. Then, decorin expression decreased after 28

days for all studied media yet with increased values when

compared to the 14 day time point.

The influence of EGF medium can be explained by decorin

involvement in signal transduction through the EGF receptor.

Moreover, supplemented PDGF-BB is likely to participate in the

ECM synthesis by increasing decorin and collagen type I

expression in hASCs. PDGF-BB has been described to modulate

both fibroblast proliferation and ECM synthesis [18]. Although

TGF-b1 is known to interact with decorin, the functional

significance of this interaction is still unclear [31].

Collagen Type I and Type III
The major fibrillar component of tendon is type I collagen [21],

and the synthesis of collagen type I is the crucial step in

determination of the tensile strength of tendons [32].

In hASCs, collagen type I has an increased expression around

21 days in culture (Figure 3). The highest values were found for

cells cultured in PDGF-BB, basic (C) and TGF-b1 media,

respectively. Furthermore, collagen type I expression in hAFSCs

reached a peak by 21 days in EGF or bFGF media, although some

expression was detectable as early as 7 days in basic (A) and in

TGF-b1 conditioned media.

In both cell types, collagen type I expression correlated with the

gene expression of decorin. Furthermore, decorin seemed to be

upregulated due to growth factor supplementation, indicating a

catabolic state to collagenous matrix production. These results

confirm the mediator role of decorin in the process of collagen

fibrilogenesis and its involvement in the development of a tendon-

like fibril profile.

Besides collagen type I, collagen type III is essential for normal

fibrilogenesis and its regulation despite its smaller amounts in

tendon tissues.

In our study, the collagen type III expression showed high

values at the first time point in all media (Figure 3). The highest

levels were observed in basic medium (A), followed by culture

medium supplemented with PDGF-BB, TGF-b1, EGF and bFGF.

Collagen type III relative expression decreased by 14 days,

increasing again by 21 days for hAFSCs cultured in basic (A), EGF

and bFGF media. Although these values were maintained in basic

medium (A) at 28 days, they decreased in all other culture

conditions. Conversely, collagen type III expression of hASCs

maintained a basic level during the entire experiment, and was not

particularly influenced by the cell culturing conditions.

Tenascin C
The expression of tenascin C was maintained low in hAFSCs up

to 21 days in culture (Figure 3). Then, a pick in the expression level

was observed in media supplemented with EGF and bFGF.

Tenascin C relative expression in hASCs was high by 7 days in

culture, registering the highest values found in EGF supplemented

medium. The exception was made for cells cultured in basic

medium (B). After 2 weeks in culture, the expression decreased for

all but TGF-b1 culture medium, and increased to the highest

experimental values by 21 days in all conditioned media.

Overall, tenascin C was highly expressed after 21 days in

culture, being more homogeneously expressed in hASCs. On the

other hand, hAFSCs showed a peak of tenascin C only in EGF

and bFGF supplemented media.

Scleraxis
Scleraxis is a transcription factor expressed in the progenitors

and tendon tissue cells. In our study, scleraxis was upregulated by

7 days in basic (A) and EGF media and tended to increase in EGF

supplemented medium by 14 and 21 days in hAFSCs. A peak was

reached in bFGF medium by 21 days. Our results in hAFSCs are

justified by Reed and Johnson work on adipose and umbilical cord

blood stem cells [26]. These studies indicate that FGF signal is

necessary and sufficient for scleraxis expression of a tendon

progenitor cell population.

In hASCs, the scleraxis genetic expression was increased at day

7, especially in TGF-b1 medium, and overall culture media by day

21. These results are also supported by the literature since TGF-b
signaling is a potent inducer of scleraxis in cultured cells [3].
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Figure 2. Tenascin C immunolocation in hAFSCs and hASCs cultured up to 28 days in different supplemented media. DAPI (blue)and
phalloidin-conjugate (red) stain cell nucleus and cytoskeleton, respectively. Tenascin C is stained in green and represents a tendon ECM protein. Scale
bar represents 100 mm. Magnification: 200 x.
doi:10.1371/journal.pone.0083734.g002
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Human AFSCs and hASCs expressed all tendon-associated

genes studied, with increased expression values by 21 days in

culture.

