4,134 research outputs found

    Effects of transgenic Cry1Ac + CpTI cotton on non-target mealybug pest Ferrisia virgata and its predator Cryptolaemus montrouzieri

    Get PDF
    Recently, several invasive mealybugs (Hemiptera: Pseudococcidae) have rapidly spread to Asia and have become a serious threat to the production of cotton including transgenic cotton. Thus far, studies have mainly focused on the effects of mealybugs on non-transgenic cotton, without fully considering their effects on transgenic cotton and trophic interactions. Therefore, investigating the potential effects of mealybugs on transgenic cotton and their key natural enemies is vitally important. A first study on the effects of transgenic cotton on a non-target mealybug, Ferrisia virgata (Cockerell) (Hemiptera: Pseudococcidae) was performed by comparing its development, survival and body weight on transgenic cotton leaves expressing Cry1Ac (Bt toxin) + CpTI (Cowpea Trypsin Inhibitor) with those on its near-isogenic non-transgenic line. Furthermore, the development, survival, body weight, fecundity, adult longevity and feeding preference of the mealybug predator Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae) was assessed when fed F. virgata maintained on transgenic cotton. In order to investigate potential transfer of Cry1Ac and CpTI proteins via the food chain, protein levels in cotton leaves, mealybugs and ladybirds were quantified. Experimental results showed that F. virgata could infest this bivalent transgenic cotton. No significant differences were observed in the physiological parameters of the predator C. montrouzieri offered F. virgata reared on transgenic cotton or its near-isogenic line. Cry1Ac and CpTI proteins were detected in transgenic cotton leaves, but no detectable levels of both proteins were present in the mealybug or its predator when reared on transgenic cotton leaves. Our bioassays indicated that transgenic cotton poses a negligible risk to the predatory coccinellid C. montrouzieri via its prey, the mealybug F.virgata

    Investigation of a Side-polished Fiber MZI and Its Sensing Performance

    Get PDF
    A novel all-fiber Mach–Zehnder interferometer (MZI), which consists of lateral core fusion splicing of a short section of side-polished single mode fiber (SMF) between two SMFs was proposed and demonstrated. A simple fiber side-polished platform was built to control the side polished depth through a microscope. The sensitivity of the fiber MZI structure to the surrounding refractive index (RI) can be greatly improved with the increase of the side-polished depth, but has no effect on the temperature sensitivity. The sensor with a polished depth of 44.2 μm measured RI sensitivity up to -118.0 nm/RIU (RI unit) in the RI range from 1.333 to 1.387, which agrees well with simulation results by using the beam propagation method (BPM). In addition, the fiber MZI structure also can achieve simultaneous measurement of both RI and temperature. These results show its potential for use in-line fiber type sensing application

    Time-varying resonant mass at collider and beam dump experiments

    Get PDF
    A new particle usually manifests itself as a single resonant peak located at its mass. We propose if the new particle mass is time-varying due to environmental effects, then its mass spectrum typically has a novel double-peak feature. A representative model is the kinetic mixing dark photon interacting with an ultralight complex scalar dark matter charged under U(1)\u27. We reanalyze the existing experiments, showing the constraints on such a model are drastically weakened than those on the traditional single-peak resonance model, due to the reduction of the luminosity exposure in each resonant mass bin. Consequently, for mass around tens of MeV, the muon gμ -2 solution from the kinetic mixing dark photon becomes viable again. The scenario can be further tested by reanalyzing the existing data with timing information included

    A STUDY ON THE EFFECT OF RESVERATROL ON LIPID METABOLISM IN HYPERLIPIDEMIC MICE

    Get PDF
    Background: The content of resveratrol is relatively high in Polygonum cuspidatum Sieb. et Zucc., and the resveratrol has the effect of blood vessel dilating, microcirculation improving, platelet aggregation inhibiting and anti-cancer. The objective of this paper was to study the effect of resveratrol on lipid metabolism in hyperlipidemia mice. Materials and Methods: Through the establishment of an experimental mouse model of hyperlipidemia, the effect of resveratrol on change in total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDL-c), and low-density lipoprotein cholesterol (LDL-c) levels in mouse serum were determined. Results: Resveratrol group can apparently reduce TC, TG, LDL-c and AI of hyperlipidemic mice in a dose effect manner. Conclusion: We concluded that resveratrol can effectively reduce blood lipid levels of hyperlipidemic mice

