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Abstract—Software Defined Networking (SDN) provides a
framework to dynamically adjust and re-program the data plane
with the use of flow rules. The realization of highly adaptive SDNs
with the ability to respond to changing demands or recover after
a network failure in a short period of time, hinges on efficient
updates of flow rules. We model the time to deploy a set of flow
rules by the update time at the bottleneck switch, and formulate
the problem of selecting paths to minimize the deployment time
under feasibility constraints as a mixed integer linear program
(MILP). To reduce the computation time of determining flow
rules, we propose efficient heuristics designed to approximate
the minimum-deployment-time solution by relaxing the MILP or
selecting the paths sequentially. Through extensive simulations
we show that our algorithms outperform current, shortest path
based solutions by reducing the total network configuration time
up to 55% while having similar packet loss, in the considered
scenarios. We also demonstrate that in a networked environment
with a certain fraction of failed links, our algorithms are able to
reduce the average time to reestablish disrupted flows by 40%.

Index Terms—Software-defined networks, Configuration man-
agement, Mathematical optimization

I. INTRODUCTION

It is widely recognized that flow configuration, i.e., the
configuration of flow forwarding rules at the SDN switches,
is critical for SDN operation. Configuration updates due to
changed flows must be performed consistently and quickly to
avoid congestion [1], [2], [3], delays [4], loops and policy
violations [3], [5], [6]. In particular, the need to reestablish
disrupted flows caused by failing links as the result of a failure,
congestion or attack on the network infrastructure, motivates
the requirement to perform fast network reconfiguration.

The time required for deploying a given flow configura-
tion is dominated by the time to insert/update flow rules
in the ternary content addressable memory (TCAM) of each
involved switch. Previous works such as [4], [7], [8], [9]
report different per-rule update times ranging from 10ms up to
400ms depending on different models. The deployment time
of network-wide flow rules on a data-center sized topology is
not negligible since rule updates in a single switch must be
performed sequentially to ensure consistency of rules [4], [5],
[6], while multiple switches can be updated in parallel [5], [6].

Moreover, practical networks can require a huge number of
rule updates to support new flows. In [10] the authors show an
example of a 1500-server cluster with a medial flow arrival rate
of 100K per second. A flow configuration algorithm heedless
of the update time can generate thousands of updates per
second at some switches, which causes large flow setup delays
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and severe performance degradation for the majority of flows
(which are short-lived). Meanwhile, it can be computationally
challenging to compute a flow configuration that can satisfy
traffic engineering requirements (e.g., bounded delay, balanced
load), while balancing the rule updates across switches.

If the focus of network providers is on in-process flows,
shortest path routing can be chosen. However, alleviating
congestion or accommodating new flows requires a potentially
disruptive amount of time to install new flow rules. Our
solution provides a trade-off for routing optimization and
reduces the time to reconfigure the network 45 − 55% on
average in typical scenarios, while experiencing negligible
packet loss. In comparison to previous works [9], [11] focusing
on efficient network updates in SDN, we also demonstrate that
our framework is able to reestablish disrupted flows in SDN
more than 40% faster compared to the baseline.

In this paper, we develop an optimization framework and as-
sociate flow configuration algorithms to support fast-changing
flow demands in SDNs, by taking into account both the time
to compute a new flow configuration at the controller and the
time to deploy this configuration at the switches. The focus of
our work are networks with high flow dynamics, such as data-
centers, corporate networks or IoT deployments. As a trade-off
for faster configuration time, our framework generates slightly
longer paths on average, compared to an algorithm which
aims at satisfying flows through paths of minimum length.
In a recent study, He et al. [7] observe a per-hop delay on
SDN-enabled switches of 0.15ms on average, demonstrating
a limited impact of longer paths in data-center networks. In
such scenarios our algorithms achieve an improvement in the
network configuration time in the order of 102ms.

Our framework aims at minimizing the configuration time
while satisfying flow demands under link capacity and path
length constraints. Additional constraints can be formulated to
represent other traffic engineering objectives, such as routing
cost. Specifically, we make the following contributions:

• Formulation of the optimization problem: We formulate a
mixed integer linear program (MILP) to compute the flow
configuration with the minimum deployment time under
feasibility (e.g., link capacity, path length) constraints. We
show that this problem is NP-hard.
• Development of efficient heuristics: We develop a set of

heuristics designed to approximate the minimum time to
deploy a network configuration.
• Evaluation of proposed heuristics: We show via extensive

simulations on sample network topologies that our algo-
rithms reduce the average network configuration time up to
55%, with respect to traditional shortest path approaches.
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II. RELATED WORK
The procedure of deploying flow rules on SDN switches has

been discussed abundantly in the literature. The works in [2],
[5], [6], [9], [12] focus on policy-preserving update procedures
with different techniques.

The work of Vissicchio et al. [5], [6] aims at finding a
schedule of updates that prevents inconsistencies and policy
violations. Their algorithm works very well for a single flow
update, but makes the assumption that each flow is indepen-
dent of other flows. As the authors state, the algorithm might
result in high packet loss rates during the update transition due
to congestion since link capacity is not considered. Brandt et
al. [2] address the problem of scheduling updates so as to avoid
congestion with splittable and unsplittable flows. However,
even though OpenFlow 1.3 supports group tables with unequal
splitting of flows, most implementations of OpenFlow in
current switches do not support splittable flows. The work of
Mizrahi et al. [3] proposes an update of OpenFlow (included
in OpenFlow 1.5) based on the support of the Time Precision
Protocol (TPP) at each switch to avoid inconsistencies in
global updates. While our work focuses on optimizing the
time to compute and deploy a configuration in an SDN-based
network, we discuss in Section VII-A how our approach can be
combined with existing policy-preserving update procedures.

The authors of [13], [14] propose a set of abstract operations
to guarantee consistency between updated configurations in
SDN. Ludwig et al. [15] discuss the problem of consistently
updating a network in order to ensure waypoint enforcement
and loop freedom. Updating routes in a loop-free manner in
SDN is further discussed by Foerster et al. [16].

Inconsistencies in SDN-based network configurations may
occur when rule updates, which are communicated from the
controller to the data-plane via an asynchronous network,
arrive out-of-order. To address such inconsistencies Zheng et
al. [17], [18] present a study of algorithms to configure SDNs
in a way that individual node updates can be scheduled at
specific times. Further, Mizrahi et al. [19] propose a method
to perform accurate time-based rule updates in SDN by using
TimeFlips, which are implemented with the usage of time-
stamp fields in the TCAM memory of a network switch.

The authors of [4], [7], [8] aim to improve the efficiency of
flow rule updates by optimizing the deployment procedure at a
switch’s TCAM. One factor that affects efficient configuration
of SDNs, as pointed out in these papers, is the per-rule update
time which significantly varies by different SDN hardware
switch vendors as pointed out by the authors of [7], [20].
Wen et al. [4] state a per-rule update time of 12-15ms, while
[9] states a per-rule update time reaching 18ms. In [8], 40-50
rules per second is reported, and [7], [20] discuss the high
dependency of rule updates on vendor-specific TCAMs.

The existing literature points out the negative effects of
increasing the number of rules on a switch, including increased
deployment time of rules [9], [20] or increased packet clas-
sification time [8]. Meanwhile, reducing rules by combining
them, e.g. with the use of address prefixes, can have severe
security implications as discussed in [21], [22].

The work from Paris et al. [1] considers the variability of
flow demand as a limitation to the applicability of solutions

even as simple as a Linear Program (LP) formulation of
the problem of flow reconfiguration. The authors consider an
iterative execution of a global flow optimization problem, and
propose the adoption of sub-optimal solution with gradually
lower optimality gap at given time instants.

While the above works focus on reducing the update time
at a single switch [4], [7], [8] or minimizing the link leasing
cost [1], we focus on reducing the total network configuration
time across all switches by optimizing the updates of rules.

III. PROBLEM FORMULATION

In this section we formulate the problem of minimizing
the network update time as an optimization problem. The
nomenclature used in this paper is shown in Table I.

TABLE I: Nomenclature and notation
Notations Descriptions

Input parameters of the network
V Set of nodes in a network
E Set of links in a network
P Set of possible paths in a network
χ Set of pre-computed candidate paths
cij , c̃ij Total/residual capacity of link (i, j)
H, Hn Set of all/new flows
sh, th Source/destination of flow h
dh Rate of flow h generated at the source node
Fi Set of flow rules to be updated/inserted on a switch i
Qi Current flow table size on switch i
wi Per-rule update/insertion time on switch i

Optimization problem parameters
ϕh Upper bound for the number of hops on a path
ahij Current routing of flow h through link (i, j) and switch i
khij Current routing of flow h through link (i, j)

uh
i Current routing of flow h at switch i

Optimization problem decision variables
vhi Path sequence variable of flow h on switch i
zhp Path selection variable of flow h on path p
xhij Link selection variable of flow h on link (i, j)
R Maximum update time minimized over all switches
τi Deployment time on switch i (used in evaluations)

A. Network Model
We model a network as an undirected graph G = (V, E),

where V is the set of switches and E the set of links. Each
link (i, j) ∈ E is associated with a capacity cij . Let H denote
the current set of flows on this network. Each flow h ∈ H is
associated with a source sh, a destination th, and a demand
dh specifying the flow rate. Depending on the construction of
SDN rules, which can be specified by the network operator, a
flow h can be a single flow identified by a pair of IP addresses,
as well as a batch of flows identified by an IP-prefix. Our
framework will compute an assignment of flows on a network
topology, where the detailed definition of a flow h can be
set by the network operator. In our framework, bhi denotes
the volume of flow h generated by switch i, given by bhi =
dh if i = sh, b

h
i = −dh if i = th, and bhi = 0 otherwise.

