29 research outputs found

    Interrelation of the CdTe Grain Size, Postgrowth Processing, and Window Layer Selection on Solar Cell Performance.

    Get PDF
    Recent improvements to the CdTe solar cell device structure have focused on replacing the CdS window layer with a more transparent material to reduce parasitic absorption and increase Jsc, as well as incorporating selenium into the absorber layer to achieve a graded band gap. However, altering the CdTe device structure is nontrivial due to the interdependent nature of device processing steps. The choice of the window layer influences the grain structure of the CdTe layer, which in turn can affect the chloride treatment, which itself may contribute to intermixing between the window and absorber layers. This work studies three different device architectures in parallel, allowing for an in-depth comparison of processing conditions for CdTe solar cells grown on CdS, SnO2, and CdSe. Direct replacement of the CdS window layer with a wider band gap SnO2 layer is hindered by poor growth of the absorber, producing highly strained CdTe films and a weak junction. This is alleviated by inserting a CdSe layer between the SnO2 and CdTe, which improves the growth of CdTe and results in a graded CdSexTe1-x absorber layer. For each substrate, the CdTe deposition rate and postgrowth chloride treatment are systematically varied, highlighting the distinct processing requirements of each device structure

    The biogeochemical fate of nickel during microbial ISA degradation; implications for nuclear waste disposal

    Get PDF
    AbstractIntermediate level radioactive waste (ILW) generally contains a heterogeneous range of organic and inorganic materials, of which some are encapsulated in cement. Of particular concern are cellulosic waste items, which will chemically degrade under the conditions predicted during waste disposal, forming significant quantities of isosaccharinic acid (ISA), a strongly chelating ligand. ISA therefore has the potential to increase the mobility of a wide range of radionuclides via complex formation, including Ni-63 and Ni-59. Although ISA is known to be metabolized by anaerobic microorganisms, the biodegradation of metal-ISA complexes remains unexplored. This study investigates the fate of a Ni-ISA complex in Fe(III)-reducing enrichment cultures at neutral pH, representative of a microbial community in the subsurface. After initial sorption of Ni onto Fe(III)oxyhydroxides, microbial ISA biodegradation resulted in &gt;90% removal of the remaining Ni from solution when present at 0.1 mM, whereas higher concentrations of Ni proved toxic. The microbial consortium associated with ISA degradation was dominated by close relatives to Clostridia and Geobacter species. Nickel was preferentially immobilized with trace amounts of biogenic amorphous iron sulfides. This study highlights the potential for microbial activity to help remove chelating agents and radionuclides from the groundwater in the subsurface geosphere surrounding a geodisposal facility.</jats:p

    Microbial Degradation of Citric Acid in Low Level Radioactive Waste Disposal: Impact on Biomineralization Reactions

    Get PDF
    From Frontiers via Jisc Publications RouterHistory: received 2020-11-20, collection 2021, accepted 2021-03-10, epub 2021-04-28Publication status: PublishedOrganic complexants are present in some radioactive wastes and can challenge waste disposal as they may enhance subsurface mobility of radionuclides and contaminant species via chelation. The principal sources of organic complexing agents in low level radioactive wastes (LLW) originate from chemical decontamination activities. Polycarboxylic organic decontaminants such as citric and oxalic acid are of interest as currently there is a paucity of data on their biodegradation at high pH and under disposal conditions. This work explores the biogeochemical fate of citric acid, a model decontaminant, under high pH anaerobic conditions relevant to disposal of LLW in cementitious disposal environments. Anaerobic microcosm experiments were set up, using a high pH adapted microbial inoculum from a well characterized environmental site, to explore biodegradation of citrate under representative repository conditions. Experiments were initiated at three different pH values (10, 11, and 12) and citrate was supplied as the electron donor and carbon source, under fermentative, nitrate-, Fe(III)- and sulfate- reducing conditions. Results showed that citrate was oxidized using nitrate or Fe(III) as the electron acceptor at > pH 11. Citrate was fully degraded and removed from solution in the nitrate reducing system at pH 10 and pH 11. Here, the microcosm pH decreased as protons were generated during citrate oxidation. In the Fe(III)-reducing systems, the citrate removal rate was slower than in the nitrate reducing systems. This was presumably as Fe(III)-reduction consumes fewer moles of citrate than nitrate reduction for the same molar concentrations of electron acceptor. The pH did not change significantly in the Fe(III)-reducing systems. Sulfate reduction only occurred in a single microcosm at pH 10. Here, citrate was fully removed from solution, alongside ingrowth of acetate and formate, likely fermentation products. The acetate and lactate were subsequently used as electron donors during sulfate-reduction and there was an associated decrease in solution pH. Interestingly, in the Fe(III) reducing experiments, Fe(II) ingrowth was observed at pH values recorded up to 11.7. Here, TEM analysis of the resultant solid Fe-phase indicated that nanocrystalline magnetite formed as an end product of Fe(III)-reduction under these extreme conditions. PCR-based high-throughput 16S rRNA gene sequencing revealed that bacteria capable of nitrate Fe(III) and sulfate reduction became enriched in the relevant, biologically active systems. In addition, some fermentative organisms were identified in the Fe(III)- and sulfate-reducing systems. The microbial communities present were consistent with expectations based on the geochemical data. These results are important to improve long-term environmental safety case development for cementitious LLW waste disposal

