133 research outputs found

    Research Progress of Tyramine Formation and Control Methods in Fermented Meat Products

    Get PDF
    Fermented meat products is the meat products with special flavor, color, texture and longer shelf life formed by a series of changes under natural or artificially controlled conditions by the action of microorganisms or enzymes. Fermented meat products is popular with consumers, but they are rich in protein and have a great potential for high levels of biogenic amines. Among them, histamine and tyramine are the most toxic. Consumption of tyramine-rich foods might cause headache, hypertension and other adverse reactions. Therefore, it is extremely necessary to control the tyramine content in fermented meat products. In this paper, the formation pathways, control methods and effects of tyramine in fermented meat products are reviewed. Among them, the main formation pathway is the decarboxylation of tyrosine by the action of decarboxylase, in addition to the existence of chemical pathways related to lipid oxidation products, while the more effective control methods are the addition of auxiliaries and the inoculation of fermentation agents. This paper aims to provid a theoretical support for reducing the tyramine content in fermented meat products and improving the safety of fermented meat products

    Silicon Layer Intercalation of Centimeter-Scale, Epitaxially-Grown Monolayer Graphene on Ru(0001)

    Full text link
    We develop a strategy for graphene growth on Ru(0001) followed by silicon-layer intercalation that not only weakens the interaction of graphene with the metal substrate but also retains its superlative properties. This G/Si/Ru architecture, produced by silicon-layer intercalation approach (SIA), was characterized by scanning tunneling microscopy/spectroscopy and angle resolved electron photoemission spectroscopy. These experiments show high structural and electronic qualities of this new composite. The SIA allows for an atomic control of the distance between the graphene and the metal substrate that can be used as a top gate. Our results show potential for the next generation of graphene-based materials with tailored properties.Comment: 13 pages, 4 figures, to be published in Appl. Phys. Let

    The impact of different rose bengal formulations on corneal thickness and the efficacy of rose bengal/green light corneal cross-linking in the rabbit eye

    Get PDF
    PURPOSE:To examine central corneal thickness (CCT) changes during in vivo rose bengal-green light corneal cross-linking (RG-CXL) and compare the CXL efficacy of different rose bengal formulations. METHODS:After epithelium removal, the right eyes of rabbits were immersed in rose bengal solution prepared by different solvents (water, phosphate buffered saline, dextran, and hydroxypropyl methylcellulos [HPMC]) for 2 or 20 minutes, then the rose bengal distribution in the corneal stroma was analyzed by confocal fluorescence detection. During the RG-CXL process, the CCT was measured at seven time points. The left eyes served as the untreated control group. Corneal enzymatic resistance and corneal biomechanics were tested to compare the RG-CXL efficacy. RESULTS:The rose bengal infiltration depths were 120 and 200 µm for the 2- and 20-minute groups, respectively. CCT increased significantly after infiltration, then decreased significantly in the first 200 seconds of irradiation and decreased slowly for the next 400 seconds. The CCT of the 20-minute groups was significantly thicker than that of the 2-minute groups (P < .0001). All RG-CXL treatments improved the corneal enzymatic resistance and corneal biomechanics, with the effects being greater in the 20-minute groups. The inclusion of 1.1% HPMC in the rose bengal formulation helped to maintain CCT during irradiation while not affecting either the infiltration of rose bengal or the efficacy of RG-CXL. CONCLUSIONS:Within the range studied, RG-CXL efficacy increased with infiltration time. The incorporation of a 20-minute infiltration of 0.1% rose bengal-1.1% HPMC into the RG-CXL procedure may further improve the safety of the treatment and its prospects for clinical use

    Efficacy and safety of a novel 450 nm blue diode laser versus plasmakinetic electrocautery for the transurethral resection of non-muscle invasive bladder cancer: The protocol and result of a multicenter randomized controlled trial

    Get PDF
    ObjectivesTo be the first to apply a novel 450 nm blue diode laser in transurethral resection of bladder tumor (TURBt) to treat patients with non-muscle invasive bladder cancer (NMIBC) and evaluate its efficacy and safety during the preoperative period compared to the conventional plasmakinetic electrocautery.Materials and MethodsRandomized controlled trial (RCT) in five medical centers was designed as a non-inferiority study and conducted from October 2018 to December 2019. Patients with NMIBC were randomized to the blue laser or plasmakinetic electrocautery group for TURBt. As the first study to evaluate this novel blue laser device, the primary outcome was the effective resection rate of bladder tumors, including effective dissection and hemostasis. The secondary outcomes were the perioperative records, including surgical time, postoperative indwelling catheter time, hospital stay length, blood loss, reoperation rate, wound healing and adverse events.ResultsA total of 174 patients were randomized to either the blue laser group (85 patients) or plasmakinetic electrocautery group (89 patients). There was no statistical significance in the clinical features of bladder tumors, including tumor site, number and maximum lesion size. Both the blue laser and plasmakinetic electrocautery could effectively dissect all visible bladder tumors. The surgical time for patients in the blue laser group was longer (p=0.001), but their blood loss was less than that of patients in the control group (p=0.003). There were no differences in the postoperative indwelling catheter time, hospital stay length, reoperation rate or other adverse events. However, the patients undergoing TURBt with the blue laser showed a faster wound healing at 3 months after operation.ConclusionThe novel blue laser could be effectively and safely used for TURBt in patients with NMIBC, and this method was not inferior to plasmakinetic electrocautery during the perioperative period. However, TURBt with the blue laser may provide the benefit to reduce preoperative blood loss and accelerate postoperative wound healing. Moreover, longer follow-up to confirm recurrence-free survival benefit was required