We assume single-path routing (i.e., unsplittable flows) in
this work, since single-path routing was the technique typically
used in the SDN controllers (POX, Floodlight, OpenDayLight)
and switches (Brocade ICX 6610) at the time we performed
our experiments. We expect that SDNs will be used for multi-
path routing and are planning to extend our models to this
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technique in the future. In our optimization models this can
be achieved by directly using fractional variables instead of
integer variables by rounding a multi-path solution to a single-
path solution as we will further discuss in Sections IV and V.

B. Model of Network Update Time
The delay between the flow arrival and the time the network

is reconfigured to support it includes four components: (a)
queueing delay, where the SDN controller waits for a specific
amount of time or a certain number of flow demands to
be processed in a batch, (b)computation delay, when the
controller calculates the new configuration, (c) communication
delay, which is the time to communicate the new configuration
(i.e., flow rules) to the involved switches, and (d) deployment
delay, which is the time to deploy the rules at the switches.
The dominating factors are (b) and (d) as explained below.

The queueing delay (a) TB defines the time an SDN con-
troller waits until a batch of flows is processed and the network
configuration is updated. In highly dynamic environments such
as data-centers or IoT deployments where the network is
based on SDN, it is beneficial to set the queueing delay to
a specified time threshold such as the lower bound of TCP
retransmission timeout, e.g. 1s as suggested in RFC 793 [23].
As a second option, the queueing delay can also be defined
by setting a threshold to the number of packet-in messages
(i.e. arriving flows) in the SDN controller. In a real network
environment such an approach must be used with caution
since the time between two newly arriving flows is undefined.
Therefore it is recommended to use a combination of both
approaches and trigger a new network configuration whenever
the first threshold condition, waiting time or number of packet-
in messages, is satisfied. Similar models are used for queueing
in Cisco switches [24], considering both delay and number of
arrived packets. As we discuss in Section VI, we use a queue
size threshold of 40 flows in our evaluations.

The (southbound) communication delay (c) TS,i between
the controller and the switch i consists of the transmission
delay plus the propagation delay:

TS,i =
OpenFlow packet size

Control network bandwidth
+

Di

0.75 · c
, (1)

where c is the speed of light1, and Di is the distance from
the controller to the switch i. The second term in Equation
1 depends on the distance between the SDN controller and
switches. Within a range of 103 − 104 meters this delay is in
the range of 10−6s− 10−5s, which can be assumed for most
data-center, IoT and campus network deployments where SDN
is typically applied. In such scenarios this term is orders of
magnitude smaller compared to the first term, and thus TS,i is
roughly the same for all the switches in the same SDN.

The typical bandwidth between the controller and the
switches ranges from 17Mbps [25] to 276Mbps [26] for
modern SDNs. Assuming a bandwidth of 276Mbps and a
maximum OpenFlow packet size of 64KB [27], TS ≈ 1.8ms
for all switches.

The computation (b) and the deployment (d) delays are
in the order of 10–1000ms, dominating the total delay. The

10.75 in the denominator is a reduction factor for c on copper wire.

computation delay depends on the controller hardware and
the flow configuration algorithm, while the deployment delay
depends on the switch hardware and the flow configuration
itself. Our focus is to minimize these delays by designing
efficient flow configuration algorithms, with fast deployment.

To this end, we analyze the impact of flow configuration on
the deployment time. In SDN, deploying a new configuration
requires updating the corresponding rules in the flow tables
of the switches. As observed in [9], the update time of a
flow table tends to grow with the number of updated rules,
as updates on a given switch must be performed sequentially
to ensure consistency [4], [5], [6]. This observation implies
that given a set Fi of rules to be updated at switch i, the total
update time at i, denoted by τi, satisfies

τi(Fi) =
∑
r∈Fi

wi(r), (2)

where wi(r) denotes the time to update a single rule r ∈ Fi.
As observed in [4], [9], the rule update time wi(r) is generally
an increasing function of the current flow table size Qi(r).
In production networks, the flow table size is typically much
larger than the number of updated rules. Since each rule update
changes the flow table size by at most one (if adding/deleting a
rule), this means that Qi(r) can be approximated to a constant
for all r ∈ Fi, which implies that wi(r) ≈ wi for all r ∈ Fi.
Under this assumption, (2) is simplified to τi(Fi) = |Fi|wi.

While updates on a single switch are performed sequentially,
updates on different switches can usually be done concurrently.
This implies that the total time τ(F ) to deploy a set of updated
rules F =

⋃
i∈V Fi across all the switches will be determined

by the switch with the maximum update time, i.e.,

τ(F ) = max
i∈V

wi · |Fi|. (3)

We will discuss the extension of our approach to policy-
preserving updates [5], [6] in Section VII-A.

C. Flow rule deployment times

As discussed in the literature (e.g. [4], [7], [8], [20]) the
time to insert/update a flow rule in the TCAM of SDN-enabled
switches varies significantly depending on different hardware
vendors and rule priorities. Inserting a rule with higher priority
than most other rules may require an expensive re-ordering of
the rules in the hardware TCAM memory, which increases the
update time as discussed by He at al. [7].

He et al. [7] perform measurements on three switches
(IBM, Intel, Broadcom) and report times ranging from as
low as 3ms on an empty switch, to ∼100ms on a switch
that already has a few hundred rules deployed. Katta et al.
[8] perform measurements on a Pica8 switch and report rule
deployment times between 12ms and 80ms. Kuzniar et al. [20]
evaluate three different hardware platforms (HP, Pica8, Dell)
and report per-rule installation/modification times between 33-
400ms. Wen et al. [4] discuss a hardware extension to reduce
deployment times to 12-15ms per flow rule. Measurements of
the per-rule deployment times we conducted on a Brocade ICX
6610 switch range from 350-450ms.
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Fig. 1: Updates at i: rule addition (a), removal (b), change (c).

D. The MinUpdateTime Problem

Our goal is to minimize the network update time by
selecting a path for each flow h ∈ H which minimizes the
maximum number of updated rules per switch, weighted by
its per-rule update time. We represent the path selection by
a decision variable xhij ∈ {0, 1}, which indicates if flow h
traverses link (i, j) ∈ E. Note that although the links are
undirected, the traversals of links are directed. The decision
variables must satisfy the flow conservation constraint∑

j∈V
xhij =

∑
k∈V

xhki + sgn(bhi ), ∀h ∈ H, i ∈ V, (4)

where sgn(y) is the sign function that is 1 if y > 0, −1 if
y < 0, and 0 if y = 0. This constraint ensures that the path
formed by links with xhij = 1 can route the flow from sh to th.
These variables must also satisfy the link capacity constraint∑

h∈H

(xhij + xhji) · dh ≤ cij , ∀(i, j) ∈ E, (5)

where cij is the capacity of link (i, j) ∈ E.
While (4) and (5) are typical constraints in flow configuration,
we have a novel objective, i.e., minimizing the network update
time. As discussed for equation (3), this objective depends on
the number of updated rules at each switch, which depends
not only on the current configuration, but also on the previous
configuration.

To capture the previous path selection, we introduce a
parameter khij ∈ {0, 1}, which indicates whether flow h ∈ H
was using link (i, j) before the update. Note that for a newly
arrived flow h, khij = 0 for all (i, j) ∈ E. Then we have the
following observations: (1) if khij = 1 but flow h no longer
traverses switch i, then the rule for forwarding h needs to be
removed from the flow table of switch i; (2) if khij = 0 but
flow h traverses link (i, j), then either flow h used to traverse
a different link (i, j′) (j′ 6= j) at switch i or it did not traverse
switch i at all; in both cases a rule at switch i needs to be
updated (modified or inserted). The above covers all possible
cases of rule updates.

To write the number of updated rules at a given switch as
a function of xhij’s, we define another parameter ahij :

ahij , 1− khij − uhi , (6)

where uhi , 1−
∏
j∈V (1− khij). From this definition, uhi = 1

if flow h used to traverse switch i and uhi = 0 otherwise.
Parameter ahij can take 1, 0, or −1, where ahij = 1 if flow h
did not traverse switch i; ahij = 0 if flow h did not traverse link
(i, j) but traversed switch i, and ahij = −1 if flow h traversed
link (i, j). For a new flow khij will be 0 and ahij will be 1,
for all (i, j) ∈ E. Note that khij and ahij are determined by the
previous path selection and are thus constants.