    Microbial Reduction of Natural Fe(III) Minerals; Toward the Sustainable Production of Functional Magnetic Nanoparticles

    Get PDF
    The microbial synthesis of biominerals offers a potentially sustainable green solution for the production of a wide range of industrially relevant functional nanomaterials. Metal-reducing bacteria are of particular relevance, as they can enzymatically reduce a wide spectrum of high oxidation state metals and metalloids, forming cell-templated nanomagnets, catalysts, remediation agents, and quantum dots. Although these bioprocesses have been shown to be both scalable and tunable (with respect to particle size, reactivity, magnetic properties, and light emitting properties), they have yet to be taken up by industry. Here, we show that naturally abundant Fe(III) minerals are appropriate raw materials for the production of magnetic Fe(II)-bearing nanoparticles by the subsurface bacterium Geobacter sulfurreducens, and these bionanomaterials have the potential for remediation applications–here confirmed by the efficient reduction of toxic, mobile Cr(VI) to less toxic and soluble Cr(III). Detailed molecular-scale characterization of the bioreduced nanominerals, alongside life cycle assessments, and life cycle costings, confirm the efficient production of highly reactive and magnetic nanomaterials from waste materials. This adds further weight to the adoption of microbial technologies for sustainable, functional nanomaterials in a circular economy

    Anaerobic biodegradation of citric acid in the presence of Ni and U at alkaline pH; impact on metal fate and speciation

    Get PDF
    Biodegradation of citrate occurred under LLW repository relevant conditions with Ni and U present. Citrate biodegradation led to the formation of insoluble Ni sulfides or nanocrystalline U(iv)–phosphate and may promote Ni/U retention in LLW repositories.</jats:p

    Investigating Nanoscale Electron Transfer Processes at the Cell-Mineral Interface in Cobalt-Doped Ferrihydrite Using Geobacter sulfurreducens: A Multi-Technique Approach

    Get PDF
    This is the final version. Available from Frontiers Media via the DOI in this record.DATA AVAILABILITY STATEMENT: The raw data supporting the conclusion of this article will be made available by the authors, without undue reservation.Cobalt is an essential element for life and plays a crucial role in supporting the drive to clean energy, due to its importance in rechargeable batteries. Co is often associated with Fe in the environment, but the fate of Co in Fe-rich biogeochemically-active environments is poorly understood. To address this, synchrotron-based scanning X-ray microscopy (SXM) was used investigate the behaviour of cobalt at the nanoscale in Co-Fe(III)-oxyhydroxides undergoing microbial reduction. SXM can assess spatial changes in metal speciation and organic compounds helping to elucidate the electron transfer processes occurring at the cell-mineral interface and inform on the fate of cobalt in redox horizons. G. sulfurreducens was used to reduce synthetic Co-ferrihydrite as an analogue of natural cobalt-iron-oxides. Magnetite [Fe(II)/Fe(III)3O4] production was confirmed by powder X-ray diffraction (XRD), SXM and X-ray magnetic circular dichroism (XMCD) data, where best fits of the latter suggested Co-bearing magnetite. Macro-scale XAS techniques suggested Co(III) reduction occurred and complementary SXM at the nanoscale, coupled with imaging, found localised biogenic Co(III) reduction at the cell-mineral interface via direct contact with outer membrane cytochromes. No discernible localised changes in Fe speciation were detected in the reordered cobalt-iron-oxides that were formed and at the end point of the experiment only 11% Co and 1.5% Fe had been solubilised. The solid phase retention, alongside the highly localised and preferential cobalt bioreduction observed at the nanoscale is consistent with retention of Co in redox zones. This work improves our fundamental molecular-scale understanding of the fate of Co in complex environmental systems and supports the development of biogenic Co-doped magnetite for industrial applications from drug delivery systems to magnetic recording media.Natural Environment Research CouncilEPSRC studentshi

    Structure-property relations in CaTiO₃ based microwave dielectric resonators

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Copper bioreduction and nanoparticle synthesis by an enrichment culture from a former copper mine.

    Get PDF
    Microorganisms can facilitate the reduction of Cu2+ , altering its speciation and mobility in environmental systems and producing Cu-based nanoparticles with useful catalytic properties. However, only a few model organisms have been studied in relation to Cu2+ bioreduction and little work has been carried out on microbes from Cu-contaminated environments. This study aimed to enrich for Cu-resistant microbes from a Cu-contaminated soil and explore their potential to facilitate Cu2+ reduction and biomineralisation from solution. We show that an enrichment grown in a Cu-amended medium, dominated by species closely related to Geothrix fermentans, Azospira restricta and Cellulomonas oligotrophica, can reduce Cu2+ with subsequent precipitation of Cu nanoparticles. Characterisation of the nanoparticles with (scanning) transmission electron microscopy, energy-dispersive x-ray spectroscopy and electron energy loss spectroscopy supports the presence of both metallic Cu(0) and S-rich Cu(I) nanoparticles. This study provides new insights into the diversity of microorganisms capable of facilitating copper reduction and highlights the potential for the formation of distinct nanoparticle phases resulting from bioreduction or biomineralisation reactions. The implications of these findings for the biogeochemical cycling of copper and the potential biotechnological synthesis of commercially useful copper nanoparticles are discussed
    corecore