19 research outputs found
The RNA-binding protein SRSF3 has an essential role in megakaryocyte maturation and platelet production
RNA processing is increasingly recognized as a critical control point in the regulation of different hematopoietic lineages including megakaryocytes responsible for the production of platelets. Platelets are anucleate cytoplasts that contain a rich repertoire of RNAs encoding proteins with essential platelet functions derived from the parent megakaryocyte. It is largely unknown how RNA binding proteins contribute to the development and functions of megakaryocytes and platelets. We show that serine-arginine–rich splicing factor 3 (SRSF3) is essential for megakaryocyte maturation and generation of functional platelets. Megakaryocyte-specific deletion of Srsf3 in mice led to macrothrombocytopenia characterized by megakaryocyte maturation arrest, dramatically reduced platelet counts, and abnormally large functionally compromised platelets. SRSF3 deficient megakaryocytes failed to reprogram their transcriptome during maturation and to load platelets with RNAs required for normal platelet function. SRSF3 depletion led to nuclear accumulation of megakaryocyte mRNAs, demonstrating that SRSF3 deploys similar RNA regulatory mechanisms in megakaryocytes as in other cell types. Our study further suggests that SRSF3 plays a role in sorting cytoplasmic megakaryocyte RNAs into platelets and demonstrates how SRSF3-mediated RNA processing forms a central part of megakaryocyte gene regulation. Understanding SRSF3 functions in megakaryocytes and platelets provides key insights into normal thrombopoiesis and platelet pathologies as SRSF3 RNA targets in megakaryocytes are associated with platelet diseases.publishedVersionPeer reviewe
'Unite and conquer': enhanced prediction of protein subcellular localization by integrating multiple specialized tools
<p>Abstract</p> <p>Background</p> <p>Knowing the subcellular location of proteins provides clues to their function as well as the interconnectivity of biological processes. Dozens of tools are available for predicting protein location in the eukaryotic cell. Each tool performs well on certain data sets, but their predictions often disagree for a given protein. Since the individual tools each have particular strengths, we set out to integrate them in a way that optimally exploits their potential. The method we present here is applicable to various subcellular locations, but tailored for predicting whether or not a protein is localized in mitochondria. Knowledge of the mitochondrial proteome is relevant to understanding the role of this organelle in global cellular processes.</p> <p>Results</p> <p>In order to develop a method for enhanced prediction of subcellular localization, we integrated the outputs of available localization prediction tools by several strategies, and tested the performance of each strategy with known mitochondrial proteins. The accuracy obtained (up to 92%) surpasses by far the individual tools. The method of integration proved crucial to the performance. For the prediction of mitochondrion-located proteins, integration via a two-layer decision tree clearly outperforms simpler methods, as it allows emphasis of biologically relevant features such as the mitochondrial targeting peptide and transmembrane domains.</p> <p>Conclusion</p> <p>We developed an approach that enhances the prediction accuracy of mitochondrial proteins by uniting the strength of specialized tools. The combination of machine-learning based integration with biological expert knowledge leads to improved performance. This approach also alleviates the conundrum of how to choose between conflicting predictions. Our approach is easy to implement, and applicable to predicting subcellular locations other than mitochondria, as well as other biological features. For a trial of our approach, we provide a webservice for mitochondrial protein prediction (named YimLOC), which can be accessed through the AnaBench suite at http://anabench.bcm.umontreal.ca/anabench/. The source code is provided in the Additional File <supplr sid="S2">2</supplr>.</p> <suppl id="S2"> <title> <p>Additional file 2</p> </title> <text> <p>This file contains scripts for the online server YimLOC. Please note that there scripts only codes for the ready-to-use STACK-mem-DT described in the main text. The scripts do not provide the training process.</p> </text> <file name="1471-2105-8-420-S2.pdf"> <p>Click here for file</p> </file> </suppl
Prediction of protein submitochondria locations by hybridizing pseudo-amino acid composition with various physicochemical features of segmented sequence
BACKGROUND: Knowing the submitochondria localization of a mitochondria protein is an important step to understand its function. We develop a method which is based on an extended version of pseudo-amino acid composition to predict the protein localization within mitochondria. This work goes one step further than predicting protein subcellular location. We also try to predict the membrane protein type for mitochondrial inner membrane proteins. RESULTS: By using leave-one-out cross validation, the prediction accuracy is 85.5% for inner membrane, 94.5% for matrix and 51.2% for outer membrane. The overall prediction accuracy for submitochondria location prediction is 85.2%. For proteins predicted to localize at inner membrane, the accuracy is 94.6% for membrane protein type prediction. CONCLUSION: Our method is an effective method for predicting protein submitochondria location. But even with our method or the methods at subcellular level, the prediction of protein submitochondria location is still a challenging problem. The online service SubMito is now available at
Involvement of Endoplasmic Reticulum Stress in Inflammatory Bowel Disease: A Different Implication for Colonic and Ileal Disease?
Background: Endoplasmic reticulum (ER) stress has been suggested to play a role in inflammatory bowel disease (IBD). The three branches (ATF6, IRE1 and PERK) of the unfolded protein response (UPR) have different roles and are not necessarily activated simultaneously.
