26 research outputs found

    Up front and open, shrouded in secrecy, or somewhere in between? A Meta Research Systematic Review of Open Science Practices in Sport Medicine Research

    Get PDF
    OBJECTIVE: To investigate open science practices in research published in the top 5 sports medicine journals from May 1, 2022, and October 1, 2022. DESIGN: A meta-research systematic review. LITERATURE SEARCH: Open science practices were searched in MEDLINE. STUDY SELECTION CRITERIA: We included original scientific research published in one of the identified top 5 sports medicine journals in 2022 as ranked by Clarivate: (1) British Journal of Sports Medicine, (2) Journal of Sport and Health Science, (3) American Journal of Sports Medicine, (4) Medicine and Science in Sports and Exercise, and (5) Sports Medicine-Open. Studies were excluded if they were systematic reviews, qualitative research, gray literature, or animal or cadaver models. DATA SYNTHESIS: Open science practices were extracted in accordance with the Transparency and Openness Promotion guidelines and patient and public involvement. RESULTS: Two hundred forty-three studies were included. The median number of open science practices in each study was 2, out of a maximum of 12 (range: 0-8; interquartile range: 2). Two hundred thirty-four studies (96%, 95% confidence interval [CI]: 94%-99%) provided an author conflict-of-interest statement and 163 (67%, 95% CI: 62%-73%) reported funding. Twenty-one studies (9%, 95% CI: 5%-12%) provided open-access data. Fifty-four studies (22%, 95% CI: 17%-27%) included a data availability statement and 3 (1%, 95% CI: 0%-3%) made code available. Seventy-six studies (32%, 95% CI: 25%-37%) had transparent materials and 30 (12%, 95% CI: 8%-16%) used a reporting guideline. Twenty-eight studies (12%, 95% CI: 8%-16%) were preregistered. Six studies (3%, 95% CI: 1%-4%) published a protocol. Four studies (2%, 95% CI: 0%-3%) reported an analysis plan a priori. Seven studies (3%, 95% CI: 1%-5%) reported patient and public involvement. CONCLUSION: Open science practices in the sports medicine field are extremely limited. The least followed practices were sharing code, data, and analysis plans

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    Get PDF
    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways

    Get PDF

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    The CAS Residents’ Competition: a 25 year review

    No full text
    corecore