49,343 research outputs found

    Robust H∞ filtering for time-delay systems with probabilistic sensor faults

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, a new robust H∞ filtering problem is investigated for a class of time-varying nonlinear system with norm-bounded parameter uncertainties, bounded state delay, sector-bounded nonlinearity and probabilistic sensor gain faults. The probabilistic sensor reductions are modeled by using a random variable that obeys a specific distribution in a known interval [alpha,beta], which accounts for the following two phenomenon: 1) signal stochastic attenuation in unreliable analog channel and 2) random sensor gain reduction in severe environment. The main task is to design a robust H∞ filter such that, for all possible uncertain measurements, system parameter uncertainties, nonlinearity as well as time-varying delays, the filtering error dynamics is asymptotically mean-square stable with a prescribed H∞ performance level. A sufficient condition for the existence of such a filter is presented in terms of the feasibility of a certain linear matrix inequality (LMI). A numerical example is introduced to illustrate the effectiveness and applicability of the proposed methodology

    Coauthor prediction for junior researchers

    Get PDF
    Research collaboration can bring in different perspectives and generate more productive results. However, finding an appropriate collaborator can be difficult due to the lacking of sufficient information. Link prediction is a related technique for collaborator discovery; but its focus has been mostly on the core authors who have relatively more publications. We argue that junior researchers actually need more help in finding collaborators. Thus, in this paper, we focus on coauthor prediction for junior researchers. Most of the previous works on coauthor prediction considered global network feature and local network feature separately, or tried to combine local network feature and content feature. But we found a significant improvement by simply combing local network feature and global network feature. We further developed a regularization based approach to incorporate multiple features simultaneously. Experimental results demonstrated that this approach outperformed the simple linear combination of multiple features. We further showed that content features, which were proved to be useful in link prediction, can be easily integrated into our regularization approach. © 2013 Springer-Verlag

    Fast network configuration in Software Defined Networking

    Get PDF
    Software Defined Networking (SDN) provides a framework to dynamically adjust and re-program the data plane with the use of flow rules. The realization of highly adaptive SDNs with the ability to respond to changing demands or recover after a network failure in a short period of time, hinges on efficient updates of flow rules. We model the time to deploy a set of flow rules by the update time at the bottleneck switch, and formulate the problem of selecting paths to minimize the deployment time under feasibility constraints as a mixed integer linear program (MILP). To reduce the computation time of determining flow rules, we propose efficient heuristics designed to approximate the minimum-deployment-time solution by relaxing the MILP or selecting the paths sequentially. Through extensive simulations we show that our algorithms outperform current, shortest path based solutions by reducing the total network configuration time up to 55% while having similar packet loss, in the considered scenarios. We also demonstrate that in a networked environment with a certain fraction of failed links, our algorithms are able to reduce the average time to reestablish disrupted flows by 40%

    Gauge fields, ripples and wrinkles in graphene layers

    Full text link
    We analyze elastic deformations of graphene sheets which lead to effective gauge fields acting on the charge carriers. Corrugations in the substrate induce stresses, which, in turn, can give rise to mechanical instabilities and the formation of wrinkles. Similar effects may take place in suspended graphene samples under tension.Comment: contribution to the special issue of Solid State Communications on graphen
    corecore