The expression of the genetic markers had a dissimilar pattern

in hAFSCs and hASCs, indicating that these stem cell populations

respond differently to the different GFs. The expression of tendon-

related genes of hAFSCs seemed to be mainly influenced by EGF

and bFGF media while hASCs were more influenced by EGF and

PDGF-BB. Interesting is the fact that EGF participated in

stimulating the genetic expression of both hAFSCs and hASCs

but in a distinctive way; EGF influenced the expression of tenascin

C in hAFSCs and collagen type III expression in hASCs. Thus, the

genetic expression towards a tenogenic lineage commitment may

be influenced by stem cell origin, as cell origin may condition the

stem cell response to local biochemical environment, i.e. the media

composition.

General Discussion

Stem cell differentiation in general and tenogenic differentiation

in particular, are modulated by several biomolecules, including

Figure 3. Real time RT-PCR analysis. Expression of tenascin C (TNC), decorin (DCN), collagen type I (COL1A1), collagen type III (COL3A1) and
scleraxis (SCXA) genes in hAFSCs and hASCs cultured in different supplemented media. The x axis represents the culture time, namely 7, 14, 21 and 28
days. The relative gene expression is represented in the y axis. Horizontal lines represent differences statistically significant for p,0.05.
doi:10.1371/journal.pone.0083734.g003
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growth factors presented in a highly defined and tunable micro-

environment. These biomolecules are expected to establish cell-to-

cell contact and interact with intracellular signaling molecules as a

responsive behavior to the extracellular milieu. The communica-

tion is likely to result in gene expression regulation, and ultimately

on the synthesis of proteins to promote cell mechanisms that

conduct to cell adjustments towards the external stimuli provided.

Since tendon associated markers are also found in other tissues

and cells, a combination of these markers may provide some

insight into the in vitro tenogenesis or tenogenic differentiation.

The presence of tendon-related ECM proteins namely Tenascin

C, Collagen I and Collagen III, described to have a key role in

healthy functional tendons, were detected in both stem cells.

The growth factors (GFs) were selected based on recent

publications, which associated these factors with tendon develop-

ment and healing mechanisms [17]. The main goal of the present

study was to understand how these GFs influence the tenogenic

differentiation of the two stem cell sources, so as to eventually help

defining an appropriate cell culture medium for inducing cells into

tenogenic lineage. Although the GFs studied clearly influenced the

stem cell response in terms of ECM production, none of these GFs

evidenced a distinctive action in the synthesis of tendon-related

proteins. Interestingly, the fluorescence signals for Tenascin C and

Collagen I protein are detected in culture conditions where the

genetic expression is low. We hypothesize that this effect may

occur due to the timeline translational determinants that take

place intracellularly from the upregulation of the interest gene to

the protein translation, and transport to the extracellular matrix

being produced. These results emphasize the complex dynamic of

the GFs in cell processes and environmental interactions that take

place in promoting cell differentiation in vitro.

Both hAFSCs and hASCs showed a longitudinal organization of

actin fibers within cell rows as well as alignment of collagen fibers,

suggesting that these are important morphological features to

investigate for a deeper understanding of the unique orientation of

the collagen fibrils in tendons.

Despite variations in the genetic expression levels of tendon-

associated markers, the GFs studied do not seem to be essential for

the biochemical stimulation of in vitro tenogenesis, as Tenascin C

and Collagen I were also observed in basic medium. It is likely that

stem cells studied may respond more promptly to mechanical

stimulation rather than to biochemical signals provided by the

culture medium.

