27 research outputs found

    Effects of Automated Interventions in Programming Assignments: Evidence from a Field Experiment

    Full text link
    A typical problem in MOOCs is the missing opportunity for course conductors to individually support students in overcoming their problems and misconceptions. This paper presents the results of automatically intervening on struggling students during programming exercises and offering peer feedback and tailored bonus exercises. To improve learning success, we do not want to abolish instructionally desired trial and error but reduce extensive struggle and demotivation. Therefore, we developed adaptive automatic just-in-time interventions to encourage students to ask for help if they require considerably more than average working time to solve an exercise. Additionally, we offered students bonus exercises tailored for their individual weaknesses. The approach was evaluated within a live course with over 5,000 active students via a survey and metrics gathered alongside. Results show that we can increase the call outs for help by up to 66% and lower the dwelling time until issuing action. Learnings from the experiments can further be used to pinpoint course material to be improved and tailor content to be audience specific.Comment: 10 page

    Stability and pKa Modulation of Aminophenoxazinones and Their Disulfide Mimics by Host-Guest Interaction with Cucurbit[7]uril. Direct Applications in Agrochemical Wheat Models

    Get PDF
    Aqueous solubility and stability often limit the application of aminophenoxazinones and their sulfur mimics as promising agrochemicals in a sustainable agriculture inspired by allelopathy. This paper presents a solution to the problem using host-guest complexation with cucurbiturils (CBn). Computational studies show that CB7 is the most suitably sized homologue due to its strong affinity for guest molecules and its high water solubility. Complex formation has been studied by direct titrations monitored using UV-vis spectroscopy, finding a preferential interaction with protonated aminophenoxazinone species with high binding affinities (CB7 center dot APOH+ , Ka = (1.85 +/- 0.37) x 106 M-1; CB7 center dot DiS-NH3+ , Ka = (3.91 +/- 0.53) x 104 M-1; and DiS-(NH3+)2 , Ka= (1.27 +/- 0.42) x 105M-1). NMR characterization and stability analysis were also performed and revealed an interesting pKa modulation and stabilization by cucurbiturils (2-amino-3H-phenoxazin-3-one (APO), pKa = 2.94 +/- 0.30, and CB7 center dot APO, pKa = 4.12 +/- 0.15; 2,2 '-disulfanediyldianiline (DiS-NH2), pKa = 2.14 +/- 0.09, and CB7 center dot DiS-NH2 , pKa = 3.26 +/- 0.09), thus favoring applications in different kinds of crop soils. Kinetic studies have demonstrated the stability of the CB7 center dot APO complex at different pH media for more than 90 min. An in vitro bioassay with etiolated wheat coleoptiles showed that the bioactivity of APO and DiS-NH2 is enhanced upon complexation

    Supramolecular Click Chemistry for Surface Modification of Quantum Dots Mediated by Cucurbit[7]uril

    Get PDF
    Cucurbiturils (CBs), barrel-shaped macrocyclic molecules, are capable of self-assembling at the surface of nanomaterials in their native state, via their carbonyl-ringed portals. However, the symmetrical two-portal structure typically leads to aggregated nanomaterials. We demonstrate that fluorescent quantum dot (QD) aggregates linked with CBs can be broken-up, retaining CBs adsorbed at their surface, via inclusion of guests in the CB cavity. Simultaneously, the QD surface is modified by a functional tail on the guest, thus the high affinity host-guest binding (logKa > 9) enables a non-covalent, click-like modification of the nanoparticles in aqueous solution. We achieved excellent modification efficiency in several functional QD conjugates as protein labels. Inclusion of weaker-binding guests (logKa = 4-6) enables subsequent displacement with stronger binders, realising modular switchable surface chemistries. Our general "hook-and-eye" approach to host-guest chemistry at nanomaterial interfaces will lead to divergent routes for nano-architectures with rich functionalities for theranostics and photonics in aqueous systems

    SVM-based synthetic fingerprint discrimination algorithm and quantitative optimization strategy.

