928 research outputs found

    Earning a Crust? A review of labour trends in UK food manufacturing

    Get PDF
    This Briefing Paper provides a detailed overview on jobs and labour markets in the UK food sector and focuses on food manufacturing. It identifies recent and longer-standing labour market trends that impact the UK workforce more generally but finds that in food manufacturing some of these are more pronounced. It also shows how the sector is being squeezed by the twin challenges of a potential labour shortage if the supply of EU migrants dries up after Brexit and the need to recruit up to 140,000 new workers by 2024. The authors recommend a new collaborative approach that takes into account local and regional employment needs which encompasses smaller and medium-sized companies, that comprise the majority of food businesses and develops workers with the skills to innovate for a more sustainable and healthier food supply

    Scientists as Midwives to Cluster Emergence: An Institutional Work Framework

    Get PDF
    The question of how embedded actors can create institutions that support cluster emergence remains unsolved in the cluster and national innovation systems literature. The present paper extends the recent literature on institutional entrepreneurship and institutional work to solve this paradox of embedded agency in the context of science-based clusters. Building on a longitudinal single case study of a functional foods cluster in Finland, we present an institutional work framework for cluster formation. We argue that, in addition to ideational, material and bridging work, authentic leadership work is critical for cluster emergence. The results of the study highlight the opportunities that scientists have to act as midwives to cluster formation, but they also show that well-functioning clusters need a broader support base.Peer reviewe

    Localisation of RNAs into the germ plasm of vitellogenic xenopus oocytes

    Get PDF
    We have studied the localisation of mRNAs in full-grown Xenopus laevis oocytes by injecting fluorescent RNAs, followed by confocal microscopy of the oocyte cortex. Concentrating on RNA encoding the Xenopus Nanos homologue, nanos1 (formerly Xcat2), we find that it consistently localised into aggregated germ plasm ribonucleoprotein (RNP) particles, independently of cytoskeletal integrity. This implies that a diffusion/entrapment-mediated mechanism is active, as previously reported for previtellogenic oocytes. Sometimes this was accompanied by localisation into scattered particles of the “late”, Vg1/VegT pathway; occasionally only late pathway localisation was seen. The Xpat RNA behaved in an identical fashion and for neither RNA was the localisation changed by any culture conditions tested. The identity of the labelled RNP aggregates as definitive germ plasm was confirmed by their inclusion of abundant mitochondria and co-localisation with the germ plasm protein Hermes. Further, the nanos1/Hermes RNP particles are interspersed with those containing the germ plasm protein Xpat. These aggregates may be followed into the germ plasm of unfertilized eggs, but with a notable reduction in its quantity, both in terms of injected molecules and endogenous structures. Our results conflict with previous reports that there is no RNA localisation in large oocytes, and that during mid-oogenesis even germ plasm RNAs localise exclusively by the late pathway. We find that in mid oogenesis nanos1 RNA also localises to germ plasm but also by the late pathway. Late pathway RNAs, Vg1 and VegT, also may localise into germ plasm. Our results support the view that mechanistically the two modes of localisation are extremely similar, and that in an injection experiment RNAs might utilise either pathway, the distinction in fates being very subtle and subject to variation. We discuss these results in relation to their biological significance and the results of others

    Radiation Hardness of Perovskite Solar Cells Based on Aluminum‐Doped Zinc Oxide Electrode Under Proton Irradiation

    Get PDF
    Due to their high specific power and potential to save both weight and stow volume, perovskite solar cells have gained increasing interest to be used for space applications. However, before they can be deployed into space, their resistance to ionizing radiations such as high‐energy protons must be demonstrated. In this report, we investigate the effect of 150 keV protons on the performance of perovskite solar cells based on aluminium‐doped zinc oxide (AZO) transparent conducting oxide (TCO). Record power conversion efficiency of 15% and 13.6% were obtained for cells based on AZO under AM1.5G and AM0 illumination, respectively. We demonstrate that perovskite solar cells can withstand proton irradiation up to 1013 protons.cm−2 without significant loss in efficiency. At this irradiation dose, Si or GaAs solar cells would be completely or severely degraded when exposed to 150 keV protons. From 1014 protons.cm−2, a decrease in short‐circuit current of the perovskite cells is observed, which is consistent with interfacial degradation due to deterioration of the Spiro‐OMeTAD HTL during proton irradiation. Using a combination of non‐destructive characterization techniques, results suggest that the structural and optical properties of perovskite remain intact up to high fluence levels. Although shallow trap states are induced by proton irradiation in perovskite bulk at low fluence levels, they can release charges efficiently and are not detrimental to the cell's performance. This work highlights the potential of perovskite solar cells based on AZO TCO to be used for space applications and give a deeper understanding of interfacial degradation due to proton irradiation

