6 research outputs found

    a report from the Children's Oncology Group and the Utah Population Database

    Get PDF
    Relatively little is known about the epidemiology and factors underlying susceptibility to childhood rhabdomyosarcoma (RMS). To better characterize genetic susceptibility to childhood RMS, we evaluated the role of family history of cancer using data from the largest case–control study of RMS and the Utah Population Database (UPDB). RMS cases (n = 322) were obtained from the Children's Oncology Group (COG). Population-based controls (n = 322) were pair-matched to cases on race, sex, and age. Conditional logistic regression was used to evaluate the association between family history of cancer and childhood RMS. The results were validated using the UPDB, from which 130 RMS cases were identified and matched to controls (n = 1300) on sex and year of birth. The results were combined to generate summary odds ratios (ORs) and 95% confidence intervals (CI). Having a first-degree relative with a cancer history was more common in RMS cases than controls (ORs = 1.39, 95% CI: 0.97–1.98). Notably, this association was stronger among those with embryonal RMS (ORs = 2.44, 95% CI: 1.54–3.86). Moreover, having a first-degree relative who was younger at diagnosis of cancer (<30 years) was associated with a greater risk of RMS (ORs = 2.37, 95% CI: 1.34–4.18). In the largest analysis of its kind, we found that most children diagnosed with RMS did not have a family history of cancer. However, our results indicate an increased risk of RMS (particularly embryonal RMS) in children who have a first-degree relative with cancer, and among those whose relatives were diagnosed with cancer at <30 years of age

    Assessing 3D metric data of digital surface models for extracting archaeological data from archive stereo-aerial photographs.

    Get PDF
    Archaeological remains are under increasing threat of attrition from natural processes and the continued mechanisation of anthropogenic activities. This research analyses the ability of digital photogrammetry software to reconstruct extant, damaged, and destroyed archaeological earthworks from archive stereo-aerial photographs. Case studies of Flower's Barrow and Eggardon hillforts, both situated in Dorset, UK, are examined using a range of imagery dating from the 1940s to 2010. Specialist photogrammetric software SocetGXPÂź is used to extract digital surface models, and the results compared with airborne and terrestrial laser scanning data to assess their accuracy. Global summary statistics and spatial autocorrelation techniques are used to examine error scales and distributions. Extracted earthwork profiles are compared to both current and historical surveys of each study site. The results demonstrate that metric information relating to earthwork form can be successfully obtained from archival photography. In some instances, these data out-perform airborne laser scanning in the provision of digital surface models with minimal error. The role of archival photography in regaining metric data from upstanding archaeology and the consequent place for this approach to impact heritage management strategies is demonstrated

    MODEL PENGELOLAAN PASCA TANGKAP SEBAGAI UPAYA PENGENTASAN KEMISKINAN MASYARAKAT KAMPUNG NELAYAN DI PULAU ENGGANO

    Get PDF
    Relatively little is known about the epidemiology and factors underlying susceptibility to childhood rhabdomyosarcoma (RMS). To better characterize genetic susceptibility to childhood RMS, we evaluated the role of family history of cancer using data from the largest case-control study of RMS and the Utah Population Database (UPDB). RMS cases (n=322) were obtained from the Children's Oncology Group (COG). Population-based controls (n=322) were pair-matched to cases on race, sex, and age. Conditional logistic regression was used to evaluate the association between family history of cancer and childhood RMS. The results were validated using the UPDB, from which 130 RMS cases were identified and matched to controls (n=1300) on sex and year of birth. The results were combined to generate summary odds ratios (ORs) and 95% confidence intervals (CI). Having a first-degree relative with a cancer history was more common in RMS cases than controls (ORs=1.39, 95% CI: 0.97-1.98). Notably, this association was stronger among those with embryonal RMS (ORs=2.44, 95% CI: 1.54-3.86). Moreover, having a first-degree relative who was younger at diagnosis of cancer (&lt;30years) was associated with a greater risk of RMS (ORs=2.37, 95% CI: 1.34-4.18). In the largest analysis of its kind, we found that most children diagnosed with RMS did not have a family history of cancer. However, our results indicate an increased risk of RMS (particularly embryonal RMS) in children who have a first-degree relative with cancer, and among those whose relatives were diagnosed with cancer at &lt;30years of age

    Family history of cancer and childhood rhabdomyosarcoma : a report from the Children's Oncology Group and the Utah Population Database

    No full text
    Relatively little is known about the epidemiology and factors underlying susceptibility to childhood rhabdomyosarcoma (RMS). To better characterize genetic susceptibility to childhood RMS, we evaluated the role of family history of cancer using data from the largest case-control study of RMS and the Utah Population Database (UPDB). RMS cases (n=322) were obtained from the Children's Oncology Group (COG). Population-based controls (n=322) were pair-matched to cases on race, sex, and age. Conditional logistic regression was used to evaluate the association between family history of cancer and childhood RMS. The results were validated using the UPDB, from which 130 RMS cases were identified and matched to controls (n=1300) on sex and year of birth. The results were combined to generate summary odds ratios (ORs) and 95% confidence intervals (CI). Having a first-degree relative with a cancer history was more common in RMS cases than controls (ORs=1.39, 95% CI: 0.97-1.98). Notably, this association was stronger among those with embryonal RMS (ORs=2.44, 95% CI: 1.54-3.86). Moreover, having a first-degree relative who was younger at diagnosis of cancer (&lt;30years) was associated with a greater risk of RMS (ORs=2.37, 95% CI: 1.34-4.18). In the largest analysis of its kind, we found that most children diagnosed with RMS did not have a family history of cancer. However, our results indicate an increased risk of RMS (particularly embryonal RMS) in children who have a first-degree relative with cancer, and among those whose relatives were diagnosed with cancer at &lt;30years of age
    corecore