24 research outputs found

    Quinone compounds regulate the level of ROS production by the NADPH oxidase Nox4

    Get PDF
    NADPH oxidase Nox4 is expressed in a wide range of tissues and plays a role in cellular signaling by providing reactive oxygen species (ROS) as intracellular messengers. Nox4 oxidase activity is thought to be constitutive and regulated at the transcriptional level; however, we challenge this point of view and suggest that specific quinone derivatives could modulate this activity. In fact, we demonstrated a significant stimulation of Nox4 activity by 4 quinone derivatives (AA-861, tBuBHQ, tBuBQ, and duroquinone) observed in 3 different cellular models, HEK293E, T-REx™, and chondrocyte cell lines. Our results indicate that the effect is specific toward Nox4 versus Nox2. Furthermore, we showed that NAD(P)H:quinone oxidoreductase (NQO1) may participate in this stimulation. Interestingly, Nox4 activity is also stimulated by reducing agents that possibly act by reducing the disulfide bridge (Cys226, Cys270) located in the extracellular E-loop of Nox4. Such model of Nox4 activity regulation could provide new insight into the understanding of the molecular mechanism of the electron transfer through the enzyme, i.e., its potential redox regulation, and could also define new therapeutic targets in diseases in which quinones and Nox4 are implicated. © 2013 Elsevier Inc. All rights reserved

    Sodium Selenite Decreased HDAC Activity, Cell Proliferation and Induced Apoptosis in Three Human Glioblastoma Cells

    No full text
    International audienceAIMS:Selenium (Se) is an essential trace element for human health which also has antitumor properties. Little is known about its effects on brain tumor cells (BTC). The aim of this study was to investigate the anticancer effects of sodium selenite (SS) including histone deacetylase (HDAC) activity in three human glioblastoma (GBM) cell lines (LN229, T98G and U87).MATERIALS & METHODS:LN229, T98G and U87 GBM cell lines were treated with variable doses of SS for time varying from 24 to 72h. HDAC activity, cell proliferation, toxicity, cell death process, caspase-3 and MMP2 activities and Se absorption were evaluated.RESULTS:SS modulated all the parameters tested in a dose- and time-dependent manner. We found that SS decreased HDAC activity, blocked cell proliferation and cell cycle at the G2 phase, triggered an apoptotic cell death process caspase-3-dependent and reduced MMP2 activities. All these effects were performed whereas SS was weakly absorbed (<2%).CONCLUSIONS:SS decreasing HDAC activity exhibited interesting antitumor properties in GBM cells which may be taken into account in the novel strategies for achieving tumor growth inhibition and cytotoxicity. Epigenetic modifications induced by SS should be evaluated in further studies

    Cellular and molecular mechanisms activating the cell death processes by chalcones: Critical structural effects.

    No full text
    International audienceChalcones are naturally occurring compounds with diverse pharmacological activities. Chalcones derive from the common structure: 1,3-diphenylpropenone. The present study aims to better understand the mechanistic pathways triggering chalcones anticancer effects and providing evidences that minor structural difference could lead to important difference in mechanistic effect. We selected two recently investigated chalcones (A and B) and investigated them on glioblastoma cell lines. It was found that chalcone A induced an apoptotic process (type I PCD), via the activation of caspase-3, -8 and -9. Chalcone A also increased CDK1/cyclin B ratios and decreased the mitochondrial transmembrane potential (ΔΨm). Chalcone B induced an autophagic cell death process (type II PCD), ROS-related but independent of both caspases and protein synthesis. Both chalcones increased Bax/Bcl2 ratios and decreased Ki67 and CD71 antigen expressions. The present investigation reveals that despite the close structure of chalcones A and B, significant differences in mechanism of effect were found

    Anticancer properties of sodium selenite in human glioblastoma cell cluster spheroids

