57 research outputs found

    Structures of Two Melanoma-Associated Antigens Suggest Allosteric Regulation of Effector Binding

    Get PDF
    The MAGE (melanoma associated antigen) protein family are tumour-associated proteins normally present only in reproductive tissues such as germ cells of the testis. The human genome encodes over 60 MAGE genes of which one class (containing MAGE-A3 and MAGE-A4) are exclusively expressed in tumours, making them an attractive target for the development of targeted and immunotherapeutic cancer treatments. Some MAGE proteins are thought to play an active role in driving cancer, modulating the activity of E3 ubiquitin ligases on targets related to apoptosis. Here we determined the crystal structures of MAGE- A3 and MAGE-A4. Both proteins crystallized with a terminal peptide bound in a deep cleft between two tandem-arranged winged helix domains. MAGE-A3 (but not MAGE-A4), is pre- dominantly dimeric in solution. Comparison of MAGE-A3 and MAGE-A3 with a structure of an effector-bound MAGE-G1 suggests that a major conformational rearrangement is required for binding, and that this conformational plasticity may be targeted by allosteric binders

    Multi-omic analysis of the tumor microenvironment shows clinical correlations in Ph1 study of atezolizumab +/- SoC in MM

    Get PDF
    Multiple myeloma (MM) remains incurable, and treatment of relapsed/refractory (R/R) disease is challenging. There is an unmet need for more targeted therapies in this setting; deep cellular and molecular phenotyping of the tumor and microenvironment in MM could help guide such therapies. This phase 1b study (NCT02431208) evaluated the safety and efficacy of the anti-programmed death-ligand 1 monoclonal antibody atezolizumab (Atezo) alone or in combination with the standard of care (SoC) treatments lenalidomide (Len) or pomalidomide (Pom) and/or daratumumab (Dara) in patients with R/R MM. Study endpoints included incidence of adverse events (AEs) and overall response rate (ORR). A novel unsupervised integrative multi-omic analysis was performed using RNA sequencing, mass cytometry immunophenotyping, and proteomic profiling of baseline and on-treatment bone marrow samples from patients receiving Atezo monotherapy or Atezo+Dara. A similarity network fusion (SNF) algorithm was applied to preprocessed data. Eighty-five patients were enrolled. Treatment-emergent deaths occurred in 2 patients; both deaths were considered unrelated to study treatment. ORRs ranged from 11.1% (Atezo+Len cohorts, n=18) to 83.3% (Atezo+Dara+Pom cohort, n=6). High-dimensional multi-omic profiling of the tumor microenvironment and integrative SNF analysis revealed novel correlations between cellular and molecular features of the tumor and immune microenvironment, patient selection criteria, and clinical outcome. Atezo monotherapy and SoC combinations were safe in this patient population and demonstrated some evidence of clinical efficacy. Integrative analysis of high dimensional genomics and immune data identified novel clinical correlations that may inform patient selection criteria and outcome assessment in future immunotherapy studies for myeloma

    Classification of bicovariant differential calculi on the Jordanian quantum groups GL_{g,h}(2) and SL_{h}(2) and quantum Lie algebras

    Full text link
    We classify all 4-dimensional first order bicovariant calculi on the Jordanian quantum group GL_{h,g}(2) and all 3-dimensional first order bicovariant calculi on the Jordanian quantum group SL_{h}(2). In both cases we assume that the bicovariant bimodules are generated as left modules by the differentials of the quantum group generators. It is found that there are 3 1-parameter families of 4-dimensional bicovariant first order calculi on GL_{h,g}(2) and that there is a single, unique, 3-dimensional bicovariant calculus on SL_{h}(2). This 3-dimensional calculus may be obtained through a classical-like reduction from any one of the three families of 4-dimensional calculi on GL_{h,g}(2). Details of the higher order calculi and also the quantum Lie algebras are presented for all calculi. The quantum Lie algebra obtained from the bicovariant calculus on SL_{h}(2) is shown to be isomorphic to the quantum Lie algebra we obtain as an ad-submodule within the Jordanian universal enveloping algebra U_{h}(sl(2)) and also through a consideration of the decomposition of the tensor product of two copies of the deformed adjoint module. We also obtain the quantum Killing form for this quantum Lie algebra.Comment: 33 pages, AMSLaTeX, misleading remark remove

    A 6.5-kb intergenic structural variation enhances P450-mediated resistance to pyrethroids in malaria vectors lowering bed net efficacy