    Fatty infiltration of the pancreas: a systematic concept analysis

    Get PDF
    Fatty infiltration of the pancreas (FIP) has been recognized for nearly a century, yet many aspects of this condition remain unclear. Regular literature reviews on the diagnosis, consequences, and management of FIP are crucial. This review article highlights the various disorders for which FIP has been established as a risk factor, including type 2 diabetes mellitus (T2DM), pancreatitis, pancreatic fistula (PF), metabolic syndrome (MS), polycystic ovary syndrome (PCOS), and pancreatic duct adenocarcinoma (PDAC), as well as the new investigation tools. Given the interdisciplinary nature of FIP research, a broad range of healthcare specialists are involved. This review article covers key aspects of FIP, including nomenclature and definition of pancreatic fat infiltration, history and epidemiology, etiology and pathophysiology, clinical presentation and diagnosis, clinical consequences, and treatment. This review is presented in a detailed narrative format for accessibility to clinicians and medical students

    Engineering hibiscus-like riboflavin/ZIF-8 microsphere composites to enhance transepithelial corneal cross-linking

    Get PDF
    Riboflavin-5-phosphate (RF) is the most commonly used photosensitizer in corneal cross-linking (CXL), but its hydrophilicity and negative charge limit its penetration through the corneal epithelium into the stroma. To enhance the corneal permeability of RF and promote its efficacy in the treatment of keratoconus, novel hibiscus-like RF@ZIF-8 microsphere composites [6RF@ZIF-8 NF (nanoflake)] are prepared using ZIF-8 nanomaterials as carriers, which are characterized by their hydrophobicity, positive potential, biocompatibility, high loading capacities, and large surface areas. Both hematoxylin and eosin endothelial staining and TUNEL assays demonstrate excellent biocompatibility of 6RF@ZIF-8 NF. In in vivo studies, the 6RF@ZIF-8 NF displayed excellent corneal permeation, and outstanding transepithelial CXL (TE-CXL) efficacy, slightly better than the conventional CXL protocol. Furthermore, the special hibiscus-like structures of 6RF@ZIF-8 NF meant that it has better TE-CXL efficacy than that of 6RF@ZIF-8 NP (nanoparticles) due to the larger contact area with the epithelium and the shorter RF release passage. These results suggest that the 6RF@ZIF-8 NF are promising for transepithelial corneal cross-linking, avoiding the need for epithelial debridement

    Consolidation of unsaturated seabed around an inserted pile foundation and its effects on the wave-induced momentary liquefaction

    Get PDF
    YesSeabed consolidation state is one of important factors for evaluating the foundation stability of the marine structures. Most previous studies focused on the seabed consolidation around breakwaters standing on the seabed surface. In this study, a numerical model, based on Biot’s poro-elasticity theory, is developed to investigate the unsaturated seabed consolidation around a nearshore pile foundation, in which the pile inserted depth leads to a different stress distribution. Seabed instabilities of shear failure by the pile self-weight and the potential liquefaction under the dynamic wave loading are also examined. Results indicate that (1) the presence of the inserted pile foundation increases the effective stresses below the foundation, while increases and decreases the effective stresses around the pile foundation for small (de/R3.3) inserted depths, respectively, after seabed consolidation, (2) the aforementioned effects are relatively more significant for small inserted depth, large external loading, and small Young’s modulus, (3) the shear failure mainly occurs around the inserted pile foundation, rather than below the foundation as previously found for the located marine structures, and (4) wave-induced momentary liquefaction near the inserted pile foundation significantly increases with the increase of inserted depth, due to the change of seabed consolidation state.National Natural Science Foundation for Distinguished Young Scholars (51425901), the National Natural Science Foundation of China (51209082, 51209083), the Natural Science Foundation of Jiangsu Province (BK20161509), the Fundamental Research Funds for the Central Universities (2015B15514), Jiangsu Graduate Research and Innovation Plan Grant (#CXLX11_0450) and the 111 project (B12032)

    On the 40-50 day Oscillations During the 1979 Northern Hemisphere Summer

    No full text
    corecore