161 research outputs found

    Nest building, the forgotten behaviour

    Get PDF
    We thank the BBSRC (BB/I019502/1, SDH; Anniversary Future Leader Fellowship 163 BB/M013944/1, LMG) for funding.In the last decade tool manufacture in birds has transformed the landscape of animal cognition. As tool manufacture, however, is rare and practised by species that are not commonplace it is not a particularly useful model for investigating the evolution of physical cognition. On the basis of recent evidence, we argue that nest building, which bears considerable phenotypic resemblance to tool making, is more useful for examining not only the role that cognition may play in construction behaviours, but also the neural underpinning of those behaviours and, ultimately their evolution. We substantiate our view with recent evidence that building by birds involves changes in dexterity, is experience-dependent and involves activity in, at least, motor, reward and social network brain regions as well as in the cerebellum.PostprintPeer reviewe

    Social learning in nest-building birds watching live-streaming video demonstrators

    Get PDF
    Determining the role that social learning plays in construction behaviors, such as nest building or tool manufacture, could be improved if more experimental control could be gained over the exact public information that is provided by the demonstrator, to the observing individual. Using video playback allows the experimenter to choose what information is provided but will only be useful in determining the role of social learning if observers attend to, and learn from, videos in a manner that is similar to live demonstration. The goal of the current experiment was to test whether live‐streamed video presentations of nest building by zebra finches Taeniopygia guttata would lead observers to copy the material choice demonstrated to them. Here, males that had not previously built a nest were given an initial preference test between materials of 2 colors. Those observers then watched live‐stream footage of a familiar demonstrator building a nest with material of the color that the observer did not prefer. After this experience, observers were given the chance to build a nest with materials of the 2 colors. Although two‐thirds of the observer males preferred material of the demonstrated color after viewing the demonstrator build a nest with material of that color more than they had previously, their preference for the demonstrated material was not as strong as that of observers that had viewed live demonstrator builders in a previous experiment. Our results suggest researchers should proceed with caution before using video demonstration in tests of social learning.PostprintPeer reviewe

    What can nest-building birds teach us?

    Get PDF
    We thank the School of Biology at the University of St Andrews for funding (AJB) and the BBSRC (LMG: BB/M013944/1 and SDH: BB/I019634/1).For many years nest building in birds has been considered a remarkable behaviour. Perhaps just as remarkable is the public and scholarly consensus that bird nests are achieved by instinct alone. Here we take the opportunity to review nearly 150 years of observational and experimental data on avian nest building. As a result we find that instinct-alone is insufficient to explain the data: birds use information they gather themselves and from other individuals to make nest-building decisions. Importantly, these data confirm that learning plays a significant role in a variety of nest-building decisions. We outline, then, the multiplicity of ways in which learning (e.g., imprinting, associative learning, social learning) might act to affect nest building and how these might help to explain the diversity both of nest-building behaviour and in the resulting structure. As a consequence, we contend that nest building is a much under-investigated behaviour that holds promise both for determining a variety of roles for learning in that behaviour as well as a new model system for examining brain-behaviour relationships.Publisher PDFPeer reviewe

    Effects of landmark distance and stability on accuracy of reward relocation

    Get PDF
    This work was supported by the University of St Andrews, the University of Lethbridge and the Natural Sciences and Engineering Council of Canada.Although small-scale navigation is well studied in a wide range of species, much of what is known about landmark use by vertebrates is based on laboratory experiments. To investigate how vertebrates in the wild use landmarks, we trained wild male rufous hummingbirds to feed from a flower that was placed in a constant spatial relationship with two artificial landmarks. In the first experiment, the landmarks and flower were 0.25, 0.5 or 1 m apart and we always moved them 3–4 m after each visit by the bird. In the second experiment, the landmarks and flower were always 0.25 m apart and we moved them either 1 or 0.25 m between trials. In tests, in which we removed the flower, the hummingbirds stopped closer to the predicted flower location when the landmarks had been closer to the flower during training. However, while the distance that the birds stopped from the landmarks and predicted flower location was unaffected by the distance that the landmarks moved between trials, the birds directed their search nearer to the predicted direction of the flower, relative to the landmarks, when the landmarks and flower were more stable in the environment. In the field, then, landmarks alone were sufficient for the birds to determine the distance of a reward but not its direction.PostprintPostprintPeer reviewe