    Get PDF
    Elucidating the complex evolutionary armory that mosquitoes deploy against insecticides is crucial to maintain the effectiveness of insecticide‐based interventions. Here, we deciphered the role of a 6.5‐kb structural variation (SV) in driving cytochrome P450‐mediated pyrethroid resistance in the malaria vector, Anopheles funestus. Whole‐genome pooled sequencing detected an intergenic 6.5‐kb SV between duplicated CYP6P9a/b P450s in pyrethroid‐resistant mosquitoes through a translocation event. Promoter analysis revealed a 17.5‐fold higher activity (p < .0001) for the SV− carrying fragment than the SV− free one. Quantitative real‐time PCR expression profiling of CYP6P9a/b for each SV genotype supported its role as an enhancer because SV+/SV+ homozygote mosquitoes had a significantly greater expression for both genes than heterozygotes SV+/SV− (1.7‐ to 2‐fold) and homozygotes SV−/SV− (4‐to 5‐fold). Designing a PCR assay revealed a strong association between this SV and pyrethroid resistance (SV+/SV+ vs. SV−/SV−; odds ratio [OR] = 2,079.4, p < .001). The 6.5‐kb SV is present at high frequency in southern Africa (80%–100%) but absent in East/Central/West Africa. Experimental hut trials revealed that homozygote SV mosquitoes had a significantly greater chance to survive exposure to pyrethroid‐treated nets (OR 27.7; p < .0001) and to blood feed than susceptible mosquitoes. Furthermore, mosquitoes homozygote‐resistant at the three loci (SV+/CYP6P9a_R/CYP6P9b_R) exhibited a higher resistance level, leading to a far superior ability to survive exposure to nets than those homozygotes susceptible at the three loci, revealing a strong additive effect. This study highlights the important role of structural variations in the development of insecticide resistance in malaria vectors and their detrimental impact on the effectiveness of pyrethroid‐based nets

    Comparisons between MAGE-G1 and MAGE-A3/A4.

    No full text
    <p><b>(A)</b> Comparison of the relative conformations of WH1 and WH2 in the MAGE-G1 structure (open form) and in the MAGE-A3/A4 structures (closed form, shown as semi-transparent cartoons), the original connectivity is shown on the left and the re-refined on the right hand side. <b>(B)</b> Superposition of the MAGE-A3 (orange), MAGE-A4 (green) and MAGE-G1 (pink) structures on the basis of the individual WH1 and WH2 domains.</p

    Re-analysis of the MAGE-G1 NSE1 model.

    No full text
    <p><b>(A)</b> View of the original (red ribbon) and alternate (black ribbon) choices around the crystallographic symmetry axis (shown as green lines). A single NSE-1 is shown as grey spheres. <b>(B)</b> Electron density maps in the region connecting WH1 and WH2. The 2F<sub>o</sub>-1F<sub>c</sub> (blue) and F<sub>o</sub>-F<sub>c</sub> (green) electron density maps (calculated with all atoms between 161 and 171 omitted from the model) are shown contoured at 0.9 σ and 2.4 σ respectively with the domains coloured as for panel A. <b>(C)</b> Comparison of the interfaces between the original (semi-transparent cartoon) and alternative (opaque cartoon) MAGE-G1 models and NSE-1 (shown in the surface representation). The insert shows a detailed view of the additional interface in the alternate model with interacting residues labelled and shown in the stick format and polar contacts shown as dashed lines. <b>(D)</b> Possible MAGE-G1 NSE-1 hetero-tetramer found in the MAGE-G1 NSE-1 crystallographic asymmetric unit with the two MAGE-G1 monomers (shown in green and blue) topologically interlinked.</p

    Analysis of MAGE-A4 in solution.

    No full text
    <p><b>(A)</b> Gel filtration profiles of MAGE-A4 constructs with and without the N-terminal His tag, in the presence and absence of galactose. The elution volumes of size standards used for calibration are marked with black arrows. The inset shows a typical SDS PAGE gel of MAGE-A4 which shows two bands of approximately 25 and 45 kDa connected by a smear. <b>(B)</b> Analytical ultracentrifugation of cleaved MAGE-A4. The raw absorbance data plotted as a function of radius and time is shown in the top panel, the centre panel shows the distribution of residuals from the fit of the diffusion deconvoluted continuous distribution c(s) model, and the bottom panel shows the distribution of sedimentation coefficient values from the data fit.</p
    • …
    corecore