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Providing probabilistic forecasts using Ensemble Prediction Systems has become
increasingly popular in both the meteorological and hydrological communities. Compared
to conventional deterministic forecasts, probabilistic forecasts may provide more reliable
forecasts of a few hours to a number of days ahead, and hence are regarded as better
tools for taking uncertainties into consideration and hedging against weather risks. It is
essential to evaluate performance of raw ensemble forecasts and their potential values in
forecasting extreme hydro-meteorological events. This study evaluates ECMWF’s medium-
range ensemble forecasts of precipitation over the period 1 January 2008 to 30 September
2012 on a selected midlatitude large-scale river basin, the Huai river basin (ca. 270 000 km2)
in central-east China. The evaluation unit is sub-basin in order to consider forecast
performance in a hydrologically relevant way. The study finds that forecast performance
varies with sub-basin properties, between flooding and non-flooding seasons, and with the
forecast properties of aggregated time steps and lead times. Although the study does not
evaluate any hydrological applications of the ensemble precipitation forecasts, its results
have direct implications in hydrological forecasts should these ensemble precipitation
forecasts be employed in hydrology.
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1. Introduction

A deterministic weather forecast is a single model trajectory
generated by a numerical weather prediction (NWP) system. It
is highly dependent on the estimation of the initial atmospheric
conditions and does not take uncertainties into consideration.
If the initial conditions are incorrect, the forecast will fail to
replicate weather events correctly. Since the inherent stochastic
nature of a weather system was discussed by Lorenz (1963,
1969), it has been recognised that a perfect numerical weather
forecast is unattainable (Hamill et al., 2000) because a tiny error
in the initial conditions will grow inevitably and a deterministic
forecast is ‘determined’ to fail. An alternative approach is to
incorporate uncertainties by finding reasonable probabilistic
distribution functions of atmospheric conditions and generating
multiple forecasts from different initial conditions, and sometimes
from different model parametrizations. Leith (1974) called such
forecasts ‘Monte Carlo Forecasts’, now usually referred to as an
Ensemble Prediction System (EPS). Leith (1974) suggests the
mean of a forecast ensemble is the estimate of the true state

of the atmosphere that is best in the least-square-error sense.
Buizza (2008) interprets EPS as a system based on a finite number
of deterministic integrations and the only feasible method in
meteorology to predict a probability density function beyond
the range of linear error growth. EPS has been embraced by
the meteorological community as a practical way of estimating
uncertainties of a weather forecast (Hamill et al., 2000). It has
also become popular in the field of hydrology and water resources
management (Thielen et al., 2008), which has been demonstrated
by the Hydrologic Ensemble Prediction EXperiment (HEPEX)
(for a comprehensive review see Cloke and Pappenberger (2009)
and visit www.hepex.org) for a wide range of water-related hazards
(Alfieri et al., 2012).

The performance of EPS has been constantly assessed by
meteorologists and more recently by hydrologists using a
variety of ensemble verification statistics such as the Brier score
(BS), the ranked probability score (RPS), the relative operating
characteristic (ROC) and others (see e.g. Cloke and Pappenberger,
2008). Meteorologists usually compute the statistics of variables
that may not be directly relevant for hydrology, e.g. geopotential

c© 2013 Royal Meteorological Society
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height at 500 hPa (Molteni et al., 1996), or may not have the
appropriate spatial scales for hydrological models, e.g. average
precipitation over grids (Buizza, 1999). Readers can also see
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discussion in Pappenberger et al.(2008a) and Pappenberger and
Buizza (2009). It is therefore difficult to draw conclusions on the
efficacy of EPS when applied in the field of hydrology and other
associated fields resulting often in the development of novel scores
reflecting the needs of a particular community (Pappenberger
et al., 2011a). Most studies of hydro-meteorological forecast
systems include not only an evaluation of forecast hydrological
forecast skill but also meteorological skill (e.g. Pappenberger
et al., 2005, 2011b; De Roo et al., 2011; Voisin et al., 2011). There
are a number of studies that assess the ‘hydrological’ quality
of EPS by focusing on the performance of ensemble forecasts of
precipitation and the simulated ensemble discharge. For example,
Thirel et al.(2008) assess the quality of the European Centre for
Medium-range Weather Forecasts (ECMWF) and Météo-France
Prévision d’Ensemble ARPEGE (PEARP) EPS precipitation over
France using the Brier skill score (BSS) and the ranked probability
skill score (RPSS). Velázquez et al.(2009) used Continuous
Ranked Probability Score (CRPS) and the rank histogram for
evaluating a Canadian hydrological ensemble prediction system
(H-EPS). He et al.(2009) evaluated the performance of ensemble
precipitation and discharge forecasts of January 2008 from seven
forecast centres for the Upper Severn catchment using CRPS
and ROC. Such studies are valuable in facilitating hydrological
applications of EPS. But they do not necessarily provide detailed
analysis of the ensemble precipitation, e.g. the performance at
different time steps (in particular sub-daily time steps), lead times
or for river basins with various properties, and most of them only
study a number of individual events or seasons.

Ensemble forecasts have yet to be used to their full potential,
although they have been produced for nearly two decades. One of
the main reasons is that their performance is often deemed
to be too poor to provide ‘harmless’ operational forecasts.
Their uncertainties are considerably large especially as the lead
times increase. False alarms do not only cost significantly in
financial terms but also damage the reputation of forecasting
institutions. Operational forecasters often have to make a binary
decision whether or not an action should be taken. It is not so
straightforward for decision makers to utilise ensemble forecasts
in terms of probabilities compared to conventional deterministic
forecasts whereby a binary decision can be made based on a single
forecast, albeit with inevitable errors in the single forecast. This is
often the second ‘excuse’ for ignoring ensemble forecasts. Readers
can refer to Demeritt et al.(2010) for more detailed discussion on
challenges in communicating and using ensembles in operational
flood forecasting. This article aims to address the first question:
how poor or how good the forecasts are, based on the current
generation of model and data assimilation methods.

ECMWF has been producing short to medium range
(0–15 days forecast lead time) ensemble weather forecasts
operationally since November 1992. Such weather forecasts have
also been produced at a number of other centres, along with
ECMWF, which have recently shared products and emerged
into the so-called TIGGE initiative, acronym for THORPEX
Interactive Grand Global Ensemble (Bougeault et al., 2010), which
has been used in many hydrometeorological forecasting studies
(e.g. Pappenberger et al., 2008b; He et al., 2009). This article
focuses on ECMWF’s ensemble forecasts only, but its methods
can be applied to study other ensemble prediction systems.