Lemma 1. If all the paths carrying flows are cycle-free, then
the number of updated rules at switch i ∈ V is given by∑
h∈H

∑
j:(i,j)∈E(ahij · xhij + khij).

Proof. It suffices to show that for a given flow h,∑
j:(i,j)∈E(ahij ·xhij+khij) = 1 if there is a rule update for flow

h at switch i and
∑
j:(i,j)∈E(ahij · xhij + khij) = 0 otherwise.

To see this, consider the three cases of rule update as
illustrated in Figure 1. In case (a), i.e., flow h was not
traversing switch i but now traverses it via link (i, j), we have
xhij = 1, xhik = 0 for all k 6= j, ahik = 1 and khik = 0 for
all links (i, k) ∈ E, implying

∑
k:(i,k)∈E(ahik · xhik + khik) =∑

k:(i,k)∈E x
h
ik = 1. In case (b), i.e., flow h was traversing link

(i, j) but now no longer traverses switch i, we have xhik = 0
for all (i, k) ∈ E, khij = 1, and khik = 0 for all k 6= j,
implying

∑
k:(i,k)∈E(ahik · xhik + khik) =

∑
k:(i,k)∈E k

h
ik = 1.

In case (c), i.e., flow h was traversing switch i via link (i, j′)
but now traverses it via link (i, j), we have xhij′ = 0, khij′ = 1,
ahij′ = −1, ahij = 0, khij = 0, and xhik = khik = 0 for the other
links (i, k) ∈ E with k /∈ {j, j′}, implying

∑
k:(i,k)∈E(ahik ·

xhik + khik) = (ahij · xhij + khij) + (ahij′ · xhij′ + khij′) = 1.
Moreover, if flow h traverses switch i via the same link

(i, j) at both times, then ahij = −1, xhij = 1, and khij = 1,
while xhik = khik = 0 for the other (i, k) ∈ E (k 6= j), yielding∑
k:(i,k)∈E(ahik · xhik + khik) = 0. Finally, if flow h does not

traverse switch i at both times, then xhij = khij = 0 for all
(i, j) ∈ E, and hence

∑
j:(i,j)∈E(ahij · xhij + khij) = 0.

Note that Lemma 1 only considers flows currently existing
in the network.

Remark: We ignore terminated flows as the rules of ter-
minated flows will expire automatically according to the
OpenFlow protocol [27] and do not require explicit updates.
We now formulate our optimization problem, referred to as
the MinUpdateTime problem as shown in (7).

minR (7a)

s.t. wi
∑
h∈H

∑
j:(i,j)∈E

(ahij · xhij + khij) ≤ R, ∀i ∈ V, (7b)

∑
j∈V

xhij =
∑
k∈V

xhki + sgn(bhi ), ∀h ∈ H, i ∈ V, (7c)∑
h∈H

(xhij + xhji) · dh ≤ cij , ∀(i, j) ∈ E, (7d)∑
i,j∈E

xhij ≤ ϕh, ∀h ∈ H, (7e)

vhi − vhj + 1 ≤ |V |(1− xhij), ∀h ∈ H, (i, j) ∈ E (7f)

vhi ∈ {1, . . . , |V |} ∀h ∈ H, i ∈ V (7g)

xhij ∈ {0, 1}, ∀h ∈ H, (i, j) ∈ E. (7h)

Constraints (7c, 7d) ensure that selected paths route flows
within link capacities. Constraint (7e) ensures that a flow
h is routed on a path not exceeding a length of ϕh hops
which allows to control the end-to-end delay of a flow. Notice
that a path cannot traverse the same switch multiple times
(i.e., cannot contain cycles), as this will cause conflicts in
the forwarding rules. Hence, constraints (7f, 7g) ensure cycle
elimination according to the Miller–Tucker–Zemlin technique
[28] with the introduction of path sequence variables vhi .
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Constraint (7h) ensures that each flow is routed along a single
path, and constraint (7b) ensures that the objective value R
is no smaller than the maximum update time of any switch.
Problem (7) minimizes the network update time due to flow
table updates. We will design efficient algorithms for this
optimization and evaluate the computation time separately
(Section VI). The above formulation can be extended to
model additional traffic engineering objectives, e.g., by adding
constraints on routing cost or load balancing metrics. We leave
the study of these additional constraints to future work.

E. The Non-disruptive MinUpdateTime Problem
The solution to the MinUpdateTime problem (7) can reroute

existing flows, which can cause temporary disruption to
applications relying on these flows. For disruption-sensitive
applications (e.g. real-time streaming or high performance
computing jobs in data center networks), it is desirable that the
configuration is calculated for the new flows only, leaving the
existing flows undisrupted. We therefore define Non-disruptive
MinUpdateTime problem that does not re-route existing flows.
Let Hn ⊆ H denote the set of newly arrived flows. We
consider a variation of (7) that only selects paths for flows
in Hn. Accordingly, constraints (7c, 7h) are only imposed on
xhij where h ∈ Hn. The link capacity constraint (7d) is revised
by replacing the original link capacity cij ((i, j) ∈ E) by the
residual link capacity c̃ij , defined as

c̃ij , cij −
∑

h∈H\Hn

(khij + khji)dh. (8)

The only substantial change is in how we count the number
of rule updates in constraint (7b). Since the updates are only
for the new flows (to add their rules), and ahij ≡ 1 and khij ≡ 0
for a new flow h ∈ Hn, ∀(i, j) ∈ E, we revise constraint (7b)
as follows,

wi
∑
h∈Hn

∑
j:(i,j)∈E

xhij ≤ R, ∀i ∈ V. (9)

Putting the above changes together gives the following
optimization for the Non-disruptive MinUpdateTime problem:

minR (10a)

s.t. wi
∑
h∈Hn

∑
j:(i,j)∈E

xhij ≤ R, ∀i ∈ V, (10b)

∑
j∈V

xhij =
∑
k∈V

xhki + sgn(bhi ), ∀h ∈ Hn, i ∈ V, (10c)∑
h∈Hn

(xhij + xhji) · dh ≤ c̃ij , ∀(i, j) ∈ E, (10d)∑
i,j∈E

xhij ≤ ϕh, ∀h ∈ H, (10e)

vhi − vhj + 1 ≤ |V |(1− xhij), ∀h ∈ Hn, (i, j) ∈ E (10f)

vhi ∈ {1, . . . , |V |} ∀h ∈ Hn, i ∈ V (10g)

xhij ∈ {0, 1}, ∀h ∈ Hn, (i, j) ∈ E. (10h)

F. Properties of the Problems

Checking feasibility of our MinUpdateTime problem (7) or
Non-disruptive MinUpdateTime problem (10) is known as the
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Fig. 2: NP-hardness of MinUpdateTime

specified demand integral multi-commodity flow problem and
is known to be NP-complete [29]. However, in the following
we prove that even if feasibility is given, problems (7) and
(10) are still NP-hard.
Theorem 2. Both the MinUpdateTime problem (7) and the
Non-disruptive MinUpdateTime problem (10) are NP-hard,
even if they are known to be feasible.
Proof. We show the NP-hardness of the Non-Disruptive Min-
UpdateTime problem (10) by reducing the classic formulation
of the Knapsack problem to a specific instance of the Non-
Disruptive MinUpdateTime problem in polynomial time. We
select an instance of Non-Disruptive MinUpdateTime which
starts with an offloaded network, so that the same proof will
hold for both the general version (7) and the non-disruptive
(10) version. We recall that the Knapsack problem considers
a knapsack of size S, and a set of items I , where each item
i ∈ I has a size Si and a value Vi > 0. The problem is to find
a subset I ′ ⊆ I such that S(I ′) ≤ S and V (I ′) is maximized,
where S(I ′) =

∑
i∈I′ Si and V (I ′) =

∑
i∈I′ Vi. Given an

instance of the Knapsack problem, we construct an instance
of the Non-Disruptive MinUpdateTime problem as illustrated
in Figure 2. For each Knapsack item i ∈ I , with h = |I|,
we construct: a single source node si, requiring to transmit a
flow of Si units to a destination node d; a node fi, sending
Vi + 1 flows to a destination node dε, for a total amount of
ε units of flow, where ε is an arbitrarily small value, with
ε < mini∈I Si; the intermediate nodes ui and vi connected
to the source nodes through the links (si, ui) and (si, vi) of
capacity Si and links (fi, ui) and (fi, vi) of capacity ε. We
then have two intermediate nodes w and z such that each node
ui, i ∈ I , is connected to w via a link of capacity Si, and
each node vi is connected to z via a link of the same capacity.
Node w is also connected to a node m, with link (m,w) of
capacity ε∗. The node m generates Λ equal flows directed to
dε, with Λ , d

∑
i∈I(Vi + 1)e, for a total flow equal to ε∗.

Finally, nodes w and z are connected to the destination nodes
d and dε. The capacity of the link (w, d) is S, the same as
the Knapsack.

