422 research outputs found

    Pharmacological inhibition of PI3K class III enhances the production of pro- and anti-inflammatory cytokines in dendritic cells stimulated by TLR agonists

    Get PDF
    The phosphatidylinositol 3-kinase (PI3K) pathway is known to down-regulate inflammatory cytokine responses in dendritic cells and macrophages stimulated with TLR agonists. This is due to class I PI3Ks causing the activation of Akt, which in turn inactivates GSK3, a kinase that promotes the transcription of IL-12 and represses that of anti-inflammatory IL-10. Using bone marrow-derived dendritic cells we find that whereas pharmacological inhibition of Akt or GSK3 has the expected effects on these cytokines, the widely used PI3K inhibitor wortmannin causes a paradoxical increase in the production of IL-10. Wortmannin inhibits all PI3K classes, including PI3K class III, involved in endosomal function and autophagy, for which specific inhibitors were until recently not available. Using inhibitors specific for PI3K class III vs class I, we show that whereas inhibition of class I PI3K has the expected opposing effects on IL-10 and IL-12 production, inhibition of class III PI3K enhances the production of both of these, plus further cytokines. This explains the paradoxical inhibition of IL-10 production by wortmannin

    Protein kinase Cδ binds TIRAP/Mal to participate in TLR signaling

    Get PDF
    Toll-like receptor (TLR) family members recognize specific molecular patterns within pathogens. Signaling through TLRs results in a proximal event that involves direct binding of adaptor proteins to the receptors. We observed that TIRAP/Mal, an adaptor protein for TLR2 and TLR4, binds protein kinase Cδ (PKCδ). TIRAP/Mal GST-fusion protein and a TIRAP/Mal antibody were able to precipitate PKCδ from rat peritoneal macrophage and THP1 cell lysates. Truncation mutants of TIRAP/Mal showed that the TIR domain of TIRAP/Mal is responsible for binding. TLR2- and TLR4-mediated phosphorylation of p38 MAPK, IKK, and IκB in RAW264.7 cells were abolished by depletion of PKCδ. These results suggest that PKCδ binding to TIRAP/Mal promotes TLR signaling events

    The QT Intervals in Infancy and Time for Infantile ECG Screening for Long QT Syndrome

    Get PDF
    Background: Electrocardiographic and molecular studies have clarified an association between sudden infant death syndrome (SIDS) and long QT syndrome (LQTS), and few data are available for the QT interval in infancy from birth to 1 year of age. Appropriate time of electrocardiographic screening is not clarified. Medical examinations during infancy are mandatory in Japan.Methods and Results: The study population included 1,058 infants. Electrocardiograms were collected with information of infants at birth and at examination. The QT intervals of three consecutive beats were measured in lead V5. Statistical analysis revealed that the following formula was appropriate to minimize the effect of heart rate for infants: corrected QT interval; QTc = QT interval/RR interval 0.43. Subjects were divided into four groups as follows: 0–2, 3–6, 6–11, and 12–52 weeks of age. Tukey's multiple comparison showed that the QTc intervals were longest (p < 0:0001) in subjects who were 6–11 weeks of age.Conclusions: The QTc interval showed the highest peak at 6-11 weeks of age in infancy. The peak period of occurrence of SIDS is at approximately 2 months of age. An appropriate time of electrocardiographic screening for QT prolongation will be one month of age, and follow-up studies are needed

    Phosphoinositide 3-Kinaseγ Controls the Intracellular Localization of CpG to Limit DNA-PKcs-Dependent IL-10 Production in Macrophages

    Get PDF
    Synthetic oligodeoxynucleotides containing unmethylated CpG motifs (CpG) stimulate innate immune responses. Phosphoinositide 3-kinase (PI3K) has been implicated in CpG-induced immune activation; however, its precise role has not yet been clarified. CpG-induced production of IL-10 was dramatically increased in macrophages deficient in PI3Kγ (p110γ−/−). By contrast, LPS-induced production of IL-10 was unchanged in the cells. CpG-induced, but not LPS-induced, IL-10 production was almost completely abolished in SCID mice having mutations in DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Furthermore, wortmannin, an inhibitor of DNA-PKcs, completely inhibited CpG-induced IL-10 production, both in wild type and p110γ−/− cells. Microscopic analyses revealed that CpG preferentially localized with DNA-PKcs in p110γ−/− cells than in wild type cells. In addition, CpG was preferentially co-localized with the acidic lysosomal marker, LysoTracker, in p110γ−/− cells, and with an early endosome marker, EEA1, in wild type cells. Over-expression of p110γ in Cos7 cells resulted in decreased acidification of CpG containing endosome. A similar effect was reproduced using kinase-dead mutants, but not with a ras-binding site mutant, of p110γ. Thus, it is likely that p110γ, in a manner independent of its kinase activity, inhibits the acidification of CpG-containing endosomes. It is considered that increased acidification of CpG-containing endosomes in p110γ−/− cells enforces endosomal escape of CpG, which results in increased association of CpG with DNA-PKcs to up-regulate IL-10 production in macrophages