The Huai river basin is selected in this study because it has a
good-quality precipitation observational dataset. It is located in
midlatitudes straddling the southern monsoon and the northern
continental climate, which makes the basin an interesting and
challenging test bed. The basin encompasses one of the fastest
growing economic regions in China but is highly vulnerable
to extreme hydrometeorological events, with floods as the worst
disaster in this basin. Its average population density is ca. 600 km−2

(Ning et al., 2003), more than four times the national average of

138 km−2. Major basin-wide floods have been recorded once
every 5 years on the average and local floods once every 2 or
3 years (Huai River Commission, Ministry of Water Resources,
2010) and affect millions of people. The period between May
and September is officially regarded as the basin’s flooding
season, although large spring floods have occurred in April a
number of times in past years. Snowfall is rare and thus large
floods are mainly driven by heavy rainfall. Due to the significant
economic value of the basin and its frequent devastating floods,
a number of recent studies have pointed to the potential of
using ensemble forecasts in this basin. He et al.(2010) use six
forecast centres from the TIGGE archive to drive a coupled
atmospheric–hydrologic cascade system to hindcast three 2007
flood events on the Upper Huai sub-basin (30 672 km2). The
results demonstrate that the TIGGE multi-model ensemble has
great potential to produce skilful forecasts of river discharge and
improve the warning time to as early as 10 days in advance. Yang
et al.(2012) use generalised additive models and Bayesian model
averaging (BMA) to post-process the ensemble forecasts from
the National Centers for Environmental Prediction (NCEP).The
method was applied to the Yishusi river sub-basins, in the eastern
part of the Huai river basin, for July 2007. The BMA forecasts
outperform the raw ensemble forecasts especially for extreme
precipitation. Liu et al.(2013) evaluate the forecasting skills of
post-processed ensemble forecasts from a fixed version of the
Global Forecast System (GFS) produced by NCEP. Their study is
carried out for 15 sub-areas of the Huai river basin for 23 years
starting from 1981. The post-processing method applied in their
study can remove all the biases in the raw ensemble forecasts, and
improve the forecasting skill and ensemble spread.

The above-mentioned studies however did not carry out
detailed analysis of the performance of the raw ensemble
forecasts which is the basis of both precipitation post-processing
and further application in hydrology and other fields. This
was partly due to the fact that a homogenised precipitation
database for the entire basin was not readily available to enable
a rigorous performance evaluation of the raw forecasts. Bröcker
(2012) points out that performance evaluation of raw ensembles
may serve as a benchmark for more sophisticated ensemble
interpretation models. The availability of hourly observed
precipitation analysis at high spatial resolution produced by
the China Meteorological Administration (CMA) has provided a
perfect opportunity to evaluate ensemble forecasts near real time
and at sub-daily resolutions.

This article aims to carry out an in-depth assessment of
ECMWF’s medium-range ensemble precipitation forecasts and
address three scientific questions: (i) how skilful are ECMWF’s
ensemble forecasts over this midlatitude river basin; (ii) how do
the forecast skills vary with seasons, sub-basin properties, lead
times and aggregated time steps; and (iii) do sub-daily ensemble
forecasts bring any benefits or are they simply unwanted noise
generated by the current model version? The article is organised
in the following way. The study area and data are described
in section 2. The experimental design and scores used for
evaluation are explained in section 3. The results are presented and
discussed in section 4, which is followed by the final concluding
section.

2. Study area and data description

2.1. The Huai river basin

The Huai river basin is located in central east China, between
the lower reaches of the Yellow and the Changjiang (Yangtze)
Rivers (112–121◦N, 31–36◦E). It has a total drainage area of
approximately 270 000 km2 (Figure 1). It consists of two river
systems, namely the Huai rivers and the Yishusi rivers. The Huai
originates from the Tongbai Mountains in Henan province, flows
towards the east through Henan, Anhui and Jiangsu provinces.
The total length of the Huai’s main reach is over 1000 km with

c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc. 139: 000–000 (2013)
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Figure 1. Elevation map of 27 Huai sub-basins (refer to Table 1 for their characteristics) located in central east China. The location is indicated in the right lower
panel with blue lines representing the Yellow and Changjiang rivers. Sub-basins nos. 10–15 belong to the Yishusi rivers and the remaining belong to the Huai rivers.

an average elevation drop of 200 m, of which 178 m of the drop
is up to the Wangjiaba (WJB) sluice gate, 22 m up to Hongze
Lake. The relatively low elevation drop in the middle and lower
reaches (22 m) leads to flattened flow velocity and increased risk
of over-bank flow and inundation. To the northeast side of the
basin is the Yishusi river system, most of which is on the former
Yellow river flood plain as a product of ancient Yellow river
floods and resulting river path alterations. The Yishusi originates
from the Yimeng Mountains in Shandong province and mostly
flows through Shandong and Jiangsu provinces and joins the
Hongze Lake in the south. It has over 15 tributaries or channels
that empty into the Yellow Sea. The entire basin is divided
into 27 sub-basins, merging two sub-basin boundary definitions
used by the Huai Basin Meteorological Centre and the Huai
River Commission. Sub-basins nos. 10–15 belong to the Yishusi
and the remaining to the Huai. Due to thousands of existing
hydraulic structures in the basin, its sub-basin delineation cannot
solely depend on the natural topography and elevation. Table 1
lists characteristics including area, centroid coordinates, mean
elevation, mean annual precipitation, mean annual temperature,
and reliability of the precipitation time series used in the analysis
in the form of correlation R2. The last column will be explained
in section 4.1.

