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 16 

Abstract 17 

In the last decade tool manufacture in birds has transformed the landscape of animal 18 

cognition.  As tool manufacture, however, is rare and practised by species that are not 19 

commonplace it is not a particularly useful model for investigating the evolution of physical 20 

cognition.  Based on recent evidence, we argue that nest building, which bears considerable 21 

phenotypic resemblance to tool making, is more useful for examining not only the role that 22 

cognition may play in construction behaviours, but also the neural underpinning of those 23 

behaviours and, ultimately their evolution. We substantiate our view with recent evidence 24 

that building by birds involves changes in dexterity, is experience-dependent and involves 25 

activity in, at least, motor, reward and social network brain regions as well as in the 26 

cerebellum. 27 

  28 
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 29 

Introduction 30 

Building by animals is a surprisingly neglected behaviour, surprising because it is key to 31 

reproductive success for many species and, of more recent relevance, because it bears a 32 

striking phenotypic similarity to tool making [1,2]. For a behaviour with such a broad 33 

taxonomic spread across orders of animals (e.g. birds [3], reptiles [4], rodents [5], primates 34 

[6], fish [7,8], and many social insects [9]), we still know remarkably little about how these 35 

animals know what structure to build. These structures include beaver dams, caddis larvae 36 

cases, antlion larvae pits, bowers, fish, chimpanzee and bird nests.  In striking contrast, a 37 

considerable amount of research effort has been addressed to another form of construction 38 

behaviour, tool manufacture and use. Although much of this effort is based on the apparent 39 

value of tool making for our understanding of the evolution of physical cognition (how 40 

animals acquire, process and use information about the physical world [10–13]), the rarity of 41 

tool making does not, in our view, make it a system of general applicability.  Although tool 42 

making has been explicitly separated, by definition, from all other building behaviours 43 

[14,15] we contend that due to the significant phenotypic similarity that tool making shares 44 

with nest building, nest building, due to its greater amenability to experimental manipulation, 45 

to neural investigation and to phylogenetic analyses, may prove a more useful ‘model’ 46 

system.  47 

 48 

Recent empirical evidence 49 

In the 19th century several observers, including Alfred Russel Wallace, concluded that 50 

building by birds (of nests), like that of man, was dependent on their experience [16].  51 

Despite supporting evidence from the Collias’ and a few others in the 1960’s [17–19], 52 
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however, the common view, even in the 21st century, is that nest building by birds is innate 53 

[19–23]. Firm and widespread though this view may be, it has been held in the face of little to 54 

no evidence.  That is, until relatively recently.  Data are now steadily accumulating to show 55 

that birds modify where they build, what they build and how they build it, in response to 56 

experience.  57 

Field evidence for a significant component of experience-dependence in nest building comes 58 

largely from observations that, after suffering predation on their nest, birds will move to a 59 

different site to build their next nest [25].   The structure of the nests of some birds also varies 60 

depending on their geographical location [26,27], although it is not clear whether this 61 

variation in due to real-time responses by individuals to local conditions or to selection.  That 62 

selection can act on nest morphology is shown by the evolution of the addition of domes to 63 

nests built by those babbler species that build their nests on the ground, thought to be a 64 

response to increased predation risk [28].  65 

The demonstration that there is low to no repeatability of the morphology of nests built by 66 

male Southern Masked weavers (Ploceus velatus, Botswana) and male Village weavers (P. 67 

cucullatus, Nigeria [29,30]) strongly suggest that the building of these nests is not achieved 68 

by a fixed-action pattern or behaviour that is ‘hard-wired’ rather, that individual builders do 69 

modify their behaviour depending on their experience/their environment (see Figures 1 and 70 