    Ribosomal Protein L19 and L22 Modulate TLR3 Signaling

    Get PDF
    BACKGROUND: Toll-like receptor 3 (TLR3) recognizes double-stranded RNA (dsRNA) and induces inflammation. In this study we attempted to ascertain if there are endogenous host molecules controlling the production of cytokines and chemokines. Two candidates, ribosomal protein L19 and L22, were analyzed to determine if they influence cytokine production followed by TLR3 activation. In this study we report that L19 acts upon production of IP-10 or IL-8 differently in glioblastoma cells. METHODS: L19 or L22 was transfected into HEK293-TLR3, A549 or A172 cells. After treatment with several inhibitors of NF-kB, PI3K, p38 or ERK, production of IL-8 or IP-10 was measured by ELISA. siRNA was introduced to suppress expression of L19. After Vesicular stomatitis virus infection, viral multiplication was measured by western blot. RESULTS: L19 increased ERK activation to produce IL-8. In A172 cells, in which TLR3 is expressed at endosomes, L19 inhibited interferon regulatory factor 3 (IRF3) activation and IP-10 production to facilitate viral multiplication, whereas L19 inhibited viral multiplication in A549 cells bearing TLR3 on their cell membrane. CONCLUSION: Our results suggest that L19 regulates TLR3 signaling, which is cell type specific and may be involved in pathogenesis of autoimmune diseases and chronic inflammatory diseases.ope

    Neuroprotective Effects of Calmodulin Peptide 76-121aa: Disruption of Calmodulin Binding to Mutant Huntingtin

    Get PDF
    Huntington's disease (HD) is a neurodegenerative disease caused by mutant huntingtin protein containing an expanded polyglutamine tract, which may cause abnormal protein–protein interactions such as increased association with calmodulin (CaM). We previously demonstrated in HEK293 cells that a peptide containing amino acids 76-121 of CaM (CaM-peptide) interrupted the interaction between CaM and mutant huntingtin, reduced mutant huntingtin-induced cytotoxicity and reduced transglutaminase (TG)-modified mutant huntingtin. We now report that adeno-associated virus (AAV)-mediated expression of CaM-peptide in differentiated neuroblastoma SH-SY5Y cells, stably expressing an N-terminal fragment of huntingtin containing 148 glutamine repeats, significantly decreases the amount of TG-modified huntingtin and attenuates cytotoxicity. Importantly, the effect of the CaM-peptide shows selectivity, such that total TG activity is not significantly altered by expression of CaM-peptide nor is the activity of another CaM-dependent enzyme, CaM kinase II. In vitro, recombinant exon 1 of huntingtin with 44 glutamines (htt-exon1-44Q) binds to CaM-agarose; the addition of 10 µM of CaM-peptide significantly decreases the interaction of htt-exon1-44Q and CaM but not the binding between CaM and calcineurin, another CaM-binding protein. These data support the hypothesis that CaM regulates TG-catalyzed modifications of mutant huntingtin and that specific and selective disruption of the CaM-huntingtin interaction is potentially a new target for therapeutic intervention in HD

    Human Monocytes Undergo Excessive Apoptosis following Temozolomide Activating the ATM/ATR Pathway While Dendritic Cells and Macrophages Are Resistant

    Get PDF
    Immunodeficiency is a severe therapy-limiting side effect of anticancer chemotherapy resulting from sensitivity of immunocompetent cells to DNA damaging agents. A central role in the immune system is played by monocytes that differentiate into macrophages and dendritic cells (DCs). In this study we compared human monocytes isolated from peripheral blood and cytokine matured macrophages and DCs derived from them and assessed the mechanism of toxicity of the DNA methylating anticancer drug temozolomide (TMZ) in these cell populations. We observed that monocytes, but not DCs and macrophages, were highly sensitive to the killing effect of TMZ. Studies on DNA damage and repair revealed that the initial DNA incision was efficient in monocytes while the re-ligation step of base excision repair (BER) can not be accomplished, resulting in an accumulation of DNA single-strand breaks (SSBs). Furthermore, monocytes accumulated DNA double-strand breaks (DSBs) following TMZ treatment, while DCs and macrophages were able to repair DSBs. Monocytes lack the DNA repair proteins XRCC1, ligase IIIα and PARP-1 whose expression is restored during differentiation into macrophages and DCs following treatment with GM-CSF and GM-CSF plus IL-4, respectively. These proteins play a key role both in BER and DSB repair by B-NHEJ, which explains the accumulation of DNA breaks in monocytes following TMZ treatment. Although TMZ provoked an upregulation of XRCC1 and ligase IIIα, BER was not enhanced likely because PARP-1 was not upregulated. Accordingly, inhibition of PARP-1 did not sensitize monocytes, but monocyte-derived DCs in which strong PARP activation was observed. TMZ induced in monocytes the DNA damage response pathways ATM-Chk2 and ATR-Chk1 resulting in p53 activation. Finally, upon activation of the Fas-receptor and the mitochondrial pathway apoptosis was executed in a caspase-dependent manner. The downregulation of DNA repair in monocytes, resulting in their selective killing by TMZ, might impact on the immune response during cancer chemotherapy
    corecore