The mean annual precipitation and runoff depth of the
entire Huai river basin is approximately 888 and 230 mm
respectively. The precipitation dynamics including spatial and
temporal distribution is very irregular and changes from year to
year. This is attributed to the basin location in the transitional
area between the southern monsoon and the northern continental
climate (Huai River Commission, Ministry of Water Resources,
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1999). The East Asian summer monsoon rainfall (known as
Meiyu in China) usually occurs during June and early July over
the basin. The onset, duration and total rainfall amount of the
Meiyu season usually determine the severity of the basin’s annual
floods. The Meiyu front generates widespread, persistent and
heavy rainfall over the basin (Fu, 1991). Occasional remnants
of typhoons may affect the basin from late July to September
and can cause the most intense precipitation (Fu, 1991; Svensson
and Rakhecha, 1998) although the distance of the far western
point of the basin to the sea is over 900 km. For example, an

intensive storm event recorded at the Linzhuang station (located
in sub-basin no. 21) reached 830 mm within just 6 h and was
caused by typhoon Nina (Bao, 1987). The areal extent of typhoon
rainfall is smaller and duration is shorter compared to those of the
Meiyu front (Fu, 1991; Svensson and Rakhecha, 1998). A storm
event is defined in China as 24 h rainfall larger than 50 mm and
smaller than 100 mm (50 ≤ 24 h P < 100). The flooding season
in China is defined as the period between May and September
inclusive. Cheng (2004) reveals that between June and August
the basin has on average 2.3 days of storm events, the largest
5.1 days of storms in 1954 being one of the wettest years, and the
lowest 0.7 day of storms in 1966 being one of the driest years.
In the flooding season, stratiform-cloud rain and convective rain
are commonly seen in the Huai river basin. The latter causes the
intensive and local events. Larger extent but intensive rains can
be cumulus–stratus mixed precipitation. Stratiform-cloud rain
usually dominates in the non-flooding season.

2.2. Observed precipitation analysis

The observed precipitation dataset was obtained from the Cli-
matic Data Centre (CDC), National Meteorological Information
Centre, China Meteorological Administration (CMA). It com-
bines two sources of precipitation data, namely ground-based
rain-gauges and satellite-based precipitation. The ground-based
rain-gauges consist of over 30 000 automatic observation stations,
including national and regional automatic weather stations which
record precipitation at an hourly time step. It is worth noting
here that only hourly rain-gauge data were used to produce this
dataset. The satellite-based precipitation is the global precipita-
tion product created by the National Oceanic and Atmospheric
Administration Climate Prediction Center (NOAA CPC) Mor-
phing Technique (CMORPH) (Joyce et al., 2004) that is derived
from low-orbiter satellite microwave observations exclusively. It
has a spatial resolution of 0.07277◦ × 0.07277◦ and temporal
resolution of 30 min.

CMA’s hourly rain-gauge data are first spatially interpolated
to 0.1◦ × 0.1◦ latitude/longitude grids. The CMORPH data are
resampled to the same 0.1◦ × 0.1◦ grids and hourly time steps,
and then corrected against the rain-gauge data using a Probability

c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc. 139: 000–000 (2013)
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Table 1. Characteristics of the 27 Huai sub-basins.

ID Area (km2) Centroid coordinates Mean elevation Mean annual Mean annual R2 (CMORPH-Gauge
(longitude/latitude in degrees) (m a.s.l.) P (mm) T (◦C) merged vs. Gauge)

1 8 382 114.09/32.23 139 1 049 15.1 0.8744
2 7 167 115.03/32.22 75 1 035 15.2 0.8128
3 5 017 114.46/32.98 52 914 14.9 0.8978
4 11 407 115.57/32.20 141 1 074 15.3 0.9047
5 14 242 113.85/34.23 134 696 14.5 0.9080
6 11 566 115.09/33.42 41 815 14.8 0.9204
7 12 115 116.21/31.90 205 1 126 15.4 0.9009
8 28 498 115.96/33.43 44 825 14.8 0.9569
9 40 089 117.31/33.54 37 825 14.1 0.9623

10 32 162 119.84/33.14 6 851 12.3 0.9679
11 21 472 118.96/34.44 31 795 12.5 0.9773
12 4 282 118.78/35.55 167 782 12.8 0.9293
13 10 185 118.10/35.60 248 756 13.1 0.9403
14 9 240 117.80/34.63 64 808 13.9 0.9682
15 31 148 116.35/35.17 66 666 13.9 0.9789
16 1 769 113.97/31.95 257 1 073 15.1 0.7870
17 1 381 114.90/31.80 142 1 163 14.7 0.8155
18 333 114.99/31.65 267 1 213 14.5 0.7427
19 815 113.47/32.99 213 917 14.7 0.7255
20 635 113.78/32.71 224 976 14.9 0.7317
21 3 672 113.97/32.92 122 945 14.8 0.9154
22 1 387 113.71/33.36 103 876 14.7 0.8802
23 1 941 112.29/33.95 796 697 14.4 0.7198
24 3 760 113.01/34.08 264 693 14.4 0.9050
25 1 436 112.57/33.79 497 741 14.6 0.8059
26 1 539 112.96/33.70 192 780 14.7 0.8950
27 3 978 113.39/33.50 131 815 14.6 0.8992

Density Function matching algorithm. The corrected CMORPH
data are used as the background analysis field; the optimal
interpolation algorithm is used in the last step to provide a
weighted average precipitation value at each grid point. The final
merged dataset results in a spatial 0.1◦ × 0.1◦ grid resolution and
hourly time step. The detailed description of the merged dataset
can be found in Pan et al.(2012). Shen et al.(2013) assess the
quality of this dataset and report it can capture the precipitation
process both spatially and temporally very well with low bias and
root-mean-square error. The CMORPH-Gauge merged data can
be accessed from the CDC’s website. The data are available from 1
January 2008 and near real time with approximately 1 day delay.
The time period used in this study is between 0100 UTC 1 January
2008 and 0000 UTC 10 October. At the time of study, this was the
longest available time period allowing ten seasons to be analysed.

2.3. ECMWF’s medium-range ensemble forecasts of precipitation

The medium-range ensemble forecasts of precipitation data were
obtained from ECMWF. The forecasts of Total Precipitation
(TP) were retrieved from ECMWF’s Atmospheric Ensemble
Prediction System issued daily at 0000 UTC. It consists of one
control forecast, a central analysis driven by a data-assimilation
procedure, and 50 perturbed forecasts generated by perturbed
initial conditions. The TP data are stored at time steps of T + 0
h to T + 96 h at 3 h intervals, and then T + 96 h to T + 240 h
at 6 h intervals. The forecast data were interpolated to the same
spatial grids as the observational precipitation described in the
section above. The 51 forecast members are treated with equal
weights. The ensemble forecasts retrieved for this study are from
0000 UTC 1 January 2008 to 0000 UTC 30 September 2012.