    Social learning in nest-building birds : a role for familiarity

    Get PDF
    © 2016 The Author(s).It is becoming apparent that birds learn from their own experiences of nest building. What is not clear is whether birds can learn from watching conspecifics build. As social learning allows an animal to gain information without engaging in costly trial-and-error learning, first-time builders should exploit the successful habits of experienced builders. We presented first-time nest-building male zebra finches with either a familiar or an unfamiliar conspecific male building with material of a colour the observer did not like. When given the opportunity to build, males that had watched a familiar male build switched their material preference to that used by the familiar male. Males that observed unfamiliar birds did not. Thus, first-time nest builders use social information and copy the nest material choices when demonstrators are familiar but not when they are strangers. The relationships between individuals therefore influences how nest-building expertise is socially transmitted in zebra finches.Publisher PDFPeer reviewe

    Social learning in nest-building birds : a role for familiarity

    Get PDF
    © 2016 The Author(s).It is becoming apparent that birds learn from their own experiences of nest building. What is not clear is whether birds can learn from watching conspecifics build. As social learning allows an animal to gain information without engaging in costly trial-and-error learning, first-time builders should exploit the successful habits of experienced builders. We presented first-time nest-building male zebra finches with either a familiar or an unfamiliar conspecific male building with material of a colour the observer did not like. When given the opportunity to build, males that had watched a familiar male build switched their material preference to that used by the familiar male. Males that observed unfamiliar birds did not. Thus, first-time nest builders use social information and copy the nest material choices when demonstrators are familiar but not when they are strangers. The relationships between individuals therefore influences how nest-building expertise is socially transmitted in zebra finches.Publisher PDFPeer reviewe

    Sex differences in performance on a cognitive bias task in Norway rats

    Get PDF
    This research was supported by summer vacation scholarships from the Carnegie Trust (S.M.) and Experimental Psychology Society (P.C.).Cognitive biases, which are defined as distortions in cognitive processes that are influenced by a background emotional state, can provide information about an individual’s affective state. For instance, negative cognitive biases, where individuals assess ambiguous situations as unrewarding, are commonly found in humans suffering from anxiety disorders. Cognitive biases are also increasingly used as indicators of affective state in animals. As it is not clear whether female and male animals differ in performance on cognitive bias tasks, we used a spatial location task to examine cognitive bias in female and male adult Norway rats (Rattus norvegicus). We trained the rats to distinguish between reward and unrewarded locations, and then provided food pots at ambiguous, intermediate positions. We found that, during testing, females were slowest to approach the unrewarded location, while they approached ambiguous and rewarded locations similarly quickly. In contrast, the males approached all locations quickly. This sex difference is consistent with previous evidence that male rats are quicker than females to extinguish previously learned associations. Cognitive bias tasks could therefore be used to examine sex differences in learning strategies, as well as providing opportunities to test predictions about sex differences in welfare requirements.PostprintPeer reviewe

    Wild rufous hummingbirds use local landmarks to return to rewarded locations

    Get PDF
    This work was supported by the University of St Andrews, the University of Lethbridge and the Natural Sciences and Engineering Council of Canada.Animals may remember an important location with reference to one or more visual landmarks. In the laboratory, birds and mammals often preferentially use landmarks near a goal (“local landmarks”) to return to that location at a later date. Although we know very little about how animals in the wild use landmarks to remember locations, mammals in the wild appear to prefer to use distant landmarks to return to rewarded locations. To examine what cues wild birds use when returning to a goal, we trained free-living hummingbirds to search for a reward at a location that was specified by three nearby visual landmarks. Following training we expanded the landmark array to test the extent that the birds relied on the local landmarks to return to the reward. During the test the hummingbirds' search was best explained by the birds having used the experimental landmarks to remember the reward location. How the birds used the landmarks was not clear and seemed to change over the course of each test. These wild hummingbirds, then, can learn locations in reference to nearby visual landmarks.PostprintPeer reviewe

    Why study cognition in the wild (and how to test it)?

