6,536 research outputs found
High-throughput synthesis of thermoelectric CaCoO films
Properties of complex oxide thin films can be tuned over a range of values as
a function of mismatch, composition, orientation, and structure. Here, we
report a strategy for growing structured epitaxial thermoelectric thin films
leading to improved Seebeck coefficient. Instead of using single-crystal
sapphire substrates to support epitaxial growth, CaCoO films are
deposited, using the Pulsed Laser Deposition technique, onto AlO
polycrystalline substrates textured by Spark Plasma Sintering. The structural
quality of the 2000 \AA thin film was investigated by Transmission Electron
Microscopy, while the crystallographic orientation of the grains and the
epitaxial relationships were determined by Electron Back Scatter Diffraction.
The use of a polycrystalline ceramic template leads to structured films that
are in good local epitaxial registry. The Seebeck coefficient is about 170
V/K at 300 K, a typical value of misfit material with low carrier density.
This high-throughput process, called combinatorial substrate epitaxy, appears
to facilitate the rational tuning of functional oxide films, opening a route to
the epitaxial synthesis of high quality complex oxides.Comment: Submitted to Applied Physics Letters (2013
Penetration and cratering experiments of graphite by 0.5-mm diameter steel spheres at various impact velocities
Cratering experiments have been conducted with 0.5-mm diameter AISI 52100 steel spherical projectiles and 30-mm diameter, 15-mm long graphite targets. The latter were made of a commercial grade of polycrystalline and porous graphite named EDM3 whose behavior is known as macroscopically isotropic. A two-stage light-gas gun launched the steel projectiles at velocities between 1.1 and 4.5 km s 1. In most cases, post-mortem tomographies revealed that the projectile was trapped, fragmented or not, inside the target. It showed that the apparent crater size and depth increase with the impact velocity. This is also the case of the crater volume which appears to follow a power law significantly different from those constructed in previous works for similar impact conditions and materials. Meanwhile, the projectile depth of penetration starts to decrease at velocities beyond 2.2 km s 1. This is firstly because of its plastic deformation and then, beyond 3.2 km s 1, because of its fragmentation. In addition to these three regimes of penetration behavior already described by a few authors, we suggest a fourth regime in which the projectile melting plays a significant role at velocities above 4.1 km s 1. A discussion of these four regimes is provided and indicates that each phenomenon may account for the local evolution of the depth of penetration
A novel EB-1/AIDA-1 isoform, AIDA-1c, interacts with the Cajal body protein coilin
BACKGROUND: Cajal bodies (CBs) are nuclear suborganelles that play a role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), which are crucial for pre-mRNA splicing. Upon nuclear reentry, Sm-class snRNPs localize first to the CB, where the snRNA moiety of the snRNP is modified. It is not clear how snRNPs target to the CB and are released from this structure after their modification. Coilin, the CB marker protein, may participate in snRNP biogenesis given that it can interact with snRNPs and SMN. SMN is crucial for snRNP assembly and is the protein mutated in the neurodegenerative disease Spinal Muscular Atrophy. Coilin knockout mice display significant viability problems and altered CB formation. Thus characterization of the CB and its associated proteins will give insight into snRNP biogenesis and clarify the dynamic organization of the nucleus. RESULTS: In this report, we identify a novel protein isoform of EB-1/AIDA-1, termed AIDA-1c, that interacts with the CB marker protein, coilin. Northern and nested PCR experiments reveal that the AIDA-1c isoform is expressed in brain and several cancer cell lines. Competition binding experiments demonstrate that AIDA-1c competes with SmB' for coilin binding sites, but does not bind SMN. When ectopically expressed, AIDA-1c is predominantly nuclear with no obvious accumulations in CBs. Interestingly, another EB-1/AIDA-1 nuclear isoform, AIDA-1a, does not bind coilin in vivo as efficiently as AIDA-1c. Knockdown of EB-1/AIDA-1 isoforms by siRNA altered Cajal body organization and reduced cell viability. CONCLUSION: These data suggest that specific EB-1/AIDA-1 isoforms, such as AIDA-1c, may participate in the regulation of nucleoplasmic coilin protein interactions in neuronal and transformed cells
Testing use of mitochondrial COI sequences for the identification and phylogenetic analysis of New Zealand caddisflies (Trichoptera)
We tested the hypothesis that cytochrome c oxidase subunit 1 (COI) sequences would successfully discriminate recognised species of New Zealand caddisflies. We further examined whether phylogenetic analyses, based on the COI locus, could recover currently recognised superfamilies and suborders. COI sequences were obtained from 105 individuals representing 61 species and all 16 families of Trichoptera known from New Zealand. No sequence sharing was observed between members of different species, and congeneric species showed from 2.3 to 19.5% divergence. Sequence divergence among members of a species was typically low (mean = 0.7%; range 0.0–8.5%), but two species showed intraspecific divergences in excess of 2%. Phylogenetic reconstructions based on COI were largely congruent with previous conclusions based on morphology, although the sequence data did not support placement of the purse-cased caddisflies (Hydroptilidae) within the uncased caddisflies, and, in particular, the Rhyacophiloidea. We conclude that sequence variation in the COI gene locus is an effective tool for the identification of New Zealand caddisfly species, and can provide preliminary phylogenetic inferences. Further research is needed to ascertain the significance of the few instances of high intra-specific divergence and to determine if any instances of sequence sharing will be detected with larger sample sizes