Although pronounced conclusions were not achieved, the study

demonstrates that some growth factors have a greater effect in a

particular cell source than another, despite the fact that all growth

factors studied are associated to tendon healing mechanisms.

Since tendon is a mechanoresponsive tissue, appropriate

mechanical loads at physiological levels are usually beneficial to

tendons in terms of enhancing the mechanical properties of the

tendon [33], and achieving a healthy and functional tissue.

Tendon tissues require specific micro-environments according to

their function and correspondent anatomical regions. Therefore

we speculate that tenogenic differentiation of hASCs and hAFSCs

cultured in basal medium could be enhanced or accelerated in the

presence of an external mechanical stimulus.

The selection of the stem cell source seems to be relevant in

designing a tendon regeneration strategy. Despite the fact that

both hAFSCs and hASCs did follow a tenogenic pathway, the cell

responses to exogenous GFs stimulation were distinct, especially

the ones found at a molecular biology level. These results indicate

that the interactions occurring between these cells and the

biochemical milieu are complex and intrincated and may be

dependent on stem cell origin. These data point out the

importance of understanding the cellular and molecular events

induced by factors regulating stem cell proliferation and the

consequences on their cellular influence.

In summary: results on cellular alignment morphology, immu-

nolocalization and PCR analysis indicated that both stem cells can

be biochemically induced towards tenogenic features. The

stimulation into tenogenic lineage was demonstrated by the

elongated and aligned cell morphology, the presence of a Tenascin

C and Collagen I-rich ECM and the expression of gene markers

typically associated to tendon tissues. Despite variations found

between hAFSCs and hASCs responses to the GFs supplemented

to the culture medium, the results further validate the potential of

using adipose tissue and amniotic fluid as stem cell sources for

tendon tissue engineering.

Conclusion
The concept of stem cell inclusion in tendon-related strategies

increases the number of cells locally, stimulating tissue regener-

ation. Furthermore, the cellular commitment towards the teno-

genic lineage will simultaneously supply the local milieu with

growth factors and cytokines that could be important and lineage-

oriented for tendon regeneration.

Despite the relevance already described in tendon healing

mechanism, the growth factors evaluated in our study did not

emphasize a particular outcome on the tenogenic process of

hAFSCs and hASCs considering the synthesis of tenogenic ECM

proteins. Nevertheless, EGF and bFGF as well as EGF and PDGF-

BB do have a molecular influence on the tendon-related genetic

expression of hAFSCs and hASCs, respectively, although their role

in the process of tenogenic differentiation of stem cells is still

unveiled.

The fact that stem cells harvested and expanded from different

sources showed a distinct behavior to the GFs supplemented in the

culture medium may indicate that the origin of these cells may also

have an effect on the process of differentiation. Thus, the selection

of a source of stem cells should be considered as a potential

contribute for injury/defect-directed approaches in the regener-

ative medicine field.

These results also suggest that the tenogenic differentiation

follow complex and elaborated pathways that may depend on

multiple growth factors at precise chronological points and/or a

combination of multifactorial stimuli from the highly specific and

delicate tendon natural environment.

Supporting Information

Figure S1 Microscopic observation of hAFSCs cultured
up to 28 days in different supplemented media. Human

AFSCs photographs were obtained from live cells collected weekly

using a phase contrast microscope. Magnification: 100 x.

(TIF)

Figure S2 Microscopic observation of hASCs cultured
up to 28 days in different supplemented media. Human

ASCs photographs were obtained from live cells collected weekly

using a phase contrast microscope. Magnification: 100 x.

(TIF)

Author Contributions

Conceived and designed the experiments: AIG MTRMEG. Performed the

experiments: AIG MTR. Analyzed the data: AIG MTR MEG.

Contributed reagents/materials/analysis tools: SJL JJY RLR MEG AA.

Wrote the paper: AIG MTR MEG RLR.