Notice that this construction ensures that any feasible rout-
ing will allow either a single flow of size Si through node ui,
and Vi+1 flows of total size ε through vi, or vice versa, i.e. a
flow of size Si through vi and Vi + 1 flows of size ε through
ui. The capacity of link (w, d) allows only a limited number of
sources among {s1, . . . , sh} to route their flow through node
w to d. The capacity limitation on link (w, d) is the key to the
correspondence of our construction to the original Knapsack
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problem. Link (w, d) can only accommodate a number of
single source flows Si up to capacity S. All the other single
source flows, exceeding the capacity S of link (w, d) will be
routed to d via node z. In fact, the capacity of the link (z, d)
is an arbitrarily large value M , where M ≥

∑
i∈I Si, having

room for all the unique source flows to be routed to node d.
The capacity of links (w, dε) and (z, dε) is equal to hε+ε∗

and to hε, respectively. In order to force the routing of as
many single source flows as possible through link (w, d) we
set ε and ε∗ such that hε + ε∗ < mini∈I Si. Furthermore,
we set hε < ε∗/Λ so that the only route available to the
flows generated by m is across link (w, dε). Notice that
this construction, together with the capacity limitations of
the considered links, imposes that the router with maximum
number of rule updates is always w, regardless of the flow
routing decision. MinUpdateTime should therefore minimize
the number of rules of node w. We introduce a binary decision
variable zi, to reflect the decision (zi = 1) to route the single
flow Si from node si to node ui and the multiple flows coming
from node fi will be routed through node vi. If instead flow
Si is routed along link (si, vi) (zi = 0) the multiple flows
from fi will traverse link (fi, ui).

A solution is feasible for the constructed Non-Disruptive
MinUpdateTime if and only if the selected flows Si routed
through link (w, d) for a capacity

∑
i∈I zi · Si do not exceed

S. This is equivalent to selecting a subset of items I ′ ⊆ I of
the Knapsack problem, for which i ∈ I ′ if zi = 1, such that
the size S(I ′) does not exceed the Knapsack capacity S.

With this construction, the optimal number of rules on node
w is n(w) = minzi:i∈I{Λ +

∑
i∈I [zi · 1 + (1 − zi) · (Vi +

1)]} = minzi:i∈I [Λ + |I|+
∑
i∈I Vi · (1− zi)] 2. Solving the

MinUpdateTime optimally also requires finding the values of
the binary variables zi that minimize n(w) which is equivalent
to maximizing

∑
i∈I zi ·Vi, the value of the Knapsack, which

concludes the proof.
Discussion: The problems (7) and (10) implicitly assume

that proper admission control has been implemented to guar-
antee the feasibility of the flow demand H . For unsplittable
flows, the admission control problem itself is NP-hard, but
can be approximated to a ratio of O(∆α−1 log2 |V |), where
∆ is the maximum node degree and α the expansion of the
network topology [30]. Here we assume that the demands are
feasible to focus on the problem of minimizing the network
update time among the feasible flow configurations.

IV. UNRESTRICTED PATH SELECTION ALGORITHMS

To reconfigure the network under changes in flow demands,
we consider the following algorithms: (i) a shortest path
algorithm that routes the flows sequentially such that each
flow uses the path with the smallest hop count with sufficient
residual capacity to carry this flow, (ii) a randomized rounding
algorithm that solves the optimization (7) (or (10)) via linear
programming (LP) relaxation followed by randomized round-
ing, and (iii) a minimax path algorithm that routes the flows

2Notice that routing some multiple source flows from z through d and w
to reach dε would be sub-optimal for the MinUpdateTime problem, as an
equivalent solution with fewer rules installed on w is possible by routing
these flows directly from z to dε through link (z, dε).

sequentially on the feasible path that minimizes the maximum
per-rule update time among the traversed switches. The non-
disruptive constraint can be applied to all algorithms.

These algorithms are considered for different reasons: (i) is
a baseline that is widely used in practice, (ii) is a standard
technique to approximate the solution of MILPs, and (iii)
solves a sequential variation of our optimization (7, 10) by
considering one flow at a time. All these algorithms are
unrestricted in the sense that they allow flows to be routed
along any path in the network, which is in contrast to restricted
routing as presented later (Section V).

A. Shortest Path Algorithm
As a baseline, we try to route each flow on the shortest

available path. Algorithm 1 considers the flows in an arbitrary
order (line 4). For each flow h under consideration, it computes
the subgraph formed by links with sufficient residual capacity
to carry the flow (line 5), finds the shortest (i.e., minimum
hop count) path in this subgraph between the source and
the destination of flow h (line 6), and selects this path
for the flow (line 8). After selecting a path, it updates the
residual link capacities for the traversed links (line 9) before
processing the next flow. At the end, the algorithm returns
x = (xhij)h∈H,(i,j)∈E indicating the selected links (which form
a path) for each flow. If the flow configuration has to be non-
disruptive, then the initial residual capacity (line 3) will be the
remaining link capacities left by existing flows, and the loop
(lines 4–9) will only be performed for new flows. Since the
primary objective of a shortest path algorithm is to follow the
traffic engineering goal of minimizing path lengths, we do not
have to add the constraint to limit the number of hops ϕh as
discussed in Section III-D.
Algorithm 1 ShortestPath(G, H)

1: x = 0
2: for all (i, j) ∈ E do
3: c̃ij = cij
4: for all h ∈ H do
5: Gh = G − {(i, j) ∈ E : c̃ij < dh}
6: ph = shortest path(Gh, sh, th)
7: for all (i, j) ∈ ph do
8: xhij = 1
9: c̃ij = c̃ij − dh

10: return x

Complexity: Finding the minimum hop count path between
a given pair of nodes (line 6) can be done in O(|E|) time via
a breadth first search, and thus the computation for each flow
(lines 5–9) has complexity O(|E|). Since the algorithm routes
the flows one by one, its overall complexity is O(|H| · |E|).

Remark: Although not designed to optimize the network
update time, the shortest path algorithm strives to optimize
a related metric: minimizing the hop count minimizes the
number of rules installed across all the switches.

B. Randomized Rounding Algorithm

The MILP formulation of the MinUpdateTime problem
(7) and its non-disruptive version (10) allows us to leverage
standard techniques to the approximation of MILPs. In par-
ticular, randomized rounding (RR) is a widely used approach
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to approximate integer linear programs (ILPs) and MILPs.
Below, we will discuss the application of randomized rounding
to solve (7), and similar steps can be used to solve (10).

As shown in Algorithm 2, randomized rounding first (line 2)
solves an LP relaxation of (7). Such a relaxation is obtained by
replacing the integer variable xhij by a fractional variable fhij ,
and replacing the integer constraint (7h) by a linear constraint
fhij ∈ [0, 1]. Moreover, we remove the cycle avoidance
constraints (7f). After solving the LP for a link-level fractional
solution fhij , we convert it into a path-level fractional solution,
where fhp is the fraction of flow h routed on the cycle-free path
p (line 3). This is done by the subroutine fractional path,
based on a maximum flow algorithm as explained below.
Viewing the fraction fhp as the probability of routing flow
h on path p, we round the fractional solution to an integral
solution by randomly selecting a single path for each flow
h ∈ H according to the distribution (fhp )p∈P (line 7). Since
after rounding, some links may exceed their capacities, we
further check for sufficient residual capacity on the selected
path before assigning a flow (line 8). If the path does not have
sufficient residual capacity, the flow will be dropped.

Algorithm 2 RandomizedRounding(G, H)
1: x = 0
2: (fh

ij)h∈H,(i,j)∈E = MinUpdateTime LP(G, H)
3: (fh

p )h∈H,p∈P = fractional path(G, (fh
ij)h∈H,(i,j)∈E)

4: for all (i, j) ∈ E do
5: c̃ij = cij
6: for all h ∈ H do
7: randomly sample ph according to distribution (fh

p )p∈P

8: if c̃ij ≥ dh for all (i, j) ∈ ph then
9: for all (i, j) ∈ ph do

10: xhij = 1
11: c̃ij = c̃ij − dh
12: return x

As discussed, Algorithm 2 relies on a subroutine frac-
tional path (line 3) to convert the link-level fractional solution
given by the LP relaxation to a path-level fractional solution
used for rounding, with cycle-free paths. This subroutine
can be implemented by the Edmonds-Karp algorithm [31] as
follows. Given a network G = (V, E) with “link capacities”
fhij for each (i, j) ∈ E, we route a flow of demand dh from
node sh to node th by repeating the following steps:

1) find a path p from sh to th with bottleneck residual
capacity f (f > 0) using breadth first search;

2) route f units of flow h on path p (i.e., fhp = f ) and
subtract f from the residual capacities of links on p.

We repeat the above steps until there is no path from sh to
th with positive residual capacity. Let Ph be the set of paths
used for flow h and fhp (p ∈ Ph) the fraction of flow on
each path. The flow conservation constraint (7c) guarantees
that

∑
p∈Ph

fhp = 1. Then applying this algorithm to all h ∈ H
provides the path-level fractional solution (fhp )h∈H,p∈P for all
the flows, where P =

⋃
h∈H Ph (fhp ≡ 0 for all p ∈ P \ Ph).