    The evaluation of exposure risks for natural transmission of scrapie within an infected flock

    Get PDF
    Background: Although the epidemiology of scrapie has been broadly understood for many years, attempts to introduce voluntary or compulsory controls to eradicate the disease have frequently failed. Lack of precision in defining the risk factors on farm has been one of the challenges to designing control strategies. This study attempted to define which parts of the annual flock management cycle represented the greatest risk of infection to naive lambs exposed to the farm environment at different times.Results: In VRQ/VRQ lambs exposed to infected sheep at pasture or during lambing, and exposed to the buildings in which lambing took place, the attack rate was high and survival times were short. Where exposure was to pasture alone the number of sheep affected in each experimental group was reduced, and survival times were longer and related to length of exposure.Conclusion: At the flock level, eradication and control strategies for scrapie must take into account the need to decontaminate buildings used for lambing, and to reduce (or prevent) the exposure of lambs to infected sheep, especially in the later stages of incubation, and at lambing. The potential for environmental contamination from pasture should also be considered. Genotype selection may still prove to be the only viable tool to prevent infection from contaminated pasture, reduce environmental contamination and limit direct transmission from sheep to sheep

    Protein interactions in Xenopus germ plasm RNP particles

    Get PDF
    Hermes is an RNA-binding protein that we have previously reported to be found in the ribonucleoprotein (RNP) particles of Xenopus germ plasm, where it is associated with various RNAs, including that encoding the germ line determinant Nanos1. To further define the composition of these RNPs, we performed a screen for Hermes-binding partners using the yeast two-hybrid system. We have identified and validated four proteins that interact with Hermes in germ plasm: two isoforms of Xvelo1 (a homologue of zebrafish Bucky ball) and Rbm24b and Rbm42b, both RNA-binding proteins containing the RRM motif. GFP-Xvelo fusion proteins and their endogenous counterparts, identified with antisera, were found to localize with Hermes in the germ plasm particles of large oocytes and eggs. Only the larger Xvelo isoform was naturally found in the Balbiani body of previtellogenic oocytes. Bimolecular fluorescence complementation (BiFC) experiments confirmed that Hermes and the Xvelo variants interact in germ plasm, as do Rbm24b and 42b. Depletion of the shorter Xvelo variant with antisense oligonucleotides caused a decrease in the size of germ plasm aggregates and loosening of associated mitochondria from these structures. This suggests that the short Xvelo variant, or less likely its RNA, has a role in organizing and maintaining the integrity of germ plasm in Xenopus oocytes. While GFP fusion proteins for Rbm24b and 42b did not localize into germ plasm as specifically as Hermes or Xvelo, BiFC analysis indicated that both interact with Hermes in germ plasm RNPs. They are very stable in the face of RNA depletion, but additive effects of combinations of antisense oligos suggest they may have a role in germ plasm structure and may influence the ability of Hermes protein to effectively enter RNP particles

    Cdc42 promotes transendothelial migration of cancer cells through β1 integrin.

    Get PDF
    Cancer cells interact with endothelial cells during the process of metastatic spreading. Here, we use a small interfering RNA screen targeting Rho GTPases in cancer cells to identify Cdc42 as a critical regulator of cancer cell-endothelial cell interactions and transendothelial migration. We find that Cdc42 regulates β1 integrin expression at the transcriptional level via the transcription factor serum response factor (SRF). β1 integrin is the main target for Cdc42-mediating interaction of cancer cells with endothelial cells and the underlying extracellular matrix, as exogenous β1 integrin expression was sufficient to rescue the Cdc42-silencing phenotype. We show that Cdc42 was required in vivo for cancer cell spreading and protrusion extension along blood vessels and retention in the lungs. Interestingly, transient Cdc42 depletion was sufficient to decrease experimental lung metastases, which suggests that its role in endothelial attachment is important for metastasis. By identifying β1 integrin as a transcriptional target of Cdc42, our results provide new insight into Cdc42 function
    corecore