    No full text
    Synthetic fingerprints are a potential threat to automatic fingerprint identification systems (AFISs). In this paper, we propose an algorithm to discriminate synthetic fingerprints from real ones. First, four typical characteristic factors-the ridge distance features, global gray features, frequency feature and Harris Corner feature-are extracted. Then, a support vector machine (SVM) is used to distinguish synthetic fingerprints from real fingerprints. The experiments demonstrate that this method can achieve a recognition accuracy rate of over 98% for two discrete synthetic fingerprint databases as well as a mixed database. Furthermore, a performance factor that can evaluate the SVM's accuracy and efficiency is presented, and a quantitative optimization strategy is established for the first time. After the optimization of our synthetic fingerprint discrimination task, the polynomial kernel with a training sample proportion of 5% is the optimized value when the minimum accuracy requirement is 95%. The radial basis function (RBF) kernel with a training sample proportion of 15% is a more suitable choice when the minimum accuracy requirement is 98%

    Influence of Incentives on Performance in a Pre-College Biology MOOC

    No full text
    There is concern that online education may widen the achievement gap between students from different socioeconomic classes. The recent discussion of integrating massive open online courses (MOOCs) into formal higher education has added fuel to this debate. In this study, factors influencing enrollment and completion in a pre-college preparatory MOOC were explored. University of California at Irvine (UCI) students of all preparation levels, defined by math Scholastic Aptitude Test (SAT) score, were invited to take a Bio Prep MOOC to help them prepare for introductory biology. Students with math SAT below 550 were offered the explicit incentive of an early change to the biology major upon successful completion of the MOOC and two additional onsite courses. Our results demonstrate that, among course registrants, a higher percentage of UCI students (>60%) completed the course than non-UCI registrants from the general population (<9%). Female UCI students had a greater likelihood of enrolling in the MOOC, but were not different from male students in terms of performance. University students entering with low preparation outperformed students entering who already had the credentials to become biology majors. These findings suggest that MOOCs can reach students, even those entering college with less preparation, before they enter university and have the potential to prepare them for challenging science, technology, engineering, and mathematics (STEM) courses

    Amorphous TiO2-supported Keggin-type ionic liquid catalyst catalytic oxidation of dibenzothiophene in diesel

    No full text
    Abstract Supported ionic liquid (IL) catalysts [C n mim]3PMo12O40/Am TiO2 (amorphous TiO2) were synthesized through a one-step method for extraction coupled catalytic oxidative desulfurization (ECODS) system. Characterizations such as FTIR, DRS, wide-angle XRD, N2 adsorption–desorption and XPS were applied to analyze the morphology and Keggin structure of the catalysts. In ECODS with hydrogen peroxide as the oxidant, it was found that ILs with longer alkyl chains in the cationic moiety had a better effect on the removal of dibenzothiophene. The desulfurization could reach 100% under optimal conditions, and GC–MS analysis was employed to detect the oxidized product after the reaction. Factors affecting the desulfurization efficiencies were discussed, and a possible mechanism was proposed. In addition, cyclic experiments were also conducted to investigate the recyclability of the supported catalyst. The catalytic activity of [C16mim]3PMo12O40/Am TiO2 only dropped from 100% to 92.9% after ten cycles, demonstrating the good recycling performance of the catalyst and its potential industrial application

    The relationship between training samples proportion and discrimination accuracy on different kernel functions.

    No full text
    <p>The relationship between training samples proportion and discrimination accuracy on different kernel functions.</p

    Increased Inequalities in Health Resource and Access to Health Care in Rural China

    No full text
    Both health resources and access to these resources increased after China&rsquo;s health care reform launched in 2009. However, it is not clear if the inequalities were reduced within rural China, which was one of the main targets in the reform. This study aims to examine the changes in inequalities in health resources and access following the reform. Data came from the routine report of rural counties in every other year from 2008 to 2014. Health professionals and hospital beds per 1000 population were used for measuring health resources, and the hospitalization rate was used for access. Descriptive analysis and the fixed effect model were used in this study. Health resources and access increased by about 50% between 2008 and 2014 in rural China. The counties in richer quintiles got more health resources and hospitalizations. As for health professionals, the absolute differences between the richer and the poorest quintile were significantly enlarging in 2014 when compared to 2008. Regarding the hospitalization rate, the differences between the richest and the poorest quintile showed no significant change after 2012. In sum, absolute inequalities of health resources were increased, while that of health utilization kept constant following China&rsquo;s health care reform. The reform needs to continually recruit qualified health workers and appropriately allocate health infrastructures to strengthen the capacity of the health care system in the impoverished areas
    corecore