Complexity: The bottleneck of the randomized rounding
algorithm is solving the LP relaxation (line 2), which can
be done in polynomial time using interior point methods.
Specifically, the LP relaxation of (7) has O(|H| · |E|) vari-
ables and O(|H| · |E|) constraints, assuming |V | = O(|E|).

Using Karmarkar’s algorithm [32], this LP can be solved in
O(|H|7.5 · |E|7.5) time. We note that the link-level to path-
level conversion (line 3) can be done in O(|H| · |E|2), where
each run of Edmonds-Karp takes O(|E|2), as finding a path
by breadth first search takes O(|E|) and each path saturates
at least one link. The overall complexity of the randomized
rounding algorithm is therefore O(|H|7.5 · |E|7.5).

C. Minimax Path Algorithm

As is shown later (Section VI), solving the LP relaxation of
(7) described in Section IV-B still requires a computation time
that is significantly larger than the time to deploy the rules for
reasonably large networks. For a significant reduction of the
complexity, we propose a minimax path algorithm as follows.

The basic idea is that instead of jointly routing all the flows,
we consider one flow at a time as in the baseline solution
(Section IV-A). The difference from the baseline is that for
each flow h, we select the path with the minimum update
time by solving the optimization (7) with H = {h} and cij
being the current residual capacity on link (i, j) ∈ E. We have
two key observations:

1) if we consider flows in an ordered sequence where
existing flows come before new ones, the optimal solution
to (7) is not to reroute any existing flow. This occurs when
the optimization problem (7) is used to solve iterations of a
greedy approach, such as minimax path, which processes flows
sequentially, without a global view.

2) for a new flow, the objective value of (7) equals
maxi∈ph wi for the selected path ph, i.e., the maximum per-
rule update time among the switches traversed by this flow.

Therefore, the optimal solution to (7) when considering one
flow at a time (with existing flows considered first) is to keep
each existing flow as is, and route each new flow on the
path that minimizes the maximum per-rule update time among
all the paths with sufficient residual capacity. Note that this
solution is always non-disruptive.

The above observations lead to a path selection algorithm
similar to Algorithm 1, except that line 3 initializes the residual
capacity to be the capacity left by the existing flows, line 4
only iterates among the new flows, and line 6 is replaced by

ph = minimax path(Gh, sh, th, ϕh), (11)

which selects the path from sh to th in Gh that minimizes the
maximum per-rule update time among the traversed nodes and
is limited to a number of ϕh hops on a path. Similar to the
subroutine shortest path in Algorithm 1, subroutine (11) may
not be able to find any path for a flow, in which case the flow
will be dropped.

The minimax path problem can be solved by modifying
any shortest path algorithm to change the calculation of path
length from the sum of link/node weights to the maximum of
link/node weights [33].

Complexity: Using the minimax version of the Dijkstra’s
algorithm, minimax path(Gh, sh, th, ϕh) can be computed
in O(|E|+ |V | log |V |) time. Thus, the overall minimax path
algorithm has a complexity of O(|Hn| · (|E|+ |V | log |V |)).
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V. RESTRICTED PATH SELECTION ALGORITHMS

In large networks, computing paths from scratch is time-
consuming and can become the bottleneck of network updates
(see Section VI). To address this challenge, we propose to
reduce the solution space by restricting each flow to a set of
candidate paths, inspiring a two-step solution: (1) step one
computes a set of candidate paths offline for each switch pair,
and (2) step two selects one of the candidate paths online for
each flow.

A. Offline Path Computation

The first step aims at precomputing a set of paths between
each pair of nodes with minimum overlap, such that they will
provide enough diversity to route the flows to avoid excessive
updates at any single switch. We precompute χ paths per
switch pair, where χ is a design parameter that controls the
trade-off between complexity (i.e., time to compute the rules)
and optimality (i.e., time to deploy the rules). Specifically,
given a parameter χ and a switch source-destination pair (s, t),
we want to find χ paths from s to t such that the maximum
number of paths traversing the same switch is minimized.

This problem is structurally similar to the Non-Disruptive
MinUpdateTime problem in (10): if wi ≡ 1 for all i ∈ V ,
the objective of (10) is precisely to minimize the maximum
number of flows in Hn that traverse the same switch. The
difference is that the link capacity constraint (10d) no longer
applies since we are precomputing paths instead of routing
flows. Cycle avoidance constraints (10f) are also removed to
reduce the complexity without affecting the optimal solution,
as we can remove cycles in a given solution without increasing
the objective value. Thus, the problem of computing candidate
paths, referred to as the CandidatePath problem, is a special
case of (10) for Hn = {1, . . . , χ}, hereby denoted with [χ],
(sh, th) ≡ (s, t) for all h ∈ [χ], wi ≡ 1 for all i ∈ V , and
c̃ij =∞ for all (i, j) ∈ E, i.e.,

minR (12a)

s.t.
∑
h∈[χ]

∑
j:(i,j)∈E

xhij ≤ R, ∀i ∈ V \ {s, t}, (12b)

∑
j∈V

xhij =
∑
k∈V

xhki + bi, ∀h ∈ [χ], i ∈ V, (12c)∑
i,j∈E

xhij ≤ ϕh, ∀h ∈ [χ], (12d)

xhij ∈ {0, 1}, ∀h ∈ [χ], (i, j) ∈ E, (12e)

where bi = 1 if i = s, bi = −1 if i = t, bi = 0 otherwise.
The maximum length of a candidate path, ϕh, is specified
by constraint (12d). Note that we exclude s and t in (12b)
to avoid the trivial solution of χ identical paths, as s and
t have to be on every path. After solving (12), each set of
links {(i, j) ∈ E : xhij = 1} (∀h ∈ [χ]) forms a candidate
path for the switch pair (s, t). The setting of χ depends
on the network topology and on the possibilities to compute
paths with minimum overlap. If there are fewer than χ non-
overlapping paths, the optimization model (12) returns less
than χ paths. This affects the performance of our restricted
paths approach since there are fewer options to distribute the
load of flow rule updates.

Complexity: In contrast to the hardness of (10), its special
case (12) can be solved in polynomial time as all the flows
h ∈ [χ] have the same source and the same destination. Given
R, we can check whether there exist χ paths from s to t that
do not traverse a node more than R times by computing the
maximum flow between s to t under node capacity constraint
R, as there exist such χ paths if and only if the maximum
flow is at least χ. Based on the result of the check, we can
use binary search to find the minimum R for which the check
is positive. As each check can be performed in O(|E|χ) time
by the Ford-Fulkerson algorithm [31], and the binary search
takes at most O(logχ) steps (as the optimal R is bounded by
χ), the overall complexity of solving (12) is O(|E|χ logχ).

B. Online Path Selection
The second step aims at selecting one path per flow from

the candidate paths to minimize the network update time under
link capacity constraints.

Formulating this problem as an optimization requires rewrit-
ing the optimization (7) in terms of a new decision variable
zhp ∈ {0, 1}, which indicates whether path p is selected to
carry flow h. Specifically, let Ph denote the set of candidate
paths for flow h (which is precomputed for any switch pair
(sh, th)), and Phij , {p ∈ Ph : (i, j) ∈ p} the subset of
candidate paths traversing link (i, j) ∈ E. It is easy to see that
flow h traverses link (i, j) if and only if it is routed on one of
the paths in Phij , i.e., xhij =

∑
p∈Ph

ij
zhp . Moreover, since every

candidate path in Ph is guaranteed to connect sh and th, we
can satisfy flow conservation by ensuring that

∑
p∈Ph

zhp = 1.
We can rewrite the MinUpdateTime problem in (7) as follows:

minR, s.t. (13a)

wi
∑
h∈H

∑
j:(i,j)∈E

(
ahij(

∑
p∈Ph

ij

zhp ) + khij

)
≤R, ∀i ∈ V, (13b)

∑
p∈Ph

zhp = 1, ∀h ∈ H, (13c)∑
h∈H

dh · (
∑
p∈Ph

ij

zhp ) ≤ cij , ∀(i, j) ∈ E, (13d)

zhp ∈ {0, 1}, ∀h ∈ H, p ∈ Ph, (13e)

where ahij and khij in (13b) are constants as defined in (7). It
is easy to see that if Ph contains all possible paths from sh
to th, then (13) is equivalent to (7), which is hard to solve.
The key difference here is that Ph is limited to a subset of
all possible paths (i.e., the candidate paths), thus allowing
faster computation. Thus, we refer to (13) as the Restricted
MinUpdateTime problem.

If the flow configuration has to be non-disruptive (as in
(10)), then constraint (13b) will be reduced to

wi
∑
h∈H

∑
p∈Ph

i

zhp ≤ R, ∀i ∈ V, (14)

where Phi , {p ∈ Ph : i ∈ p} is the set of candidate paths
for flow h that traverses switch i.