3. Experiment design and evaluation scores

3.1. Experiment design

The observed precipitation analysis product, the CMORPH-
Gauge merged data, was accumulated to daily time steps and
evaluated against the data collected from the basin’s daily
rain-gauges which are independent from the hourly gauges used

in the merged dataset. Because the daily rain-gauges record
daily precipitation data from Beijing time (UTC + 8h) 2100 to
Day + 1 2100, the CMORPH-Gauge merged data is accumulated
from 1300 UTC to Day + 1 1300 UTC to be consistent with the
rain-gauges. Unlike the hourly rain-gauges used in the CMORPH-
Gauge merged data, the data collected from the daily rain-gauge
network was quality controlled and contains a larger number
of gauges than that of the hourly rain-gauges. The daily rain-
gauge data are therefore considered as a reasonable benchmark
to cross-check the quality of the CMORPH-Gauge merged data.
The correlation between CMORPH-Gauge merged data and daily
rain-gauge data was computed for each sub-basin over the entire
study time period.

After the quality of the precipitation data was examined,
the forecast performance was evaluated. The entire study time
period was divided into ten segments, composed of five flooding
and five non-flooding seasons. The flooding season covers five
months, namely May, June, July, August and September. The
non-flooding season covers seven months, namely October,
November, December, January, February, March and April.
Except for the first segment, the 2008 non-flooding season
that covers four months (1 January 2008 to 30 April 2008),
the remaining nine segments all span the entire season. The
flooding and non-flooding seasons alternate and end with the
2012 flooding season (1 May 2012 to 30 September 2012). The
ECMWF ensemble precipitation forecasts were evaluated for all
ten seasons, 27 sub-basins, at five different aggregated time steps,
namely 3, 6, 12, 24 and 48 h, and all the available lead times.

3.2. Evaluation scores

The Continuous Ranked Probability Score (CRPS:Brown, 1974;
Matheson and Winkler, 1976; Hersbach, 2000) and two variants
of CRPS were used as evaluation scores. The CRPS is a
verification tool that evaluates the degree of agreement between
the cumulative probability distribution of an ensemble of variable
values with a single observed value.

CRPS =
∫ ∞

−∞
{P(x) − H(x − xa)}2dx (1)

c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc. 139: 000–000 (2013)
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where x is the forecasted variable, xa is the actual variable value
(the observed value), P(x) is the cumulative distribution function
of x, and H(x − xa) is the Heaviside function which is 0 when
(x − xa) < 0 and 1 otherwise. The unit of CRPS is the same
as that of x. The ideal degree of agreement (CRPS = 0) is
achieved if P(x) = H(x − xa), which is a perfect deterministic
forecast. In practice, CRPS usually takes the average value over
an area and a number of forecasting cases. This potentially
leads to a technical problem when scores need to be compared
amongst different areas, seasons or aggregated time steps when
the x values can assume various magnitudes. In other words, a
lower CRPS in a particular area or season does not necessarily
equate to a better forecasting performance in comparison with
another area or season. This is because a lower score can be
attributed to lower x values but not a better forecast over
a certain area or season. RCRPS, a normalised CRPS, was
introduced by Trinh et al.(2013) to handle this technical problem.
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It normalises CRPS by the standard deviation of the variable of
interest.

RCRPS = CRPS

σa
, (2)

where σa is the standard deviation of all xa values over
a certain area and a number of studied cases. Another
normalised form of CRPS is the Continuous Ranked Probability
Skill Score (CRPSS), where CRPS is normalised by a
reference which is usually the climatology or persistence of a
study area.

CRPSS = 1 − CRPSF

CRPSR
, (3)

where CRPSF denotes the forecast score and CRPSR is the score
of a reference forecast of the same variable. CRPSS measures
the improvement of an ensemble forecasting system over the
reference forecast. Its values range from −∞ to 1, where 1 is the
ideal forecast and negative values indicate worse performance than
the reference forecast. The reference forecast used in this study is
climatology, which was computed for flooding or non-flooding
seasons respectively over each sub-basin and each accumulated
time step using the observed precipitation analysis data from 1
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January 2008 to 10 October 2012.

The dependency of CRPSS on sub-basin properties is studied
using a multiple regression function. CRPSS is based on 24 h
aggregated precipitation and averaged over the five flooding and
five non-flooding seasons respectively.

CRPSS = a + b1CS + b2ME + b3MAP, (4)

where a is the intercept, bi is the coefficient for each variable, CS
is the sub-basin size, ME is the mean elevation, and MAP is the
mean annual precipitation. The variables CS, ME and MAP are
all normalised by the maximum of each variable.

4. Results and discussion

4.1. Quality of observed precipitation data

The CMORPH-Gauge merged precipitation dataset is a product
based on hourly rain-gauge and satellite data. Its quality was
checked against the daily rain-gauge data which is considered
as a benchmark. The correlations between the merged data
accumulated to 24 hourly (on the x-axis) and the daily rain-gauge
data (on the y-axis) over the time period between 1 January 2008
and 31 December 2011 were obtained for the 27 sub-basins using
linear regression functions (figures are not shown here). The
least square errors R2 were computed (last column in Table 1).
The correlations are generally better for larger sub-basins and
sub-basins with lower elevations (Figure 2), and vice versa. The
y-intercepts obtained for all the 27 linear regression functions
are positive, indicating underestimation of precipitation in the
CMORPH-Gauge merged data in comparison with the daily
rain-gauge data. Xie et al.(2007) reports a similar finding that
the CMORPH product underestimates the precipitation amount
over eastern China. The sub-basins with the largest and smallest
R2 are sub-basin no. 15 with an area of 31 148 km2 and mean
elevation of 66 m, and sub-basin no. 23 with an area of 1941 km2

and mean elevation of 796 m (Figure 3).
The advantage of using the merged data lies in its high spatial

and temporal resolutions which make it possible to evaluate
forecast performance at sub-daily time-scales. The correlations
for the 27 sub-basins are all above 0.7 and acceptable. Nevertheless,
the uncertainties associated with the skill scores caused by
the limitation in the high spatial and temporal resolution
precipitation analysis product need to be recognised.
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Figure 2. The relationship between sub-basin areas (left axis, diamond markers)/mean elevation (right axis, triangular markers) and correlations R2 (between
CMORPH-Gauge merged and rain-gauge precipitation time series at 24 h intervals). Correlations are higher for larger sub-basins and sub-basins dominated by flat
terrains (refer to the last column in Table 1 for the correlation R2). This figure is available in colour online at wileyonlinelibrary.com/journal/qj
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(a)

(b)

Figure 3. (a), (b) The difference in the daily precipitation time series (rain gauge – CMORPH-Gauge merged) for the best and worst correlated sub-basins nos. 15
and 23 respectively. In the majority of cases the CMORPH-Gauge merged data underestimate the daily precipitation values. The precipitation data in 2012 were not
evaluated because the quality control of the daily rain-gauge data would not be completed until the first quarter of 2013.