DNA barcode-based delineation of putative species : efficient start for taxonomic workflows
The analysis of DNA barcode sequences with varying techniques for cluster recognition provides an efficient approach for recognizing putative species (operational taxonomic units, OTUs). This approach accelerates and improves taxonomic workflows by exposing cryptic species and decreasing the risk of synonymy. This study tested the congruence of OTUs resulting from the application of three analytical methods (ABGD, BIN, GMYC) to sequence data for Australian hypertrophine moths. OTUs supported by all three approaches were viewed as robust, but 20% of the OTUs were only recognized by one or two of the methods. These OTUs were examined for three criteria to clarify their status. Monophyly and diagnostic nucleotides were both uninformative, but information on ranges was useful as sympatric sister OTUs were viewed as distinct, while allopatric OTUs were merged. This approach revealed 124 OTUs of Hypertrophinae, a more than twofold increase from the currently recognized 51 species. Because this analytical protocol is both fast and repeatable, it provides a valuable tool for establishing a basic understanding of species boundaries that can be validated with subsequent studies.Peer reviewe
Depletion induced isotropic-isotropic phase separation in suspensions of rod-like colloids
When non-adsorbing polymers are added to an isotropic suspension of rod-like
colloids, the colloids effectively attract each other via depletion forces. We
performed Monte Carlo simulations to study the phase diagram of such
rod-polymer mixture. The colloidal rods were modelled as hard spherocylinders;
the polymers were described as spheres of the same diameter as the rods. The
polymers may overlap with no energy cost, while overlap of polymers and rods is
forbidden.
Large amounts of depletant cause phase separation of the mixture. We
estimated the phase boundaries of isotropic-isotropic coexistence both, in the
bulk and in confinement. To determine the phase boundaries we applied the grand
canonical ensemble using successive umbrella sampling [J. Chem. Phys. 120,
10925 (2004)], and we performed a finite-size scaling analysis to estimate the
location of the critical point. The results are compared with predictions of
the free volume theory developed by Lekkerkerker and Stroobants [Nuovo Cimento
D 16, 949 (1994)]. We also give estimates for the interfacial tension between
the coexisting isotropic phases and analyse its power-law behaviour on approach
of the critical point
Biological identification of springtails (Hexapoda: Collembola) from the Canadian Arctic, using mitochondrial DNA barcodes
We evaluated sequence diversity in the mitochondrial cytochrome-c oxidase I (COI; EC 1.9.3.1) gene as a tool for resolving differences among species of Arctic springtails. The Collembola examined in this analysis were collected from Igloolik, Cornwallis, and Somerset islands and included representatives from all major families found in the Arctic. Members of 13 genera and 19 species were examined, including 4 species of the genus Folsomia and 3 species of the genus Hypogastrura. In all cases, species were successfully discriminated. Sequence divergences within species were generally less than 1%, whereas divergences between species were greater than 8% in all cases. Divergences among individuals of one species of Folsomia were much higher (up to 13%), but this likely represents the presence of an undescribed sibling species. We conclude that DNA barcoding is a powerful tool for identifying species of Collembola and should regularly be useful as a complement to traditional, morphological taxonomy
In Vitro RNase and Nucleic Acid Binding Activities Implicate Coilin in U snRNA Processing
Coilin is known as the marker protein for Cajal bodies (CBs), subnuclear domains important for the biogenesis of small nuclear ribonucleoproteins (snRNPs) which function in pre-mRNA splicing. CBs associate non-randomly with U1 and U2 gene loci, which produce the small nuclear RNA (snRNA) component of the respective snRNP. Despite recognition as the CB marker protein, coilin is primarily nucleoplasmic, and the function of this fraction is not fully characterized. Here we show that coilin binds double stranded DNA and has RNase activity in vitro. U1 and U2 snRNAs undergo a processing event of the primary transcript prior to incorporation in the snRNP. We find that coilin displays RNase activity within the CU region of the U2 snRNA primary transcript in vitro, and that coilin knockdown results in accumulation of the 3′ pre-processed U1 and U2 snRNA. These findings present new characteristics of coilin in vitro, and suggest additional functions of the protein in vivo
- …