Feasibility: An issue with limiting Ph to the precomputed
paths is that a set of flows that are originally feasible may
become infeasible under the constraint, i.e., there is no feasible
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solution to (13). This issue can be addressed by applying
admission control before routing flows by (13), which selects a
subset of flows H ′ ⊆ H to ensure feasibility while maximizing
certain measure of profit. For example, to minimize the total
packet loss, we can define the profit for each flow h to be its
demand dh, and to minimize the number of dropped flows,
we can define a uniform profit for each flow. Both of these
problems are special cases of the unsplittable flow problem
(UFP), which is NP-hard but approximable [30]. Our focus
is not on UFP; instead, we can apply any existing solution to
UFP and feed the set of admitted flows to (13).
Hardness: The simplest non-trivial case of (13) is χ = 2.
However, even this case is NP-hard as shown below.
Corollary 3. The Restricted MinUpdateTime problem (13) is
NP-hard for any χ ≥ 2.

It suffices to show that (13) is NP-hard for χ = 2 in the
special case of H = Hn. This is directly implied by the
proof of Theorem 2, which reduces the knapsack problem by
constructing an instance of (13) where each flow has at most
two different paths to choose from. The hardness of finding
the optimal solution to the Restricted MinUpdateTime problem
motivates the search for efficient alternatives. In theory, any
unrestricted path selection algorithm can be modified to select
from the candidate paths. Below we modify the algorithms
presented in Section IV.

1) Restricted Shortest Path Algorithm: The shortest path
algorithm in Algorithm 1 can be applied to the Restricted
MinUpdateTime problem by limiting its search of the shortest
path to the candidate paths for each flow. Specifically, line 5
is replaced by finding the subset of candidate paths with
sufficient residual capacity:

P̃h = {p ∈ Ph : min
(i,j)∈p

c̃ij ≥ dh}, (15)

and line 6 is replaced by selecting the shortest path in P̃h:

ph = arg min
p∈P̃h

|p|, (16)

where |p| is the hop count of path p. If no candidate path has
sufficient residual capacity to carry this flow (i.e., P̃h = ∅),
then the flow will be dropped.

Complexity: Both finding valid candidate paths by (15) and
finding the shortest path by (16) takes O(χ·|E|) time, and thus
the restricted shortest path algorithm has complexity O(|H| ·
χ·|E|). If the design parameter χ is set to a constant (i.e., χ =
O(1)), the complexity becomes O(|H| · |E|). This is the same
as the unrestricted shortest path algorithm (Section IV-A).

2) Restricted Randomized Rounding Algorithm: We can ap-
ply the idea of randomized rounding to the MILP formulation
in (13). Given a fractional solution zhp ∈ [0, 1] to the LP
relaxation of (13), we can round it to an integral solution by
following the same steps as in Algorithm 2.

Complexity: By similar analysis as in Section IV-B, we
see that solving the LP relaxation takes O(χ5.5|H|5.5(|E| +
χ|H|)2) time as there are O(χ|H|) decision variables and
O(|E|+ χ|H|) constraints, while the rounding takes O(|H| ·
|E|) time. Thus, using randomized rounding to solve (13) has
complexity O(χ5.5|H|5.5(|E| + χ|H|)2). If χ = O(1), then

this complexity becomes max(O(|H|5.5|E|2), O(|H|7.5)),
which is reduced from the O(|H|7.5|E|7.5) complexity of
applying randomized rounding to the unrestricted problem (7).

3) Restricted Minimax Path Algorithm: To adapt the min-
imax path algorithm (Section IV-C), we again consider one
flow at a time with existing flows considered first, except
that now our goal is to solve (13) for H = {h}, where h
is the flow under consideration. Similar to the observations
made in Section IV-C, we observe that the optimal solution to
(13) for an existing flow is not to reroute it, and the optimal
solution for a new flow is to route it on the path that minimizes
the maximum per-rule update time among the candidate paths
for this flow. These observations imply an algorithm similar
to the minimax path algorithm, except that the subroutine
minimax path in (11), which selects the path that minimizes
the maximum per-rule update time among all possible paths, is
replaced by selecting from the candidate paths with sufficient
residual capacity:

ph = arg min
p∈P̃h

max
i∈p

wi, (17)

where P̃h is the set of candidate paths with sufficient residual
capacity for flow h as defined in (15). Again, if no candidate
path has sufficient residual capacity (i.e., P̃h = ∅), then the
flow will be dropped.

Complexity: For each flow h ∈ Hn, finding candidate paths
by (15) takes O(χ · |E|) time, and selecting the minimax path
by (17) takes O(χ·|V |) time. Thus, the restricted minimax path
algorithm has complexity O(|Hn| · χ · |E|) = O(|Hn| · |E|),
assuming |V | = O(|E|) and χ = O(1). This is essentially the
same complexity of the unrestricted minimax path algorithm.

TABLE II: Complexity comparison (assuming χ = O(1))
Unrestricted Path Selection

Shortest Path Minimax Path Randomized Rounding
O(|H||E|) O(|Hn|(|E|+ |V | log |V |)) O(|H|7.5|E|7.5)

Restricted Path Selection
Shortest Path Minimax Path Randomized Rounding
O(|H||E|) O(|Hn||E|) O(|H|5.5(|E|+ |H|)2)

C. Complexity Comparison

We summarize the complexities of the proposed algorithms
in Table II, the number of candidate paths per switch source-
destination pair is assumed as a constant, i.e., χ = O(1).

From the comparison, we see that the complexities of the
shortest path algorithm and the minimax path algorithm grow
linearly with the number of flows, while the complexity of the
randomized rounding algorithm grows as a high-order poly-
nomial. This is because the first two algorithms process the
flows sequentially, while the randomized rounding algorithm
processes the flows jointly.

VI. EVALUATION
A. Test Environment

To simulate realistic SDNs, we use the Rocketfuel topolo-
gies [34], which are used in many recent publications on
SDN such as [5], [6], [35], [36], [37], [38] as well as fat-tree
topologies [39] that are typically used in data-center networks.
We present the results based on the Rocketfuel topology
AS1239 with 1944 links and 315 nodes, for a capacity of
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TABLE III: Average experimental results
Non-Disr. Rocketfuel Disruptive Rocketfuel Non-Disr. Fat Tree Disruptive Fat Tree

Ttotal Tdeploy % loss Ttotal Tdeploy % loss Ttotal Tdeploy % loss Ttotal Tdeploy % loss
Restricted Minimax 1.73s 1.73s 0.08% 1.72s 1.72s 0.13% 3.52s 3.52s 0.17% 3.41s 3.41s 0.93%
Unrestricted Minimax 1.59s 1.47s 0.0% 1.55s 1.46s 0.0% 1.77s 1.64s 0.0% 1.76s 1.66s 0.0%
Restricted RR 1.23s 1.22s 0.02% 2.24s 2.18s 0.06% 3.26s 3.26s 0.01% 4.92s 4.88s 0.0%
Unrestricted RR 16.52s 1.18s 0.64% 908.21s 4.8s 0.06% 2.43s 1.82s 0.21% 59.06s 6.14s 0.0%
Restricted Shortest 1.68s 1.68s 0.45% 1.65s 1.64s 0.54% 3.86s 3.86s 0.45% 3.84s 3.83s 0.44%
Baseline (Unrestricted Shortest) 2.23s 2.06s 0.0% 2.68s 2.06s 0.0% 3.67s 3.48s 0.0% 4.24s 3.46s 0.0%

12 for every link and results from an 8-ary fat-tree with 1280
links and 256 server nodes and a link capacity of 25.

To evaluate dynamic flow demands, 40 flows with a value
of 1 arrive in our network every computation round, while 10
previous flows depart. The source and destination nodes of a
flow are selected based on a random distribution. A number of
χ = 25 candidate paths for every node (switch) pair, is used
for the restricted algorithms. To emphasize the evaluation of
our algorithms and models on network configuration time, we
set a loose bound on the number of maximum hops per path
for a flow h of ϕh = 15.

Considering the measurements of per-rule deployment times
discussed in Section III-C, we consider an average duration for
insertion/modification of SDN rules of 250ms per-rule in our
experiments. We also evaluate our framework by simulating
switches optimized for fast rule deployment, which require
hardware extension as discussed by Wen et al. [4] where we
assume a per-rule update time of 15ms.

We run our algorithms in Python and use the Gurobi solver
(version 7.0.2) on a computer with Ubuntu 14.04 64bit, an
Intel i7 8-core @ 3.60GHz processor, and 16GB memory.
B. Evaluation Metrics

In each round of simulation, we evaluate the flow config-
uration algorithms in terms of how promptly they update the
network and how well they satisfy the flow demands. The
promptness is measured by both the time to compute the set
of new rules, denoted by Tcompute, and the time to deploy
these rules at the switches, denoted by Tdeploy. Based on
these metrics, we evaluate the total network configuration time
Ttotal = Tcompute + Tdeploy. In our simulations, Tcompute is
directly measured, but Tdeploy is calculated based on the num-
ber of updated rules per switch as in Equation (3). We ignore
the queueing delay TB and the southbound communication
delay TS as they are negligible compared to Tcompute and
Tdeploy in our evaluations. Moreover, since the algorithms
also differ in how much flow demand they can satisfy, we
measure the packet loss in percentage of the overall demand.
To compute the percentage of packet loss we calculate the
ratio between the total demand of the dropped flows and
the total amount of demand from all flows, in number of
packets. Here, the parameter dh can be seen as the amount
of packets transferred by a flow h. We run our algorithms
in two different modes: 1) disruptive, where rules of existing
flows can be updated in addition to accommodating new flows
and 2) non-disruptive, where only rules for newly arriving
flows are added. In the presented evaluations we use the
unrestricted shortest path algorithm as a comparison baseline
for our proposed algorithms and models.
C. Evaluation results for varying flow demand

In the Rocketfuel topologies, the best performing algorithm
in the non-disruptive case shown in Figure 3 is restricted

random rounding; it shows the lowest total configuration time
and has a negligible packet loss of 0.02%. The packet loss in
the random rounding based algorithms is due to the rounding
step which may cause congestion.