4.2. The overall skill scores of ECMWF’s ensemble forecasts

CRPSS is used to evaluate the overall performance of ECMWF’s
ensemble forecasts in comparison with climatology. Figure 4
shows CRPSS calculated using 24 h accumulated precipitation
and averaged over the five flooding and five non-flooding
seasons respectively. Sub-plots are presented in ascending order
of sub-basin size. All sub-basins, except nos. 5, 12, 13, 23,
24 and 25, in both flooding and non-flooding seasons show
overall decreasing skill scores with increasing lead times for the
forecasted precipitation. The six atypical sub-basins exhibit rising
or fluctuating skill scores with increasing lead times. Sub-basins
nos. 5, 23, 24 and 25 are located towards the north-west of
the basin dominated by the Tongbai mountains, and sub-basins
nos. 12 and 13 are located towards the north-east dominated by
the Yimeng mountain ranges. The ensemble forecasts completely
failed to show any skill in these six sub-basins all located between
34◦N and 36◦N and characterised by high altitudes. This may
suggest the need for local models in the areas dominated by high
altitude to resolve rain-driven processes at small scales.

The skill scores vary depending on the seasons and the sizes of
the sub-basins. Flooding seasons (line with dots) showed higher
skill scores than non-flooding seasons (line with circles). This
may indicate it is easier to correctly forecast rain occurrence and
magnitude in a wet season than in a dry season, and the forecasts
tend to be more skilful in the wet season compared to the dry
season. CRPSS for the flooding seasons never drops below 0,
which means the forecasted precipitation for all 27 sub-basins
was more skilful than their climatology. For sub-basins smaller
than 2000 km2 (the first row of sub-basins in Figure 4) except nos.
23 and 25, the highest scores never exceeded 0.4 during flooding
seasons. The scores are much lower during the non-flooding
seasons and most of them show no skill at all (CRPSS < 0). For
the sub-basins smaller than 10 000 km2 (the second row of sub-
basins in Figure 4) except nos. 12, 13 and 24, the scores appear
to be better than the first row of sub-basins. The best scores were
achieved by the sub-basins larger than 10 000 km2 (the last row
of sub-basins in Figure 4) except no. 5. In general, the forecast
skill improves as the sub-basin size increases, and forecasts in the
flooding seasons outperform those in the non-flooding seasons.

For midlatitude sub-basins like the ones in the Huai river
basin, ECMWF’s ensemble forecasts can be used in forecasting
floods with relatively low, medium and high confidence during
flooding seasons for sub-basins with sizes <2000, 2000–10 000,
>10 000 km2 respectively. The exception here is the sub-basin

dominated by high elevations. During non-flooding seasons,
ECMWF’s ensemble forecasts did not show satisfactory skills for
sub-basins smaller than 2000 km2, but some reasonable skill for
sub-basins larger than 2000 km2. Overall, the forecasts are more
skilful in the flooding seasons than the non-flooding seasons over
this midlatitude river basin.

4.3. Skill dependency on sub-basin properties and seasons

The dependency of CRPSS on sub-basin properties is further
studied using the multiple regression function (Eq. (4) in
section 3.2). CRPSS is based on 24 h accumulated precipitation
and averaged over the five flooding and five non-flooding seasons
respectively, the same as what was used in Figure 4.

Sub-basins nos. 5, 12, 13, 23, 24 and 25 were excluded from
finding the multiple regression function due to their unusual
pattern of CRPSS already discussed in section 4.2. In addition,
sub-basins nos. 4 and 7 were also excluded because they do
not exhibit homogeneous sub-basin properties with respect to
elevation and may interfere with the results. The two sub-basins
in question have a large portion of high elevation towards the
south side but are fairly flat towards the north. After excluding
the seven sub-basins, the obtained regression function based on
the remaining 20 sub-basins for the flooding season is given in
Table 2.

For the flooding seasons, the coefficients of determination R2 of
all ten lead times are no less than 0.655 (lowest value appeared on
day 5), which indicates that the obtained regression can account
for at least 65.5% of the original variability and the regression
model fit is satisfactory. Figure 5 shows an example of the fitted
CRPSS versus the original CRPSS for the flooding season on
day 2. For flooding seasons, the coefficients of CS (b1) for the
ten lead times are all positive, implying CRPSS increases with
increase of CS. The coefficients of ME (b3) are mostly negative
(except days 3–5) and close to 0. This means ME has a relatively
smaller influence on CRPSS than CS and MAP have during
flooding seasons. In most cases the higher the mean elevation of
a sub-basin is, the lower is the CRPSS. The absolute values of the
coefficients of MAP (b3) exhibit an interesting decreasing trend
up to day 4 and then an increasing trend from days 6 to 10.
Except day 5 which shows a positive relation between CRPSS and
MAP, all other nine days have negative values, suggesting that
wetter sub-basins with higher mean annual precipitation tend to
have lower CRPSS and the ensemble forecasts are less capable for
wetter sub-basins. The degree of negative relationship between

c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc. 139: 000–000 (2013)
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Figure 4. The mean CRPSS versus lead times for each sub-basin in flooding seasons (line with dots) and non-flooding seasons (line with circles). The score is
calculated using 24 h accumulated precipitation. Sub-plots are presented in ascending order of the sub-basin size. The numbers above each sub-plot are the sub-basin
no., size, mean elevation, and mean annual precipitation respectively.

Table 2. The intercepts, coefficients and coefficients of determination R2 of the
multiple regression of CRPSS for flooding and non-flooding seasons at different

lead times.

