5,170 research outputs found

    Parliamentary web presence: a comparative review

    Get PDF
    Parliamentary web presence is seen as a tool designed to buttress a range of key parliamentary functions operating within an overarching democratic framework. Many governments have embarked upon ambitious e-government programmes in the hope of increasing participation. However, there is now a growing realisation that e-government strategies have not achieved the hoped-for success and there is an increasing body of research concerned with analysing these problems. This paper seeks to add to this body of research and draws upon insights provided by usability studies developed to provide an analysis of various parliament websites. It also compares how parliaments of several countries use ICT to increase transparency and to facilitate participation of citizens. As such it is the first of its kind to undertake work of this nature. The paper concludes by arguing for a usability framework for analysing the effectiveness of e-parliaments. This could be used by e-government web designers and architects alike to identify weaknesses, within a specific area, of both the form and content of their parliament and other e-government websites

    Quantum Monte Carlo calculations of H2_2 dissociation on Si(001)

    Get PDF
    We present quantum Monte Carlo calculations for various reaction pathways of H2_2 with Si(001), using large model clusters of the surface. We obtain reaction energies and energy barriers noticeably higher than those from approximate exchange-correlation functionals. In improvement over previous studies, our adsorption barriers closely agree with experimental data. For desorption, the calculations give barriers for conventional pathways in excess of the presently accepted experimental value, and pinpoint the role of coverage effects and desorption from steps.Comment: 4 pages, 1 figur

    Comment on ``Nonuniversal Exponents in Interface Growth''

    Full text link
    Recently, Newman and Swift[T. J. Newman and M. R. Swift, Phys. Rev. Lett. {\bf 79}, 2261 (1997)] made an interesting suggestion that the strong-coupling exponents of the Kardar-Parisi-Zhang (KPZ) equation may not be universal, but rather depend on the precise form of the noise distribution. We show here that the decrease of surface roughness exponents they observed can be attributed to a percolative effect

    A molecular theory for two-photon and three-photon fluorescence polarization

    Get PDF
    In the analysis of molecular structure and local order in heterogeneous samples, multiphoton excitation of fluorescence affords chemically specific information and high-resolution imaging. This report presents the results of an investigation that secures a detailed theoretical representation of the fluorescence polarization produced by one-, two-, and three-photon excitations, with orientational averaging procedures being deployed to deliver the fully disordered limits. The equations determining multiphoton fluorescence response prove to be expressible in a relatively simple, generic form, and graphs exhibit the functional form of the multiphoton fluorescence polarization. Amongst other features, the results lead to the identification of a condition under which the fluorescence produced through the concerted absorption of any number of photons becomes completely unpolarized. It is also shown that the angular variation of fluorescence intensities is reliable indicator of orientational disorder

    Probability distribution of the free energy of a directed polymer in a random medium

    Full text link
    We calculate exactly the first cumulants of the free energy of a directed polymer in a random medium for the geometry of a cylinder. By using the fact that the n-th moment of the partition function is given by the ground state energy of a quantum problem of n interacting particles on a ring of length L, we write an integral equation allowing to expand these moments in powers of the strength of the disorder gamma or in powers of n. For n small and n of order (L gamma)^(-1/2), the moments take a scaling form which allows to describe all the fluctuations of order 1/L of the free energy per unit length of the directed polymer. The distribution of these fluctuations is the same as the one found recently in the asymmetric exclusion process, indicating that it is characteristic of all the systems described by the Kardar-Parisi-Zhang equation in 1+1 dimensions.Comment: 18 pages, no figure, tu appear in PRE 61 (2000

    Efficiency and Stability Issues in the Numerical Computation of Fourier Transforms and Convolutions on the 2-Sphere

    Get PDF
    Earlier work by Driscoll and Healy has produced an efficient algorithm for computing the Fourier transform of band-limited functions on the sphere. In this paper we present a greatly improved inverse transform, and consequent improved convolution algorithm for such functions. We also discuss implementational considerations and give heuristics for allowing reliable floating point implementations of a slightly modified algorithm at little cost in either theoretical or actual performance. This discussion is supplemented with numerical experiments from our implementation in C on a DecStation 5000. These results give strong indications that the algorithm is both reliable and efficient for a large range of useful problem sizes

    Soluble Infinite-Range Model of Kinetic Roughening

    Full text link
    A modified Kardar-Parisi-Zhang (KPZ) equation is introduced, and solved exactly in the infinite-range limit. In the low-noise limit the system exhibits a weak-to-strong coupling transition, rounded for non-zero noise, as a function of the KPZ non-linearity. The strong-coupling regime is characterised by a double-peaked height distribution in the stationary state. The nonstationary dynamics is quite different from that of the stationary state.Comment: 13 pages, revtex, 1 postscript figur

    Directed polymers and interfaces in random media : free-energy optimization via confinement in a wandering tube

    Full text link
    We analyze, via Imry-Ma scaling arguments, the strong disorder phases that exist in low dimensions at all temperatures for directed polymers and interfaces in random media. For the uncorrelated Gaussian disorder, we obtain that the optimal strategy for the polymer in dimension 1+d1+d with 0<d<20<d<2 involves at the same time (i) a confinement in a favorable tube of radius RS∼LνSR_S \sim L^{\nu_S} with νS=1/(4−d)<1/2\nu_S=1/(4-d)<1/2 (ii) a superdiffusive behavior R∼LνR \sim L^{\nu} with ν=(3−d)/(4−d)>1/2\nu=(3-d)/(4-d)>1/2 for the wandering of the best favorable tube available. The corresponding free-energy then scales as F∼LωF \sim L^{\omega} with ω=2ν−1\omega=2 \nu-1 and the left tail of the probability distribution involves a stretched exponential of exponent η=(4−d)/2\eta= (4-d)/2. These results generalize the well known exact exponents ν=2/3\nu=2/3, ω=1/3\omega=1/3 and η=3/2\eta=3/2 in d=1d=1, where the subleading transverse length RS∼L1/3R_S \sim L^{1/3} is known as the typical distance between two replicas in the Bethe Ansatz wave function. We then extend our approach to correlated disorder in transverse directions with exponent α\alpha and/or to manifolds in dimension D+d=dtD+d=d_{t} with 0<D<20<D<2. The strategy of being both confined and superdiffusive is still optimal for decaying correlations (α<0\alpha<0), whereas it is not for growing correlations (α>0\alpha>0). In particular, for an interface of dimension (dt−1)(d_t-1) in a space of total dimension 5/3<dt<35/3<d_t<3 with random-bond disorder, our approach yields the confinement exponent νS=(dt−1)(3−dt)/(5dt−7)\nu_S = (d_t-1)(3-d_t)/(5d_t-7). Finally, we study the exponents in the presence of an algebraic tail 1/V1+μ1/V^{1+\mu} in the disorder distribution, and obtain various regimes in the (μ,d)(\mu,d) plane.Comment: 19 page
    • …
    corecore