In Figure 4 we consider the disruptive case. Unlike the min-
imax algorithm, which is always non-disruptive, the shortest
path and the randomized rounding algorithms show worse
computation time in the disruptive case since more flows
have to be processed in each round. For the trade-off of
longer computation time, the introduced algorithms cause
lower packet loss by adjusting existing flows. The unrestricted
minimax algorithm shows the best performance overall in the
disruptive case.

In an 8-ary fat-tree topology, which is typical for a data-
center, we can observe that our unrestricted minimax as well
as the unrestricted randomized rounding algorithms show the
best performance in the non-disruptive case, shown in Figure
5. We can observe that in the disruptive case, shown in Figure
6, the best performance is shown by the unrestricted minimax
algorithm, similar to the Rocketfuel topology.

The deployment time for the unrestricted random rounding
algorithm is increasing in the disruptive case in both topolo-
gies. One reason for this behavior is the random rounding step,
as discussed in Section IV-B, which may cause additional flow
rule updates on a switch due to its random path selection.

In Table III we summarize the results averaged over all
the computation rounds. Our best-performing algorithms out-
perform the baseline (unrestricted) shortest path algorithm in
minimizing the update time, while having similar performance
in packet loss. On the Rocketfuel topologies, our algorithms
reduce the network update time by 40% − 45% on average
and by 50%− 55% on fat-tree topologies.

For the same experiment, computing the network configu-
ration times on switches using a hardware extension to reduce
the per-rule deployment time to 15ms, our framework is able
to reduce the network configuration time to 80ms compared
to 300ms of the baseline algorithm in the non-disruptive
case. In the disruptive case, our framework is able to reduce
the network configuration time from 750ms, required by the
baseline algorithm, to 170ms. This shows that our solution
still achieves significant improvement if switches with small
per-rule deployment times are used.

D. Evaluation results for failure recovery

Recovery from failures of links or nodes is critical to main-
tain connectivity and availability of a network. To demonstrate
that our algorithms are able to minimize the delay to reestab-
lish disrupted flows, we consider scenarios where a certain
fraction of links have failed. Such scenarios are typical for
environments where networked devices are deployed in hostile
environments where parts of the network can be compromised
(e.g. due to an attack on the network infrastructure).
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To analyze the performance of our proposed algorithms in
such a scenario, we randomly select a certain fraction of links
in the Rocketfuel AS1239 topology to be unavailable, and test
the performance of our algorithms under such conditions.

In the described scenario, where a certain fraction of links
have failed, parts of the network may be disconnected. In case
the source and destination nodes of a specific packet flow
are located in disconnected parts of the network, it is not
possible to determine a path between those endpoints. Since
the Unrestricted Random Rounding and Restricted Random
Rounding models are based on solving linear programs, as
introduced in (7) and (13), for a batch of flows, solving these
models becomes infeasible if no path for a flow between two
endpoints exists. Therefore we do not consider these models
in the failure recovery evaluation.

In a scenario under the presence of adversaries which cause
a certain fraction of links to fail, existing flows that are
disrupted due to a compromised link have to be rerouted
whenever possible to reestablish the connection. The main
goal of our framework to tackle compromised links, is to
reroute affected flows whenever possible to reestablish the
network services as fast as possible to minimize disruption.
To evaluate our algorithms to recover flows, in the described
scenario we compute a network configuration for the affected
flows in addition to newly arriving flows, which is similar to
a non-disruptive case as evaluated in Section VI.

In Figure 7 we show the (a) total network configuration
time, (b) deployment time and (c) the amount of packet loss.
In the presented results we consider fractions of 1% - 10%
of compromised links (randomly selected), which cause a
disruption of 5%− 15% of the flows in the network. For the
maximum path length, we set a loose bound of ϕh = 15
for this experiment to focus on the network update time. To
evaluate the performance of our algorithms to recover flows
from failed links, we perform 1500 simulations where we fail a
random set of links in each simulation. The reported results in
this paper show the average over all the performed simulations.

The deployment time, as shown in Figure 7(b), reflects the
objective function of our evaluated algorithms. Our proposed
unrestricted minimax algorithm shows the best performance
compared to the baseline algorithms for all evaluated fractions
of compromised links.

Both baseline algorithms do not perform well in scenarios
with failing links. The unrestricted shortest path algorithm
shows an increasing configuration time since fewer shortest
paths become available with an increasing number of failing
links. This causes congestion on a number of paths and results
in an increased deployment time. Once the network gets close
to its saturation, the deployment time drops since only a
small number of new flows can be accommodated and fewer
disrupted flows recovered while the packet loss increases as
shown in Figures 7(a), 7(b) and 7(c). The restricted shortest
path algorithm shows a decreasing network configuration time
caused by significant packet losses since only a restricted
number of candidate paths is considered which does not make
it a good approach for a scenario with flow disruption.

We also evaluate the restricted versions of the minimax
and shortest path algorithms, introduced in Section V, as

shown in Figure 7. The restricted algorithms perform well in
terms of total and deployment time, but do not show a good
performance in terms of packet loss, as shown in the third plot
of Figure 7.

TABLE IV: Average experimental results
Failure recovery

Ttotal Tdeploy % loss
Restricted Minimax 1.66s 1.66s 17.07%
Unrestricted Minimax 1.33s 1.25s 6.94%
Restricted Shortest 1.98s 1.98s 29.18%
Baseline (Unrestricted Shortest) 2.24s 2.12s 6.33%

In Table IV we provide an overview of the average results
of the evaluated algorithms. Considering the evaluated metrics
total time and deployment time, our unrestricted minimax
algorithm shows the best performance in networked environ-
ments with failing links. As shown in Table IV the total
network reconfiguration time to reroute disrupted flows is less
than 2s, a value which is often used as the initial TCP timeout
on RedHat Linux hosts [40].

Our unrestricted minimax algorithm is able to reduce the
network configuration time to reestablish disrupted flows by
40% on average, while having a similar performance in terms
of packet loss (with a difference within 1%), compared to the
unrestricted shortest path baseline algorithm.

TABLE V: Average path lengths in terms of hops
Rocketfuel Fat-Tree

Non.D. Disr. Non.D. Disr.
Restricted Minimax 5 6 5 6
Unrestricted Minimax 5 6 8 6
Restricted RR 5 5 6 6
Unrestricted RR 6 5 7 6
Restricted Shortest 4 4 5 6
Baseline (Unrestricted Shortest) 4 4 6 6

E. Evaluation of path lengths
As a trade-off for shorter network configuration time, our al-

gorithms may compute longer paths compared to the shortest-
path baseline algorithm. This effect is smaller on structured
topologies where path lengths tend to be uniform, such as
in the case of the fat-tree, while it is more evident for the
topologies of the Rocketfuel data-set, as we show in Table V.
To evaluate the impact of our algorithms on the lengths of
computed paths in detail, in Figures 8 we show a study on the
Rocketfuel AS1239 (a) topology, which is the largest topology
(315 nodes, 1944 links) in this data set and the AS3967 (b)
topology which is the smallest Rocketfuel topology (78 nodes,
294 links). As in the experiments above, we set a bound of
ϕh = 15 for the maximum path length.

As expected, the shortest path based algorithms show the
smallest path lengths, since their main objective is to minimize
the number of hops between a source and a destination node.
Our proposed minimax and randomized rounding algorithms
follow a different objective and do not minimize the path
length between network endpoints. As a trade-off for faster
network configuration time they produce longer paths. On
a larger topology this effect is slightly stronger on average
due to the higher path diversity available between different
nodes. Our algorithms compute an average path length of 5.6
hops as can be observed in Figure 8(a). The lower and upper
quartiles of path lengths for the shortest path based algorithms
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range from three to five hops, while the minimax and random
rounding algorithms show a range from three to nine hops
considering the lower and upper quartiles. The effect of longer
paths is slightly lower on a smaller topology as shown in
Figure 8(b) due to the reduced path diversity. Here the average
path length computed by our algorithms is 4.6 hops.
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(b) AS3967 (78 nodes, 294 links)

U. RR R. RR U. MM R. MM U. Sh R. Sh
0

2

4

6

8

10

12

14

16

N
u

m
b

e
r 

o
f 

h
o

p
s

Path length analysis - non disrupt ive case

Unrest ricted RR

Rest ricted RR

Unrest ricted Minim ax

Rest ricted Minim ax

Unrest ricted Shortest

Rest ricted Shortest

Fig. 8: Path length analysis

The analysis of resulting path lengths shows that longer
paths are a trade-off in return for faster network configuration
time. In scenarios such as cloud- or data-center networks with
a very short propagation delay between network endpoints, a
faster network configuration time is beneficial. Considering
a 1000Mbps SDN-switch we compute a per-hop delay of
approximately 0.15ms for a maximum packet size of 64kB,
similar as discussed by He et al. [7]. Further, according to
studies presented in [41], [42] over 80% of flows in data-
centers are short term flows and therefore benefit from a faster
network configuration time.