Season, a b1 b2 b3 R2

lead time

F, day 1 0.636 0.161 −0.034 −0.348 0.756
AQ7

F, day 2 0.400 0.212 −0.009 −0.159 0.740
F, day 3 0.342 0.192 0.046 −0.154 0.720
F, day 4 0.285 0.152 0.012 −0.066 0.719
F, day 5 0.164 0.140 0.020 0.067 0.655
F, day 6 0.209 0.124 −0.002 −0.011 0.682
F, day 7 0.201 0.130 −0.046 −0.013 0.819
F, day 8 0.218 0.111 −0.034 −0.088 0.818
F, day 9 0.237 0.102 −0.007 −0.150 0.823
F, day 10 0.319 0.090 −0.002 −0.278 0.834
nF, day 1 −0.116 0.354 −0.481 0.488 0.714
nF, day 2 −0.301 0.489 −0.450 0.514 0.684
nF, day 3 −0.159 0.464 −0.366 0.184 0.693
nF, day 4 −0.197 0.430 −0.363 0.190 0.741
nF, day 5 −0.020 0.306 −0.299 −0.026 0.756
nF, day 6 −0.081 0.273 −0.358 0.053 0.763
nF, day 7 −0.163 0.250 −0.273 0.124 0.729
nF, day 8 −0.044 0.214 −0.233 0.008 0.735
nF, day 9 −0.256 0.238 −0.180 0.175 0.687
nF, day 10 −0.047 0.179 −0.141 −0.051 0.685

CRPSS and MAP decreases from days 1 to 4 then increases from
days 6 to 10. It may indicate that wetness influence on CRPSS
initially dominates on day 1, and continues to decline from day
2. The wetness influence is taken over by the sub-basin size CS
up until day 4, after which its influence on CRPSS rises again to
eventually take over CS.

For the non-flooding seasons, the coefficients of determination
R2 of all ten lead times are generally lower than the ones obtained
for the flooding seasons. The coefficient b1 is positive for all
ten lead times, indicating the forecast skill improves as the sub-
basin size increases. The coefficient b2 is always negative and the
absolute values are comparably larger than those in the flooding
seasons. This means the forecast skill may be affected more by

Figure 5. The original and the fitted CRPSS using the multiple regression function
(flooding season, day 2).

the sub-basin mean elevation when orographic rain events may
occur more during the non-flooding seasons. The coefficient b3

is mostly positive except on days 5 and 10. It does not show
any increasing or decreasing trend as what can be seen in the
flooding seasons. The forecast skill tends to be better for those
sub-basins with higher mean annual precipitation. It may be
easier to forecast rain occurrence and magnitude in a relatively
wetter non-flooding season than a drier one.

4.4. Skill dependency on lead times and aggregation of time steps

The three evaluation scores CRPS, RCRPS and CRPSS were
computed at an aggregation of five time steps, namely 3, 6, 12,
24 and 48 h, and all available lead times to investigate whether or
not the forecast skill depends on the aggregation of time steps and
lead times. The obtained scores were then averaged for the five
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flooding and non-flooding seasons respectively. Figure 6 shows
the three evaluation scores averaged for (a) the five flooding
seasons and (b) the five non-flooding seasons for three selected
sub-basins. They are no. 16 (blue dotted lines), 14 (black lines
marked with circles) and 10 (red lines marked with crosses). They

AQ8

are randomly selected from each of the three rows of sub-basins
shown in Figure 4 to represent three categories of sub-basin
sizes. The left, middle and right panels in Figure 6 are CRPS,
RCRPS and CRPSS respectively. The rows from top to bottom
correspond to five aggregated time steps from 3, 6, 12, 24 to
48 h respectively. Because the ECMWF archives forecasts from
T + 0 h to T + 96 h at 3 h intervals, the first row of scores ends
at T + 96 h.

Across the five aggregated time steps, one can see the forecast
performance generally deteriorate as the lead times increase, but
fluctuate up and down for the 3, 6 and 12 h time steps. The
fluctuating pattern is prominent and seems to follow a periodic
cycle every day with an inflexion point occurring after half a day,
hence referred to as the diurnal cycle. This particular diurnal cycle
will be further discussed in section 4.5.

It can be observed from the CRPS in Figure 6 that the forecast
performance seems to worsen significantly as the time step
increases from 3 to 48 h (values increase from around 0.5
to 5). Because the forecasted variable, precipitation in this study,
can assume different magnitudes when it represents different
areas, seasons or aggregated time steps, CRPS becomes an

(a)

(b)

Figure 6. Three performance scores averaged for (a) the five flooding seasons and (b) the five non-flooding seasons for sub-basins nos. 16 (dashed line with dots), 14
(line with circles) and 10 (line with asterisks). Left, middle and right panels are CRPS, RCRPS and CRPSS respectively. The rows from top to bottom correspond to
the aggregated time steps of 3, 6, 12, 24 and 48 h respectively. Because ECMWF archives ensemble forecasts from T + 0 h to T + 96 h at 3 h intervals, the first row of
scores end at T + 96 h.
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incomparable evaluation score. One needs to use RCRPS or
CRPSS if performance comparison needs to be made across
different areas, seasons or aggregated time steps. RCPRS is
simply a normalised score disregarding the magnitude of the
forecasted variable. CRPSS does not only eliminate the effect of
the magnitude of the forecasted variable, it also compares the
forecasts with the relevant climatology. Therefore, RCRPS and
CRPSS are considered in the following comparison. Both RCRPS
and CRPSS demonstrate fluctuating patterns for the sub-daily
time steps. The scores show evident improvement from 3, 6,
12 to 24 h time step. The improvement from 24 to 48 h is only
marginal. This suggests that the forecast performance improves as
the aggregation of time steps becomes larger, although marginal
once aggregation exceeds 24 h. Sub-basin no. 10 shows the best
performance with respect to CRPSS, followed by no. 14, and the
worst is no. 16. This reflects the relationship between CRPSS and
sub-basin size which has already been discussed in section 4.3. In
comparison, Figure 6(b) shows the average scores for the non-
flooding seasons. Similar fluctuating patterns can be observed
for the sub-daily time steps, but their phases are different from
sub-basin to sub-basin.