Biochemically-Induced Tenogenesis of Stem Cells

PLOS ONE | www.plosone.org 9 December 2013 | Volume 8 | Issue 12 | e83734



References

1. Rodrigues MT, Reis RL, Gomes ME (2011) Engineering tendon and ligament

tissues: present developments towards successful clinical products. J Tissue Eng
Regen Med published online.

2. De Coppi P, Bartsch Jr G, Siddiqui MM, Xu T, Santos CC, et al. (2007)
Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol

25: 100–106.

3. Pryce BA, Watson SS, Murchison ND, Staverosky JA, Dunker N, et al. (2009)
Recruitment and maintenance of tendon progenitors by TGFbeta signaling are

essential for tendon formation. Development 136: 1351–1361.
4. Uysal CA, Tobita M, Hyakusoku H, Mizuno H (2012) Adipose-derived stem

cells enhance primary tendon repair: biomechanical and immunohistochemical

evaluation. Journal of plastic, reconstructive & aesthetic surgery : JPRAS 65:
1712–1719.

5. Liu G, Zhou H, Li Y, Li G, Cui L, et al. (2008) Evaluation of the viability and
osteogenic differentiation of cryopreserved human adipose-derived stem cells.

Cryobiology 57: 18–24.
6. Rodrigues MT, Lee SJ, Gomes ME, Reis RL, Atala A, et al. (2011) Bilayered

constructs aimed at osteochondral strategies: the influence of medium

supplements in the osteogenic and chondrogenic differentiation of amniotic
fluid-derived stem cells. Acta Biomater 8: 2795–2806.

7. Rodrigues MT, Lee SJ, Gomes ME, Reis RL, Atala A, et al. (2012) Amniotic
fluid-derived stem cells as a cell source for bone tissue engineering. Tissue Eng

Part A 18: 2518–2527.

8. Rada T, Reis RL, Gomes ME (2011) Distinct stem cells subpopulations isolated
from human adipose tissue exhibit different chondrogenic and osteogenic

differentiation potential. Stem Cell Rev 7: 64–76.
9. Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, et al. (2009) Control of

stem cell fate by physical interactions with the extracellular matrix. Cell Stem
Cell 5: 17–26.

10. Yun YR, Won JE, Jeon E, Lee S, Kang W, et al. (2010) Fibroblast growth

factors: biology, function, and application for tissue regeneration. Journal of
tissue engineering 2010: 218142.

11. Molloy T, Wang Y, Murrell G (2003) The roles of growth factors in tendon and
ligament healing. Sports medicine. Auckland, NZ 33: 381–394.

12. Hebert TL, Wu X, Yu G, Goh BC, Halvorsen YD, et al. (2009) Culture effects

of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) on
cryopreserved human adipose-derived stromal/stem cell proliferation and

adipogenesis. J Tissue Eng Regen Med 3: 553–561.
13. Woo YK, Kwon SY, Lee HS, Park YS (2007) Proliferation of anterior cruciate

ligament cells in vitro by photo-immobilized epidermal growth factor. Journal of
orthopaedic research : official publication of the Orthopaedic Research Society

25: 73–80.

14. Cheng MT, Liu CL, Chen TH, Lee OK (2010) Comparison of potentials
between stem cells isolated from human anterior cruciate ligament and bone

marrow for ligament tissue engineering. Tissue Eng Part A 16: 2237–2253.
15. Villegas SN, Canham M, Brickman JM (2010) FGF signalling as a mediator of

lineage transitions–evidence from embryonic stem cell differentiation. Journal of

cellular biochemistry 110: 10–20.
16. Cheng MT, Yang HW, Chen TH, Lee OK (2009) Modulation of proliferation

and differentiation of human anterior cruciate ligament-derived stem cells by
different growth factors. Tissue Eng Part A 15: 3979–3989.

17. Thomopoulos S, Das R, Sakiyama-Elbert S, Silva MJ, Charlton N, et al. (2010)

bFGF and PDGF-BB for tendon repair: controlled release and biologic activity
by tendon fibroblasts in vitro. Annals of biomedical engineering 38: 225–234.