    Get PDF
    An animal's behavior is affected by its cognitive abilities, which are, in turn, a consequence of the environment in which an animal has evolved and developed. Although behavioral ecologists have been studying animals in their natural environment for several decades, over much the same period animal cognition has been studied almost exclusively in the laboratory. Traditionally, the study of animal cognition has been based on well-established paradigms used to investigate well-defined cognitive processes. This allows identification of what animals can do, but may not, however, always reflect what animals actually do in the wild. As both ecologists and some psychologists increasingly try to explain behaviors observable only in wild animals, we review the different motivations and methodologies used to study cognition in the wild and identify some of the challenges that accompany the combination of a naturalistic approach together with typical psychological testing paradigms. We think that studying animal cognition in the wild is likely to be most productive when the questions addressed correspond to the species’ ecology and when laboratory cognitive tests are appropriately adapted for use in the field. Furthermore, recent methodological and technological advances will likely allow significant expansion of the species and questions that can be addressed in the wild.PostprintPostprintPeer reviewe

    Case Reports1. A Late Presentation of Loeys-Dietz Syndrome: Beware of TGFβ Receptor Mutations in Benign Joint Hypermobility

    Get PDF
    Background: Thoracic aortic aneurysms (TAA) and dissections are not uncommon causes of sudden death in young adults. Loeys-Dietz syndrome (LDS) is a rare, recently described, autosomal dominant, connective tissue disease characterized by aggressive arterial aneurysms, resulting from mutations in the transforming growth factor beta (TGFβ) receptor genes TGFBR1 and TGFBR2. Mean age at death is 26.1 years, most often due to aortic dissection. We report an unusually late presentation of LDS, diagnosed following elective surgery in a female with a long history of joint hypermobility. Methods: A 51-year-old Caucasian lady complained of chest pain and headache following a dural leak from spinal anaesthesia for an elective ankle arthroscopy. CT scan and echocardiography demonstrated a dilated aortic root and significant aortic regurgitation. MRA demonstrated aortic tortuosity, an infrarenal aortic aneurysm and aneurysms in the left renal and right internal mammary arteries. She underwent aortic root repair and aortic valve replacement. She had a background of long-standing joint pains secondary to hypermobility, easy bruising, unusual fracture susceptibility and mild bronchiectasis. She had one healthy child age 32, after which she suffered a uterine prolapse. Examination revealed mild Marfanoid features. Uvula, skin and ophthalmological examination was normal. Results: Fibrillin-1 testing for Marfan syndrome (MFS) was negative. Detection of a c.1270G > C (p.Gly424Arg) TGFBR2 mutation confirmed the diagnosis of LDS. Losartan was started for vascular protection. Conclusions: LDS is a severe inherited vasculopathy that usually presents in childhood. It is characterized by aortic root dilatation and ascending aneurysms. There is a higher risk of aortic dissection compared with MFS. Clinical features overlap with MFS and Ehlers Danlos syndrome Type IV, but differentiating dysmorphogenic features include ocular hypertelorism, bifid uvula and cleft palate. Echocardiography and MRA or CT scanning from head to pelvis is recommended to establish the extent of vascular involvement. Management involves early surgical intervention, including early valve-sparing aortic root replacement, genetic counselling and close monitoring in pregnancy. Despite being caused by loss of function mutations in either TGFβ receptor, paradoxical activation of TGFβ signalling is seen, suggesting that TGFβ antagonism may confer disease modifying effects similar to those observed in MFS. TGFβ antagonism can be achieved with angiotensin antagonists, such as Losartan, which is able to delay aortic aneurysm development in preclinical models and in patients with MFS. Our case emphasizes the importance of timely recognition of vasculopathy syndromes in patients with hypermobility and the need for early surgical intervention. It also highlights their heterogeneity and the potential for late presentation. Disclosures: The authors have declared no conflicts of interes
    corecore