4.5. Sub-daily skill

To study the diurnal cycle in detail, the mean CRPS value of the
five flooding and five non-flooding seasons for each of the 27 sub-
basins at five different aggregated time steps was computed and
is shown in Figure 7. ECMWF archives precipitation forecasts at
time steps of T + 0 h to T + 96 h at 3 h intervals. This is the reason
why Figure 7(a) ends at 96 h whereas the other four time steps
all run up to 240 h. During the flooding seasons, CRPS values in
Figure 7(a) of all 27 sub-basins generally increase with the increase
of lead times and at a fairly constant pace. In other words, the
forecast performance worsens constantly over the lead times, but
with the exception of the scores computed at sub-daily time steps.
For the 3 h time step, the CRPS values of most sub-basins decrease
from 0300 UTC to a daily minimum at around 1500 UTC (±3 h
depending on the sub-basin). They then rise to a daily maximum
at around Day + 1 0300 UTC (some sub-basins show a small drop
between 2100 UTC and 2400 UTC). In other words, the first daily
cyclic change in CRPS is a decline from 0300 UTC to 1500 UTC
(±3 h) that lasts approximately 12 h, and the second change is a
growth from 1500 UTC (±3 h) to Day + 1 0300 UTC that lasts
for another 12 h. These time intervals correspond to the Beijing
time 1100–2300 for the decline and 2300–Day + 1 1100 for the
growth. The daily minimum CRPS happens at around Beijing
time 2300. In terms of the forecast performance, it improves from
Beijing time 1100 to 2300 and then drops in the next 12 h. For
the non-flooding seasons, the diurnal pattern is not as obvious as
for the flooding season. The CRPS values for the 3 h time interval
during the non-flooding seasons seem to fluctuate randomly with
a very gentle increasing trend. In Figure 7(b), the diurnal pattern
with the same decline and growth cycles as those of the 3 h can be
clearly seen for the flooding season. For the non-flooding season,
the pattern is weak and not consistent for all the sub-basins. In
Figure 7(c), the mean CRPS values computed at 12 h time steps
show a different diurnal pattern from those of the 3 and 6 h
time steps. The daily decline starts from 1200 UTC and ends at
2400 UTC, which is followed by a growth from 2400 to 1200
UTC. While the majority of sub-basins show this pattern, there
are a number of sub-basins that exhibit a rather opposite pattern.
This could be due to the fact that the forecasted precipitation is
aggregated for every 12 h (i.e. 0000–1200, 1200–2400 UTC, etc.)
and the aggregation has interfered with the actual dynamics of the
rainfall events. Additionally, diurnal cycles vary with the locations
of the sub-basins. In Figure 7(d), the forecast performance for
both flooding and non-flooding seasons deteriorates rapidly till
Day 3 (72 h) which is shown as an increase in the mean CRPS
values for all the 27 sub-basins. From the 72th to the 240th
hour, the rate of increase slows down slightly, especially after the

144th hour (Day 6). In Figure 7(e), the turning point of the mean
CRPS values occurs at the 96th hour. Because the precipitation
values are aggregated for every 48 h, it is impossible to capture
the same turning point as in Figure 7(d).

The diurnal cycle in the observed precipitation for
May–September in the domain of central-east China
(105–120◦E, 26–36◦N) was reported in Yu et al.(2007a, 2007b).
The Huai river basin is located in the upper east of this domain.
Their results show that the rainfall events of duration between
1 and 3 h peak around late afternoon, which may be explained
by the diurnal variation of surface solar heating that influences
the diurnal variation of low-level atmospheric stability. Rainfall
events of duration longer than 6 h dominate (>60% of the total
precipitation) in this domain and they tend to peak in the early
morning of each day. The reason for this peak is more complex
than for the late afternoon one. Nesbitt and Zipser (2003) sug-
gest the nocturnal rain is often caused by mesoscale convective
systems (MCS) rather than isolated convection, and the MCS
is the strongest after midnight. Chen et al.(1998, 2000) and Sun
et al.(2005) point out that heavy rainfall of the summer Meiyu
front mostly results from well organised MCS overlapping the
distinctive stratus cloud. The diurnal pattern of the forecast-
ing performance observed in the flooding season may suggest
ECMWF’s EPS is weak in capturing the MCS and hence the
early morning peaks. There are limited numbers of studies that
verify diurnal cycles of NWP-modelled precipitation, although
the ability of NWP to capture diurnal precipitation cycles cannot
be understated. The diurnal cycles in the mesoscale NWP model
from MeteoSwiss are verified using hourly rain-gauge data by
Kaufmann et al.(2003). They find the model performs well in
winter because there is no diurnal forcing, but fails to reproduce
diurnal cycles in summer. The convection starts too early and
lasts a very short time in this model and overestimates the amount
of precipitation. Guichard et al.(2004) investigate modelling of
the diurnal cycle of deep precipitating convection over land using
seven single-column models (SCMs) and three cloud-resolving
models (CRMs). It was found convection occurs too early in
most SCMs due to crude triggering criteria. In the CRMs, the
first clouds appear before noon, but surface rainfall is delayed by
several hours.

The intra-daily precipitation dynamics were looked at by
aggregating both the forecasted and observed precipitation to the
multiple of 3 h from 3 up to 24 h. Figure 8 shows (a) the observed
and (b) forecasted mean of the daily aggregated precipitation
within each season and for all the 27 sub-basins. In the case
of the forecasted mean of the daily aggregated precipitation, it
was computed as the mean of the 51 ensemble members for the
first eight time steps (Day 1) only. The dark black line is the
mean of the mean of the 27 daily aggregated precipitation series.
During the non-flooding seasons, there are two major differences
between the observed and the forecasted: (i) the spread of the
blue lines for the 27 sub-basins is larger in the observed than in
the forecasted precipitation; and (ii) the aggregated precipitation
values obtained from ensemble forecasts are larger than those
from the observed. During the flooding seasons, in addition to
the smaller spread in the forecasted daily precipitation, the major
contrast lies in the intra-daily precipitation dynamics. The black
lines obtained from the observed precipitation are fairly linear,
whereas the black lines obtained from the forecasted precipitation
show an obvious turning point at the ninth hour in a day. The
turning point cannot directly explain the diurnal pattern in the
CRPS values obtained for the flooding seasons, but it does indicate
that the intra-daily rainfall dynamics are not well simulated by
ECMWF’s EPS.