    No full text
    International audienceGlioblastoma (GBM) is the most common type of primary tumor of the central nervous system with a poor prognosis, needing the development of new therapeutic drugs. Few studies focused on sodium selenite (SS) effects in cancer cells cultured as multicellular tumor spheroids (MCTS or 3D) closer to in vivo tumor. We investigated SS anticancer effects in three human GBM cell lines cultured in 3D: LN229, U87 (O(6)-methyguanine-DNA-methyltransferase (MGMT) negative) and T98G (MGMT positive). SS absorption was evaluated and the cytotoxicity of SS and temozolomide (TMZ), the standard drug used against GBM, were compared. SS impacts on proliferation, cell death, and invasiveness were evaluated as well as epigenetic modifications by focusing on histone deacetylase (HDAC) activity and dimethyl-histone-3-lysine-9 methylation (H3K9m2), after 24h to 72h SS exposition. SS was absorbed by spheroids and was more cytotoxic than TMZ (i.e., for LN229, the IC50 was 38 fold-more elevated for TMZ than SS, at 72h). SS induced a cell cycle arrest in the S phase and apoptosis via caspase-3. SS decreased carbonic anhydrase-9 (CA9) expression, invasion on a Matrigel matrix and modulated E- and N-Cadherin transcript expressions. SS decreased HDAC activity and modulated H3K9m2 levels. 3D model provides a relevant strategy to screen new drugs and SS is a promising drug against GBM that should now be tested in GBM animal models

    Wheat aleurone polyphenols increase plasma eicosapentaenoic acid in rats

    No full text
    International audienceMethods: These studies were designed to assess whether wheat polyphenols (mainly ferulic acid [FA]) increased the very-long-chain omega-3 fatty acids (VLC n-3) [eicosapentaenoic acid (EPA) and docosahex-aenoic acid (DHA)] in rats. Wheat aleurone (WA) was used as a dietary source of wheat polyphenols. Two experiments were performed; in the first one, the rats were fed WA or control pellets (CP) in presence of linseed oil (LO) to provide alpha-linolenic acid (ALA), the precursor of VLC n-3. In the second one, the rats were fed WA or CP in presence of control oil (CO) without ALA. The concentrations of phenolic acid metabolites in urine were also investigated. Results: The urinary concentration of conjugated FA increased with WA ingestion (p B0.05). Plasma EPA increased by 25% (p B0.05) with WA in the CO group but not in the LO group. In contrast, there was no effect of WA on plasma DHA and omega-6 fatty acids (n-6). Finally, both n-3 and n-6 in the liver remained unchanged by the WA. Conclusion: These results suggest that WA consumption has a significant effect on EPA in plasma without affecting n-6. Subsequent studies are required to examine whether these effects may explain partly the health benefits associated with whole wheat consumption

    Differential Impact of Intermittent vs. Sustained Hypoxia on HIF-1, VEGF and Proliferation of HepG2 Cells

    No full text
    Obstructive sleep apnea (OSA) is an emerging risk factor for cancer occurrence and progression, mainly mediated by intermittent hypoxia (IH). Systemic IH, a main landmark of OSA, and local sustained hypoxia (SH), a classical feature at the core of tumors, may act separately or synergistically on tumor cells. Our aim was to compare the respective consequences of intermittent and sustained hypoxia on HIF-1, endothelin-1 and VEGF expression and on cell proliferation and migration in HepG2 liver tumor cells. Wound healing, spheroid expansion, proliferation and migration were evaluated in HepG2 cells following IH or SH exposure. The HIF-1α, endothelin-1 and VEGF protein levels and/or mRNA expression were assessed, as were the effects of HIF-1 (acriflavine), endothelin-1 (macitentan) and VEGF (pazopanib) inhibition. Both SH and IH stimulated wound healing, spheroid expansion and proliferation of HepG2 cells. HIF-1 and VEGF, but not endothelin-1, expression increased with IH exposure but not with SH exposure. Acriflavine prevented the effects of both IH and SH, and pazopanib blocked those of IH but not those of SH. Macitentan had no impact. Thus, IH and SH stimulate hepatic cancer cell proliferation via distinct signaling pathways that may act synergistically in OSA patients with cancer, leading to enhanced tumor progression
    corecore