2).  This interpretation is further supported by the observations that male Southern Masked 71 

weavers rarely complete a nest before they begin the construction of the next [31] and that 72 

these males improve their material handling skills as they drop fewer pieces of grass the more 73 

nests they build. 74 

Although weavers have significant appeal because they build a beautiful, apparently complex 75 

multi-knot nest (Figure 3), they are not the best system, at this point, for addressing the key 76 
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questions in building because experimental manipulations of building behaviour in the field 77 

are not straightforward.   Zebra finches, Taeniopygia guttata, however, which breed 78 

essentially on demand in the laboratory [32], are a useful model for building behaviour. And, 79 

importantly, while a zebra finch nest may not be a thing of beauty to the untrained eye, data 80 

are accumulating to show that zebra finches learn multiple components of their nest building 81 

(Figure 4).  For example, adult males learn to associate their own reproductive success with 82 

the colour of the material with which they build the nest: males that successfully reared 83 

chicks from a nest built with material of a colour they did not like, subsequently switched 84 

their preference to the colour of the successful material, when given another opportunity to 85 

build [33]. 86 

 Furthermore, and importantly for a builder, male zebra finches also learn both how to 87 

manipulate material and about the structural properties of the material with which they build. 88 

Both these features were shown by nest-building male zebra finches provided with a nest-box 89 

that had either a large (10cm diameter) or small entrance (5cm diameter), and with nest 90 

material of two different lengths, short (20-22cm with 4.5-5.5cm stiff middle section) and 91 

long (25-27cm with 11.5-13.5cm stiff middle section). Birds with a box of either entrance-92 

size could carry the short material directly into the box but only the birds with the large nest-93 

box entrance could readily use the long material. From the outset, males with the large 94 

entrance nest box took materials of both lengths into their box while the males with the small 95 

nest-box entrance preferred to take the short material. Over the course of the experiment, 96 

however, the small nest-box entrance males modified the way in which they held the material 97 

so that they could take both lengths of material into the nest box [34]. This change in material 98 

handling shows firstly that dexterity with physical objects changes with experience but also 99 

that by changing the way they manoeuvred the material through the entrance these builders 100 

could solve the problem of access to only half of the available building materials.  Zebra 101 



Nest building, the forgotten behaviour/ 6 
 

finch males also learn to select among nest material that is most suitable for their nest: 102 

builders given several experiences of building with either flexible or stiff string, all 103 

eventually preferred the stiffer material, which is also the most efficacious building material 104 

(see Figures 5-7). It takes nearly twice as many pieces of flexible string to build a complete 105 

nest than it does to build a nest with the stiff material [35]. Builder zebra finches will also 106 

modify the colour of material with which they prefer to build depending on the colour of 107 

environment in which they build so as to camouflage their nest [36].  108 

Although these data all show that builders learn from their own experience, social learning 109 

also has at least some part to play.  For example, migratory flycatchers (Ficedula albicollis 110 

and F. hypoleuca) use information provided by resident tit species (Parus major and P. 111 

caeruleus) when choosing where to build their nest [37–39].  The migrants used at least two 112 

kinds of information, firstly with regard to the location of nest building. The flycatchers 113 

chose, from two possible boxes each marked with an arbitrary geometric symbol, to build in 114 

those boxes marked with the same geometric symbol as that marking a nearby box occupied 115 

by a tit nest [37].  The propensity of the flycatchers to near to the nest occupied by tit nests 116 

also increased as the number of offspring in those nests increased [40].  It is plausible, then, 117 

that birds may also pay attention to conspecifics when deciding what material to use or the 118 

structure to build.  119 

 120 

Nest building in the brain 121 

As the zebra finch is the iconic system for examining the neural and hormonal underpinnings 122 

of song learning [41], the wealth of data on its neuroanatomy [32] means that it is also a 123 

useful species in which to begin investigating the neural bases of building behaviour. Early 124 

data show that there is differential expression of the immediate early gene c-fos in the 125 
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anterior motor pathway, which is typically implicated in motor learning and sequencing [42], 126 

the dopaminergic reward circuit, and social behaviour network in zebra finch builders [43], 127 

specifically in relation to the number of times builders picked up and deposited material into 128 

the growing nest and time spent in the nest by the female [43]. Nest building, itself, also 129 