Methodology/Principal Findings: Expression of UPR-related genes was investigated in colonic and ileal biopsies of 23 controls, 15 ulcerative colitis (UC) and 54 Crohn's disease (CD) patients. This expression was confirmed at protein level in colonic and ileal samples of five controls, UC and CD patients. HSPA5, PDIA4 and XBP1s were significantly increased in colonic IBD at mRNA and/or protein levels, indicating activation of the ATF6 and IRE1 branch. Colonic IBD was associated with increased phosphorylation of EIF2A suggesting the activation of the PERK branch, but subsequent induction of GADD34 was not observed. In ileal CD, no differential expression of the UPR-related genes was observed, but our data suggested a higher basal activation of the UPR in the ileal mucosa of controls. This was confirmed by the increased expression of 16 UPR-related genes as 12 of them were significantly more expressed in ileal controls compared to colonic controls. Tunicamycin stimulation of colonic and ileal samples of healthy individuals revealed that although the ileal mucosa is exhibiting this higher basal UPR activation, it is still responsive to ER stress, even more than colonic mucosa.
Conclusions/Significance: Activation of the three UPR-related arms is seen in colonic IBD-associated inflammation. However, despite EIF2A activation, inflamed colonic tissue did not increase GADD34 expression, which is usually involved in re-establishment of ER homeostasis. This study also implies the presence of a constitutive UPR activation in healthy ileal mucosa, with no further activation during inflammation. Therefore, engagement of the UPR differs between colon and ileum and this could be a factor in the development of ileal or colonic disease
The role of CD44 in fetal and adult hematopoietic stem cell regulation
Throughout development, hematopoietic stem cells migrate to specific microenvironments, where their fate is, in part, extrinsically controlled. CD44 standard as a member of the cell adhesion molecule family is extensively expressed within adult bone marrow and has been previously reported to play important roles in adult hematopoietic regulation via CD44 standard-ligand interactions. In this manuscript, CD44 expression and function are further assessed and characterized on both fetal and adult hematopoietic stem cells. Using a CD44(−/−) mouse model, conserved functional roles of CD44 are revealed throughout development. CD44 is critical in the maintenance of hematopoietic stem and progenitor pools, as well as in hematopoietic stem cell migration. CD44 expression on hematopoietic stem cells as well as other hematopoietic cells within the bone marrow microenvironment is important in the homing and lodgment of adult hematopoietic stem cells isolated from the bone/bone marrow interface. CD44 is also involved in fetal hematopoietic stem cell migration out of the liver, via a process involving stromal cell-derived factor-1α. The absence of CD44 in neonatal bone marrow has no impact on the size of the long-term reconstituting hematopoietic stem cell pool, but results in an enhanced long-term engraftment potential of hematopoietic stem cells
Progress in bio-manufacture of platelets for transfusion
Blood transfusion services face an ever-increasing demand for donor platelets to meet clinical needs. Whilst strategies for increasing platelet storage life and improving the efficiency of donor platelet collection are important, in the longer term, platelets generated by bio-manufacturing processes will be required to meet demands. Production of sufficient numbers of in vitro-derived platelets for transfusion represents a significant bioengineering challenge. In this review, we highlight recent progress in this area of research and outline the main technical and biological obstacles that need to be met before this becomes feasible and economic. A critical consideration is assurance of the functional properties of these cells as compared to their fresh, donor collected, counterparts. We contend that platelet-like particles and in vitro-derived platelets that phenotypically resemble fresh platelets must deliver the same functions as these cells upon transfusion. We also note recent progress with immortalized megakaryocyte progenitor cell lines, molecular strategies for reducing expression of HLA Class I to generate universal donor platelets and the move to early clinical studies with in vitro-derived platelets
High ploidy large cytoplasmic megakaryocytes are hematopoietic stem cells regulators and essential for platelet production
Megakaryocytes (MK) generate platelets. Recently, we and others, have reported MK also regulate hematopoietic stem cells (HSC). Here we show high ploidy large cytoplasmic megakaryocytes (LCM) are critical negative regulators of HSC and critical for platelet formation. Using a mouse knockout model (Pf4-Srsf3Δ/Δ) with normal MK numbers, but essentially devoid of LCM, we demonstrate a pronounced increase in BM HSC concurrent with endogenous mobilization and extramedullary hematopoiesis. Severe thrombocytopenia is observed in animals with diminished LCM, although there is no change in MK ploidy distribution, uncoupling endoreduplication and platelet production. When HSC isolated from a microenvironment essentially devoid of LCM reconstitute hematopoiesis in lethally irradiated mice, the absence of LCM increases HSC in BM, blood and spleen, and the recapitulation of thrombocytopenia. In contrast, following a competitive transplant using minimal numbers of WT HSC together with HSC from a microenvironment with diminished LCM, sufficient WT HSC-generated LCM regulates a normal HSC pool and prevents thrombocytopenia. Importantly, LCM are conserved in humans.publishedVersionPeer reviewe
Haemopedia: An Expression Atlas of Murine Hematopoietic Cells
Hematopoiesis is a multistage process involving the differentiation of stem and progenitor cells into distinct mature cell lineages. Here we present Haemopedia, an atlas of murine gene-expression data containing 54 hematopoietic cell types, covering all the mature lineages in hematopoiesis. We include rare cell populations such as eosinophils, mast cells, basophils, and megakaryocytes, and a broad collection of progenitor and stem cells. We show that lineage branching and maturation during hematopoiesis can be reconstructed using the expression patterns of small sets of genes. We also have identified genes with enriched expression in each of the mature blood cell lineages, many of which show conserved lineage-enriched expression in human hematopoiesis. We have created an online web portal called Haemosphere to make analyses of Haemopedia and other blood cell transcriptional datasets easier. This resource provides simple tools to interrogate gene-expression-based relationships between hematopoietic cell types and genes of interest