5. Conclusion and outlook

This study has evaluated the performance of ECMWF’s medium-
range ensemble forecasts of precipitation for the Huai river
basin, a midlatitude basin covering a considerably large area
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Figure 7. The mean CRPS over five flooding (left panels) and five non-flooding (right panels) seasons for the 27 sub-basins computed at five aggregated time steps:
AQ9

(a) 3 h, (b) 6 h, (c) 12 h, (d) 24 h, and (e) 48 h. This figure is available in colour online at wileyonlinelibrary.com/journal/qj
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Figure 7. Continued This figure is available in colour online at wileyonlinelibrary.com/journal/qj

(270 000 km2) representing various geographic and climatic
properties. Precipitation forecasts were evaluated in a way relevant
to the hydrological processes of runoff, by considering the river
basin (and sub-basin) as the spatial units of evaluation as opposed
to large aggregated grid-based areas. Only in this way can it be
said whether the forecasts have the potential to be useful for
hydrological prediction such as flood forecasting. It is strongly
recommended that this becomes the norm for precipitation
forecast evaluation.

For the observed precipitation, it was found that the CMORPH-
Gauge merged dataset proves to be of good quality when
cross-checked with the daily rain-gauge data. The dataset enabled
detailed forecast performance evaluation at sub-daily scales
for the first time. The dataset covers almost 5 years which
allowed a long-term and continuous evaluation, rather than
event-based studies. Such continuous evaluation is essential for
truly understanding the quality of any forecasting system. The
CMORPH-Gauge merged dataset systematically underestimates
precipitation, especially high precipitation and this bias should
be corrected for different months, seasons and areas to give
a more credible evaluation of the forecast performance. This
dataset is especially valuable in the assessment of EPS at sub-
daily scales, as the sub-daily precipitation can be important
in hydrological applications (e.g. Wetterhall et al., 2011;
Parkes et al., 2013).

Precipitation forecast performance was found to vary with
sub-basin properties, aggregated time steps and lead times,
and between flooding and non-flooding seasons. This highlights
two salient points: forecast performance can only be evaluated
effectively if the forecast parameters are understood (lead time,
time step) but also importantly if the hydrogeographical attributes
of the study area are also considered (e.g. basin elevation, flood
seasonality, etc.). The study provides answers to the three scientific
questions proposed in the introduction:

(i) For midlatitude sub-basins like the ones in the Huai
river basin, ECMWF’s ensemble forecasts can be used
in forecasting floods with relatively low, medium and high
confidence during flooding seasons for sub-basins with
sizes <2000, 2000–10 000 and >10 000 km2 respectively.
The exception is the sub-basin dominated by high
elevations. During non-flooding seasons, no satisfactory
skills were found for the sub-basins smaller than 2000 km2

but some reasonable skills for the sub-basins larger than
2000 km2. Overall, the forecasts are more skilful in the
flooding seasons than the non-flooding seasons over this
basin.

(ii) The forecast skill at each sub-basin depends on the three
studied sub-basin hydrogeographical properties of basin
size, mean annual precipitation and mean elevation, to
various extents, and seasons as well. Because the obtained

c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc. 139: 000–000 (2013)
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Figure 8. The (a) observed and (b) forecasted mean of the aggregated precipitation within each season and for all the 27 sub-basins. x-axis is the aggregated time in
AQ10

hours. y-axis is the precipitation in mm. The ‘nf’ and ‘f’ above each sub-plot stands for ‘non-flooding season’ and ‘flooding season’ respectively. The dashed line is the
mean (the 27 sub-basins) of the mean (51 ensemble members) of the daily aggregated precipitation of the 27 sub-basins. This figure is available in colour online at
wileyonlinelibrary.com/journal/qj

regression model does not account for the total variability
in CRPSS, other variables that can affect the forecast
performance may need to be considered. Regardless of
the season, larger sub-basins benefit from better forecast
skills because the current forecast model is still limited in
resolving small-scale events. One needs to be cautious
when applying these ensemble forecasts in small-scale
sub-basins, especially those smaller than 2000 km2. The
higher the sub-basin’s mean annual precipitation, the
lower the CRPSS. This means the ensemble forecasts are
less capable for wetter sub-basins, and in particular for the
extreme events. The comparatively lower CRPSS during
non-flooding seasons indicate the ensemble forecasts are
less skilful in simulating rain occurrence and magnitude in
dry seasons. The drier the sub-basin, the more challenges
it presents to the model to correctly forecast the rain.

ECMWF’s EPS does a fairly satisfactory job in forecasting
medium-range precipitation, but needs to improve in
forecasting very high or low precipitation. The forecast skill
also depends on lead times and aggregation of time steps.
Forecast performance worsens as the lead time increases.
The forecast performance improves as the time steps are
aggregated from 3, 6, 12 to 24 h time step. The improvement
from 24 to 48 h is marginal.

(iii) In flooding seasons, the evaluation scores at sub-daily
steps present a prominent and consistent diurnal cycle for
all the 27 sub-basins. The forecast performance improves
from Beijing time 1100 to 2300 and then drops in the
next 12 h. In non-flooding seasons, the diurnal cycle also
exists at sub-daily time steps, although not consistently
across the 27 sub-basins. The reasons for the diurnal cycle
in observed precipitation are still not well understood.

c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc. 139: 000–000 (2013)
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The result suggests ECMWF’s ensemble forecasts may be
unsuccessful in capturing the nocturnal cycle and the MCS
in the study domain. The result also shows the intra-daily
rainfall dynamics are not well simulated by ECMWF’s EPS
and hence the sub-daily ensemble forecasts generated by
the current model version do not benefit the forecasters.
The model performance at sub-daily steps and reasons for
failures need to be studied in more detail in the future.

The Huai river basin used in this study was selected because it
is representative of many types of river basins around the world
and thus conclusions can be to some extent generalised. It can
be said that ECMWF EPS precipitation forecasts are generally
skilful for flood forecasting especially in large river sub-basins.
However, future research is encouraged in other areas of the
world and even at the global scale (Alfieri et al., 2013). Future
research could also consider in more detail the impact of post-
processing methods (Schaake et al., 2010) and the nature of the
rainfall patterns and intensities during flood seasons. As the use
of EPS forecasts in flood forecasting becomes more widespread
across the globe, studies of this nature will become increasingly
important in providing benchmarks for operational forecasting.
Evaluating precipitation forecasts in a hydrologically relevant
way, as demonstrated in this study, is essential in order to fully
understand forecast performance.
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