appears to be rewarding as targeted neuronal populations in implicated brain areas show: (1) 130 

activity increases in mesotocinergic populations of builders compared to controls; (2) activity 131 

is higher in vasotocinergic populations and dopaminergic populations the longer a builder 132 

spends in the nest with his mate; and (3) activity is also higher in vasotocinergic cells the 133 

more material a builder picks up [44]. Of the additional brain areas that may be involved in 134 

building behaviour [45,46], the cerebellum holds especial promise: a phylogenetic analysis 135 

shows that nest complexity increases with cerebellar foliation (the amount of surface folding 136 

[47]). Given that the cerebellum is involved in cognitive processes such as learning, memory 137 

and language ability in humans [48] and tool-use in birds [49] and primates [50,51], it will be 138 

useful to determine its role in nest building. 139 

The male zebra finch and weaver builders are, however, just the beginning to the possible 140 

value nest building might hold for our understanding of physical cognition. For example, sex-141 

differences in physical cognition in the brain and behaviour can be elucidated because who 142 

builds the nest (the male, the female, or both) varies among species. Moreover, one might 143 

explore the ontogeny of nest building by manipulating the features of the nest into which a 144 

chick hatches and the materials to which it is exposed in early life, one could investigate the 145 

function of the nest structure [52,53] and the degree to which natural and sexual selection 146 

have acted on the structure [54,55], as well as exploring a whole range of mechanistic 147 

underpinnings, including the role of hormones.   148 

In sum, we propose that nest-building behaviour is a useful model system to examine the 149 

evolution of physical cognition. Birds, in particular are an excellent taxa in which to examine 150 
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nest-building behaviour, because  in this group the behaviour is ubiquitous, with variation in 151 

the identity of the  builder, in material use, in the physical manipulations required to build a 152 

nest as well as in the final nest structure (e.g., ranging from scrapes on a beach to self-153 

incubating mound nests and hanging baskets of weavers [56]) and is very amenable to 154 

experimental manipulation. Thus nest-building can be examined using both existing 155 

frameworks [13] for the study of comparative cognition: behaviour of closely related species 156 

that face different ecological pressures where different cognitive abilities may be favoured 157 

and the  behaviour of more distantly related species that face similar environmental pressures 158 

where we might expect convergence in cognitive abilities. 159 
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Figure captions 386 

Figure 1. A series of six nests from a single Southern Masked weaver males. Photos ordered 387 

by date of construction from top left to right. The picture originally appeared in [29] and 388 

appears here with permission. 389 

Figure 2. Mean ± s.e.m nest measurements (y-axis) for length (filled circles), width (open 390 

circles), and height (filled triangles) of nests built by individual male Southern Masked 391 

weavers (x-axis), n = 14. This figure originally appeared in [29] and appears here with 392 

permission. 393 

Figure 3. Clockwise start top left - cape weaver (Ploceus capensis) male that has just 394 

completed the ring phase, more complete nest, tearing down an old nest with another nest in 395 

the background, completed new nest.  396 

Figure 4. Clockwise start top left – zebra finch (Taeniopygia guttata), male selecting short 397 

nest material (~5cm), selecting long nest material (~10 cm) with female in background, late 398 

stage of nest building working on roof with the entrance hole in the bottom right, early stage 399 

of nest building.  400 

Figure 5. The percentage of stiff string chosen by males that has no (n = 7), one (n = 10), or 401 

two (n = 7) experiences building with flexible string (mean ± s.e.m). The dashed line 402 

indicated 50%. This figure originally appeared in [35] and appears here with permission.  403 

 404 

Figure 6. The associated costs of building measure by the number of pieces of sting in the 405 

final nest (y-axis), for nests built with  different material types (x-axis) for zebra finches in 406 

[35].  407 

 408 
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Figure 7. Cup-shaped nests build by zebra finches in [35] with different material types:  409 

flexible string (pictured left) and stiff string (pictured right)  410 
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