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Robust � Filtering for Time-Delay Systems
With Probabilistic Sensor Faults
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Abstract—In this paper, a new robust filtering problem
is investigated for a class of time-varying nonlinear system with
norm-bounded parameter uncertainties, bounded state delay,
sector-bounded nonlinearity and probabilistic sensor gain faults.
The probabilistic sensor reductions are modeled by using a
random variable that obeys a specific distribution in a known in-
terval � �, which accounts for the following two phenomenon:
1) signal stochastic attenuation in unreliable analog channel and
2) random sensor gain reduction in severe environment. The main
task is to design a robust filter such that, for all possible
uncertain measurements, system parameter uncertainties, nonlin-
earity as well as time-varying delays, the filtering error dynamics
is asymptotically mean-square stable with a prescribed
performance level. A sufficient condition for the existence of such
a filter is presented in terms of the feasibility of a certain linear
matrix inequality (LMI). A numerical example is introduced
to illustrate the effectiveness and applicability of the proposed
methodology.

Index Terms—Linear matrix inequality (LMI), parameter un-
certainties, robust filtering, sensor gain reduction.

I. INTRODUCTION

T HE state estimation problem of dynamic systems has at-
tracted persistent research attention and has found many

practical applications during the last decades. Fundamentally,
two classes of performance indices have been considered in the
literature based on the assumptions on the input noise [5]. In the
classical filtering approach, the noise characteristics are as-
sumed to be known, leading to the minimization of the norm
of the transfer function from the process noise to the estimation
error. The alternative filtering, which was first introduced in
1989 [2], has relaxed the boundedness assumption of the noise
variance [12]. Over the past decades, much work has been done
on the robust filtering problem in the presence of parameter
uncertainties in various settings [3], [4], [18].

In most literature concerning with the filtering problems,
the assumption of consecutive measurements has been made,
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which means that the true measurement signal can always be
obtained by the filtering node. Unfortunately, this is not always
the case in practice. Taking the networked control system (NCS)
[11] for instance, the limited capacity communication networks
that are generally shared by a group of systems have brought us
new challenges in the analysis and design of filters with
missing and/or delayed measurements, which can be collec-
tively called “incomplete measurements” [8].

Recently, the binary switching sequence approach has been
introduced to model the missing measurements for its simplicity
and practicality [15]–[17]. However, in many cases such as the
signal transmission process in unreliable analog communication
channel [10] and sensor gain variation under abnormal work
conditions [14], the measurement may be stochastically dis-
torted. Such kind of “stochastic sensor faults” cannot be simply
described by 0 (completely missing) or 1 (completely normal).
Therefore, there is an urgent need to look into a more general
description for the measurement with probabilistic sensor faults,
and this constitutes the main motivation of the present study.

In this paper, we are concerned with a new filtering problem
for a class of nonlinear time-varying systems with parameter un-
certainties and probabilistic sensor faults. It is assumed that the
“range” of the possible sensor faults can be estimated statisti-
cally and therefore the faulty sensor gain obeys a specific distri-
bution law, which is a natural reflection of the signal stochastic
attenuation in unreliable analog channel as well as the random
sensor gain reduction in severe environment. The main task is
to design a robust filter such that for all norm-bounded
parameter uncertainties, bounded state delay, sector-bounded
nonlinearity and probabilistic sensor gain faults, the filtering
error system is asymptotically mean-square stable and a pre-
scribed noise attenuation level is achieved. A linear matrix
inequality (LMI) approach is developed to solve the addressed
problem.

II. PROBLEM FORMULATION

The plant we are interested in is supposed to be modeled by
the following system:

(1)

where is the state vector; is the signal to be
estimated; is disturbance signal; , ,

, are time-varying matrices with appropriate dimensions,
which are assumed to be of the form ,

, , and . Here,
, , , and are known constant matrices; , ,
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, and are unknown matrices satisfying the following
norm-bounded condition

(2)

with , , , , being known matrices and satis-
fying .

Let denote the time-varying state delay with lower and
upper bounds . is a given real initial sequence on

. is a vector-valued nonlinear function satisfying
the sector-bounded condition [6]

(3)

where and are known real constant matrices and
is symmetric positive definite matrices.

Consider the following measurement model with proba-
bilistic gain reduction faults

(4)

where and are real constant matrices and the stochastic
variable distributes in the interval

, with its mathematical expectation and variance
. , , and are known scalars.

Remark 1: One can use (4) to describe the measurements
affected by stochastic signal attenuation or sensor gain faults.
Note that the gain degradation parameter can be obtained by
statistic inference.

Remark 2: In our assumption, only the mathematical expec-
tation and the variance of the stochastic variable are required.
Note that if we take the distribution law as

,

where represents the probability of , and is a
known value satisfying , the our measurement model
can be specialized to those studied in [15], [16].