Other examples in SDN where the path length is a sec-
ondary objective are deployments where waypoint enforce-
ment through SDN switches is ensured as discussed by Levin
et al. [43]. ISP deployments, where longer paths may impact
the user experience or increase the routing cost, optimizing
for shorter paths will be the main objective.

The effect of longer paths on the communication delay
between network endpoints highly depends on factors such as
queuing delay, link bandwidth or current network saturation.
To provide a mechanism to control the issue of long paths we
add a threshold for the number of hops (ϕh) which can be set
to limit the upper bound on path length as we discuss in our
problem formulation in Section III. Such a threshold can also
be implemented in the heuristic algorithms.

VII. DISCUSSION

A. Policy-preserving Updates

Some networks require the deployment of updated flow
rules to preserve network policies as discussed in [2], [5],

[6], [9], [12]. Recently, the authors of [5], [6] propose a
method to preserve policies during updates by dividing the
updated flow rules into a sequence of groups (G1, ..., Gn),
where each group Gq consists of a set of flow rules that can
be deployed in an arbitrary order. However, rules in different
groups must be deployed sequentially so that all the rules in
Gq are deployed before rules in Gq+1 start to be deployed. To
model the network update time using this deployment method,
we modify the formula in (3) into

τ(F ) =

n∑
q=1

max
i∈V

wi · |Gq,i|, (18)

where F =
⋃n
q=1Gq is the overall set of updated rules,

and Gq,i is the set of rules in Gq for switch i. Accordingly,
we can extend the MinUpdateTime problem (7) to accommo-
date policy-preserving constraints by computing the network
configuration time using (18). The challenge is to explicitly
express these constraints in the decision variable xhij and solve
the optimization efficiently, which is left to future work.

B. Future Work

We are planning to evaluate our algorithms on a physical
SDN network deployed on a campus or corporate environment.
Currently we do not have access to such a network, therefore
we have to rely on simulations. In such an environment we
expect changes in packet loss since this highly depends on
the network load, transmission protocols (e.g. TCP which
will retransmit lost packets) and the overall condition of
the network. We do expect a significant improvement of the
network configuration time with the usage of our algorithms.

VIII. CONCLUSION

In this work, we study the problem of minimizing the
network configuration time in an SDN in response to changing
demands, by computing a flow configuration that minimizes
the worst case update time across switches. We empirically
show that our heuristics can reduce the update time of a
shortest-path baseline algorithm up to 55% on average while
having little packet loss. Further, we demonstrate that our
proposed algorithms are able to reestablish disrupted flows
in scenarios with failed links 40% faster on average compared
to shortest-path based algorithms.
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[20] M. Kuźniar et al., “What you need to know about sdn flow tables,” in
PAM. Springer, 2015.

[21] S. Hong et al., “Poisoning network visibility in software-defined net-
works: New attacks and countermeasures.” in NDSS, 2015.

[22] S. Achleitner et al., “Adversarial network forensics in software defined
networking,” in ACM Symposium on SDN Research (SOSR), 2017.

[23] “Rfc 793 - transmission control protocol,”
https://tools.ietf.org/html/rfc793

[24] “Queuing in cisco switches,”
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/qos conmgt/
configuration/xe-3s/qos-conmgt-xe-3s-book/qos-conmgt-qdepth.html

[25] A. R. Curtis et al., “Devoflow: Scaling flow management for high-
performance networks,” ACM Computer Communication Review, 2011.

[26] R. Narayanan et al., “Macroflows and microflows: Enabling rapid
network innovation through a split sdn data plane,” in EWSDN, 2012.

[27] “Openflow,” https://www.opennetworking.org/sdn-resources/openflow.
[28] C. Miller et al., “Integer programming formulations and travelling

salesman problems,” Journal of the ACM, vol. 7, 1960.
[29] S. Even et al., “On the complexity of time table and multi-commodity

flow problems,” in Foundations of Computer Science, 1975., 16th Annual
Symposium on. IEEE.

[30] A. Chakrabarti et al., “Approximation algorithms for the unsplittable
flow problem,” in APPROX Workshop, 2002.

[31] T. H. Cormen et al., Introduction to Algorithms. MIT Press, 2001.
[32] G. Strang, “Karmarkar’s algorithm and its place in applied mathematics,”

The Mathematical Intelligencer, 1987.
[33] M. Pollack, “The maximum capacity through a network,” Operations

Research, 1960.
[34] N. Spring et al., “Measuring isp topologies with rocketfuel,” ACM

SIGCOMM Computer Communication Review, 2002.
[35] J. McCauley et al., “Recursive sdn for carrier networks,” ACM SIG-

COMM Computer Communication Review, 2016.
[36] S. Vissicchio et al., “Safe update of hybrid sdn networks,” IEEE/ACM

Transactions on Networking (TON), 2017.
[37] A. Panda et al., “Scl: Simplifying distributed sdn control planes.” in

NSDI, 2017.
[38] T. Liu et al., “Usa: Faster update for sdn-based internet of things sensory

environments,” Computer Communications, 2018.

[39] M. Al-Fares et al., “A scalable, commodity data center network archi-
tecture,” in ACM SIGCOMM Computer Communication Review, 2008.

[40] “Tcp timeout value in redhat linux,”
http://www.justsomestuff.co.uk/wiki/doku.php/linux/syn tcp timeout

[41] T. Benson et al., “Network traffic characteristics of data centers in the
wild,” in ACM SIGCOMM conference on Internet measurement, 2010.

[42] S. Kandula et al., “The nature of data center traffic: measurements &
analysis,” in Proceedings of the 9th ACM SIGCOMM conference on
Internet measurement conference, 2009.

[43] D. Levin et al., “Panopticon: Reaping the benefits of incremental
sdn deployment in enterprise networks,” in USENIX Annual Technical
Conference, 2014.

Stefan Achleitner received his B.S. and M.S. de-
grees in Computer Science from Vienna University
of Technology, Austria. He earned his Ph.D. in
Computer Science and Engineering at the Penn-
sylvania State University, University Park, PA. His
research interests include, software defined network-
ing, network security, virtual machines, Internet of
Things and machine learning. He is now a security
researcher in the threat and application research
group at Palo Alto Networks.

Novella Bartolini (SM’16) graduated with honors
and received her PhD in computer engineering from
Tor Vergata University of Rome, Italy. She is now
associate professor at Sapienza University of Rome.
She was visiting professor at Penn State University
in 2014-2017. She was program chair and committee
member of several international conferences. She has
served on the editorial board of Elsevier Computer
Networks and ACM/Springer Wireless Networks.
Her research interests lie in the area of wireless
mobile networks and web based systems.

Ting He (SM’13) received the B.S. degree in com-
puter science from Peking University, China, in 2003
and the Ph.D. degree in electrical and computer
engineering from Cornell University, Ithaca, NY, in
2007. Ting is an Associate Professor in the School
of Electrical Engineering and Computer Science at
Pennsylvania State University, University Park, PA.
Between 2007 and 2016, she was a Research Staff
Member in the Network Analytics Research Group
at the IBM T.J. Watson Research Center, Yorktown
Heights, NY. Her work is in the broad areas of

network modeling and optimization, statistical inference, and information
theory.

Thomas La Porta (F’02) is a Distinguished Pro-
fessor in the department of computer science and
engineering at Penn State University, where he is
the Director of the School of Electrical Engineering
and Computer Science. Prior to joining Penn State
in 2002, he was with Bell Laboratories since 1986
as Director of the Mobile Networking Research De-
partment. He is an IEEE Fellow, Bell Labs Fellow,
received the Bell Labs Distinguished Technical Staff
Award in 1996, and an Eta Kappa Nu Outstanding
Young Electrical Engineer Award in 1996. He was

the founding Editor-in-Chief of the IEEE Transactions on Mobile Computing,
and served as Editor-in-Chief of IEEE Personal Communications Magazine.
His research interests include mobility management, signaling and control for
wireless networks, mobile data and sensor systems, and network security.

Diman Zad Tootaghaj is a Postdoc Researcher
at Hewlett Packard Labs in Palo Alto, California.
She received her Ph.D. degree in the department of
computer science and engineering at the Pennsyl-
vania State University. She received B.S. and M.S.
degrees in Electrical Engineering from Sharif Uni-
versity of Technology, Iran in 2008 and 2011 and an
M.S. degree in Computer Science and Engineering
from the Pennsylvania State University in 2015. Her
current research interests include computer network,
recovery approaches and distributed systems.

14