18. Sakiyama-Elbert SE, Das R, Gelberman RH, Harwood F, Amiel D, et al. (2008)
Controlled-release kinetics and biologic activity of platelet-derived growth factor-

BB for use in flexor tendon repair. The Journal of hand surgery 33: 1548–1557.

19. Hee CK, Dines JS, Solchaga LA, Shah VR, Hollinger JO (2012) Regenerative
tendon and ligament healing: opportunities with recombinant human platelet-

derived growth factor BB-homodimer. Tissue engineering Part B, Reviews 18:
225–234.

20. Thomopoulos S, Zaegel M, Das R, Harwood FL, Silva MJ, et al. (2007) PDGF-

BB released in tendon repair using a novel delivery system promotes cell
proliferation and collagen remodeling. Journal of orthopaedic research : official

publication of the Orthopaedic Research Society 25: 1358–1368.
21. James R, Kesturu G, Balian G, Chhabra AB (2008) Tendon: biology,

biomechanics, repair, growth factors, and evolving treatment options. The
Journal of hand surgery 33: 102–112.

22. Rada T, Reis RL, Gomes ME (2009) Novel method for the isolation of adipose

stem cells (ASCs). J Tissue Eng Regen Med 3: 158–159.
23. Klein MB, Yalamanchi N, Pham H, Longaker MT, Chang J (2002) Flexor

tendon healing in vitro: effects of TGF-beta on tendon cell collagen production.
The Journal of hand surgery 27: 615–620.

24. Eagan MJ, Zuk PA, Zhao KW, Bluth BE, Brinkmann EJ, et al. (2012) The

suitability of human adipose-derived stem cells for the engineering of ligament
tissue. J Tissue Eng Regen Med.

25. Lorda-Diez CI, Montero JA, Martinez-Cue C, Garcia-Porrero JA, Hurle JM
(2009) Transforming growth factors beta coordinate cartilage and tendon

differentiation in the developing limb mesenchyme. The Journal of biological
chemistry 284: 29988–29996.

26. Reed SA, Johnson SE (2013) Expression of scleraxis and tenascin C in equine

adipose and umbilical cord blood derived stem cells is dependent upon substrata
and FGF supplementation. Cytotechnology.

27. Canty EG, Starborg T, Lu Y, Humphries SM, Holmes DF, et al. (2006) Actin
filaments are required for fibripositor-mediated collagen fibril alignment in

tendon. The Journal of biological chemistry 281: 38592–38598.

28. Kjaer M (2004) Role of extracellular matrix in adaptation of tendon and skeletal
muscle to mechanical loading. Physiol Rev 84: 649–698.

29. Tucker RP, Chiquet-Ehrismann R (2009) The regulation of tenascin expression
by tissue microenvironments. Biochim Biophys Acta 1793: 888–892.

30. Zhang G, Ezura Y, Chervoneva I, Robinson PS, Beason DP, et al. (2006)
Decorin regulates assembly of collagen fibrils and acquisition of biomechanical

properties during tendon development. Journal of cellular biochemistry 98:

1436–1449.
31. Bosman FT, Stamenkovic I (2003) Functional structure and composition of the

extracellular matrix. J Pathol 200: 423–428.
32. Uysal AC, Mizuno H (2010) Tendon regeneration and repair with adipose

derived stem cells. Current stem cell research & therapy 5: 161–167.

33. Wang JH, Guo Q, Li B (2012) Tendon biomechanics and mechanobiology–a
minireview of basic concepts and recent advancements. Journal of hand therapy:

official journal of the American Society of Hand Therapists 25: 133–140; quiz
141.

Biochemically-Induced Tenogenesis of Stem Cells

PLOS ONE | www.plosone.org 10 December 2013 | Volume 8 | Issue 12 | e83734