    (E)-2,4-Dichloro-6-{1-[(2-chloro­eth­yl)imino]­eth­yl}phenol

    Get PDF
    The title Schiff base compound, C10H10Cl3NO, was prepared by the condensation of 1-(3,5-dichloro-2-hy­droxy­phen­yl)ethanone with chloro­ethyl­amine. The imine adopts an E configuration with respect to the C=N bond. The H atom of the phenolic OH group is disordered over two positions with site occupation factors of 0.52 (7) and 0.48 (7), respectively, and the major occupancy component is involved in an intramolecular N—H⋯O hydrogen bond. The compound therefore exists in an iminium–phenolate as well as in the imino–phenol form. In the crystal, mol­ecules are connected by C—H⋯O and C—H⋯Cl hydrogen bonds and Cl⋯Cl inter­actions [3.7864 (9) Å] into a three-dimensional network. In addition, inter­molecular π–π stacking inter­actions [centroid–centroid distance = 4.4312 (9) Å] are observed

    The Viral TRAF Protein (ORF111L) from Infectious Spleen and Kidney Necrosis Virus Interacts with TRADD and Induces Caspase 8-mediated Apoptosis

    Get PDF
    Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the Megalocytivirus genus of the Iridoviridae family. It causes a serious and potentially pandemic disease in wild and cultured fishes. ISKNV infection induces evident apoptosis in mandarin fish (Siniperca chuatsi) and zebrafish (Danio renio). However, the mechanism is still unknown. After a genome-wide bioinformatics analysis of ISKNV-encoded proteins, the ISKNV open reading frame 111L (ORF111L) shows a high similarity to the tumour necrosis factor receptor-associated factor (TRAF) encoded by fish, mice and mammals, which is essential for apoptotic signal transduction. Moreover, ORF111L was verified to directly interact with the zebrafish TNF receptor type 1 associated death domain protein (TRADD). A recombinant plasmid containing the DNA sequence of ORF111L was constructed and microinjected into zebrafish embryos at the 1–2 cell stage to investigate its biological function in vivo. ORF111L overexpression in the embryos resulted in increased apoptosis. ORF111L-induced apoptosis was clearly associated with significant caspase 8 upregulation and activation. The knockdown of zebrafish caspase 8 expression effectively blocked the apoptosis induced by ORF111L overexpression. Significantly, ORF111L overexpression resulted in much stronger effect on caspase 8 and caspase 3 upregulation compared to zebrafish TRAF2. This is the first report of a viral protein similar to TRAF that interacts with TRADD and induces caspase 8-mediated apoptosis, which may provide novel insights into the pathogenesis of ISKNV infection

    In silico analyses for potential key genes associated with gastric cancer

    Get PDF
    Background Understanding hub genes involved in gastric cancer (GC) metastasis could lead to effective approaches to diagnose and treat cancer. In this study, we aim to identify the hub genes and investigate the underlying molecular mechanisms of GC. Methods To explore potential therapeutic targets for GC,three expression profiles (GSE54129, GSE33651, GSE81948) of the genes were extracted from the Gene Expression Omnibus (GEO) database. The GEO2R online tool was applied to screen out differentially expressed genes (DEGs) between GC and normal gastric samples. Database for Annotation, Visualization and Integrated Discovery was applied to perform Gene Ontology (GO) and KEGG pathway enrichment analysis. The protein-protein interaction (PPI) network of these DEGs was constructed using a STRING online software. The hub genes were identified by the CytoHubba plugin of Cytoscape software. Then, the prognostic value of these identified genes was verified by gastric cancer database derived from Kaplan-Meier plotter platform. Results A total of 85 overlapped upregulated genes and 44 downregulated genes were identified. The majority of the DEGs were enriched in extracellular matrix organization, endodermal cell differentiation, and endoderm formation. Moreover, five KEGG pathways were significantly enriched, including ECM-receptor interaction, amoebiasis, AGE-RAGE signaling pathway in diabetic complications, focal adhesion, protein digestion and absorption. By combining the results of PPI network and CytoHubba, a total of nine hub genes including COL1A1, THBS1, MMP2, CXCL8, FN1, TIMP1, SPARC, COL4A1, and ITGA5 were selected. The Kaplan-Meier plotter database confirmed that overexpression levels of these genes were associated with reduced overall survival, except for THBS1 and CXCL8. Conclusions Our study suggests that COL1A1, MMP2, FN1, TIMP1, SPARC, COL4A1, and ITGA5 may be potential biomarkers and therapeutic targets for GC. Further study is needed to assess the effect of THBS1 and CXCL8 on GC
    corecore