Consider a full-order filter of the form

(5)

where , and are the parameters to be determined. By
defining , we have the following augmented fil-
tering dynamics:

(6)

where

Consider the existence of the stochastic variable , in the
rest of this paper, we aim to design a filter such that the filtering
error system satisfies both the requirements (R1) and (R2):

(R1) The filtering error system (6) is asymptotically mean-
square stable [9].
(R2) Under the zero-initial condition, the filtering error
satisfies

(7)

for all nonzero , where is a prescribed scalar.

III. MAIN RESULTS

In this section, we give the main results of our paper. Firstly
we consider the filtering performance analysis for system
(6).

Theorem 1: Given a scalar and the filter parameters
, and . If there exist a scalar , positive definite matrices

and satisfying

(8)

where
, , , ,

, , ,
, ,

, , ,
, , and , then the filtering

error system (6) satisfies (R1) and (R2).
Proof: Consider the Lyapunov–Krasovskii functional

with

Noticing that , we calculate the differ-
ence of with , take the mathematical expectation and
obtain

where .
Also, noting that (3) implies

and by defining , we can fur-
ther obtain

(9)

where ,
, , ,

, .
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From (8), we can verify that

and then it follows . We can now confirm that the
filtering error system (6) is asymptotically mean-square stable
[9].

Next, for any nonzero , it follows from (8) and (9) that
, where

. Summing up this rela-
tionship from 0 to with respect to yields

Since the system (6) is asymptotically mean-square stable, it is
straightforward to see that (7) holds under the zero initial con-
dition. The proof is completed.

Next, we will provide a solution to the filtering problem
for time-varying nonlinear system (1)–(4) with probabilistic
sensor faults.

Theorem 2: For the time-varying nonlinear system (1)–(4),
an filter of the form (5) can be designed such that the
filtering error system (6) is asymptotically mean-square stable
with norm constraints (7) fulfilled for all nonzero if, for
a given scalar , there exist positive definite matrices

, , , real matrices
, , and real scalars , , such that the following

LMI holds

(10)

where is a symmetric block-matrix with its entities being
, ,

, , ,
, ,

, , , ,
, , , ,

, , , ,
, , ,

, , ,
, , ,

, , and all other entities being zeros.
Moreover, if (10) is true, the desired filter parameters are given
by

(11)

where comes from the factorization of
.

Proof: The proof is similar with the treatment in [7], and
is therefore omitted here for the limitation of space.

IV. AN ILLUSTRATIVE EXAMPLE

Consider the system (1)–(4) with parameters as follows:

, , and in (4) is supposed to obey the
truncated standardized normal distribution in [0.4, 1],
with and . The nonlinear term

is defined as

,
otherwise,

,
otherwise

which can be bounded by

We are interested in finding an filter with the minimal
attenuation level. For this purpose, we can minimize

when solving the feasibility problem (10). With help from LMI
ToolBox [1], we obtain the minimum disturbance attenuation
level as , where is the sub-optimal
solution of the corresponding convex optimization problem. A
sub-optimal filter can then be obtained as

Let and . Using the
above designed filter, we depict time-domain simulation
within 50 time steps in Fig. 1. Fig. 1(a) illustrates the signal to
be estimated and the output of the above robust filter.
Fig. 1(b) shows the estimation error which tends to 0 as time
tends to . In Fig. 1(c), the real time proportion between the
error energy and the noise energy versus time is provided,
from which we can see that is always less than the worst case
disturbance attenuation level .

Next, let us provide a comparison with the case of binary vari-
able perturbation on the measurements [16], where is of the
form as stated in Remark 2 with . Considering the
filter with binary missing measurements in the design process
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Fig. 1. Filter performance using our proposed method.

Fig. 2. Filter performance with� filter considering binary missing measure-
ments.

and without taking the parameter uncertainties into considera-

tion, we can obtain a less sub-optimal value
and the following filter parameters:

It should be noticed that although we get a less disturbance
attenuation level in designing the second filter, it cannot be in-
ferred that one can use the second filter to get a better filter per-
formance. To show this point, we use the second filter for
the state estimation of system (1)–(4) with the same parameters
as aforementioned, and the filtering performance can be seen in

Fig. 2. Fig. 2(a)–(c) shows the signal to be estimated and the
output of the second filter, the estimation error, and the real
time disturbance attenuation level, respectively.

It can be seen from the comparison between Fig. 1(c) and
Fig. 2(c) that the proposed robust filter provides a less esti-
mation error and a better attenuation performance than the
filter only considering binary missing phenomenon of system
measurements, which demonstrates the effectiveness of the re-
sult in this paper.

V. CONCLUSION

In this paper, the robust filtering problem for a class of
nonlinear systems has been studied in the presence of proba-
bilistic sensor faults, where the system is subject to time-varying
norm-bounded parameters, sector-bounded nonlinearities, time-
varying bounded state delays, and energy bounded disturbance
input. The sensor fault is described using a sequence of sto-
chastic variables that are of any distribution in an interval ,
and only the mathematical expectation and the covariance of the
stochastic variables are required. A numerical example has been
given to show the usefulness of the results derived.
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