6,325 research outputs found

    Quantifying stellar radial migration in an N-body simulation: blurring, churning, and the outer regions of galaxy discs

    Full text link
    Radial stellar migration in galactic discs has received much attention in studies of galactic dynamics and chemical evolution, but remains a dynamical phenomenon that needs to be fully quantified. In this work, using a Tree-SPH simulation of an Sb-type disc galaxy, we quantify the effects of blurring (epicyclic excursions) and churning (change of guiding radius). We quantify migration (either blurring or churning) both in terms of flux (the number of migrators passing at a given radius), and by estimating the population of migrators at a given radius at the end of the simulation compared to non-migrators, but also by giving the distance over which the migration is effective at all radii. We confirm that the corotation of the bar is the main source of migrators by churning in a bar-dominated galaxy, its intensity being directly linked to the episode of a strong bar, in the first 1-3 Gyr of the simulation. We show that within the outer Lindblad resonance (OLR), migration is strongly dominated by churning, while blurring gains progressively more importance towards the outer disc and at later times. Most importantly, we show that the OLR limits the exchange of angular momentum, separating the disc in two distinct parts with minimal or null exchange, except in the transition zone, which is delimited by the position of the OLR at the epoch of the formation of the bar, and at the final epoch. We discuss the consequences of these findings for our understanding of the structure of the Milky Way disc. Because the Sun is situated slightly outside the OLR, we suggest that the solar vicinity may have experienced very limited churning from the inner disc.Comment: Accepted for publication in Astronomy and Astrophysics (acceptance date: 27/04/15), 24 pages, 24 figure

    Hiding its age: the case for a younger bulge

    Full text link
    The determination of the age of the bulge has led to two contradictory results. On the one side, the color-magnitude diagrams in different bulge fields seem to indicate a uniformly old (>>10 Gyr) population. On the other side, individual ages derived from dwarfs observed through microlensing events seem to indicate a large spread, from \sim 2 to \sim 13 Gyr. Because the bulge is now recognised as being mainly a boxy peanut-shaped bar, it is suggested that disk stars are one of its main constituents, and therefore also stars with ages significantly younger than 10 Gyr. Other arguments as well point to the fact that the bulge cannot be exclusively old, and in particular cannot be a burst population, as it is usually expected if the bulge was the fossil remnant of a merger phase in the early Galaxy. In the present study, we show that given the range of metallicities observed in the bulge, a uniformly old population would be reflected into a significant spread in color at the turn-off which is not observed. Inversely, we demonstrate that the correlation between age and metallicity expected to hold for the inner disk would conspire to form a color-magnitude diagram with a remarkably small spread in color, thus mimicking the color-magnitude diagram of a uniformly old population. If stars younger than 10 Gyr are part of the bulge, as must be the case if the bulge has been mainly formed through dynamical instabilities in the disk, then a very small spread at the turn-off is expected, as seen in the observations.Comment: 11 pages, 11 figures. Accepted for publication in A&

    Long-term radial-velocity variations of the Sun as a star: The HARPS view

    Get PDF
    Stellar radial velocities play a fundamental role in the discovery of extrasolar planets and the measurement of their physical parameters as well as in the study of stellar physical properties. We investigate the impact of the solar activity on the radial velocity of the Sun using the HARPS spectrograph to obtain measurements that can be directly compared with those acquired in the extrasolar planet search programs. We use the Moon, the Galilean satellites, and several asteroids as reflectors to measure the radial velocity of the Sun as a star and correlate it with disc-integrated chromospheric and magnetic indexes of solar activity that are similar to stellar activity indexes. We discuss in detail the systematic effects that affect our measurements and the methods to account for them. We find that the radial velocity of the Sun as a star is positively correlated with the level of its chromospheric activity at about 95 percent significance level. The amplitude of the long-term variation measured in the 2006-2014 period is 4.98 \pm 1.44 m/s, in good agreement with model predictions. The standard deviation of the residuals obtained by subtracting a linear best fit is 2.82 m/s and is due to the rotation of the reflecting bodies and the intrinsic variability of the Sun on timescales shorter than the activity cycle. A correlation with a lower significance is detected between the radial velocity and the mean absolute value of the line-of-sight photospheric magnetic field flux density. Our results confirm similar correlations found in other late-type main-sequence stars and provide support to the predictions of radial velocity variations induced by stellar activity based on current models.Comment: 11 pages, 7 figures, 2 tables, 1 Appendix; accepted by Astronomy and Astrophysic

    Is the Modern Parachurch a Reflection of Misguided Ecclesiology?

    Get PDF
    In light of the present situation of Christianity, it has become necessary to examine the biblical basis for ministries outside the normal parameters of the Church. One of the biggest problems with addressing this issue is that of defining the parachurch. An accurate and sufficient definition for what constitutes a parachurch ministry requires an investigation into biblical ecclesiology. The relationship between parachurch ministries and the local and universal church must be established in a time when the lines between them are blurred. Some basic principles need to be established which describe what constitutes a biblical reason for the creation of parachurch ministries, what guidelines those ministries should follow, and what type of relationship they should maintain with local churches

    A Comparative Study of Selected Physical Activity Skills on the Fifth and Sixth Grade at Storm Elementary School in San Antonio, Texas

    Get PDF
    The problem that was untaken in this study was to compare twenty boys from the fifth grade and twenty boys from the sixth grade at Ollie Storm Elementary School. A physical fitness test was given to determine if there were any differences in the skills that they performed according to their age, height, and weight. The importance of this study is to design some satisfactory measurement of achievement in selected physical skills for twenty boys of the fifth grade and twenty boys of the sixth grade. This was to get a true evaluation of their skills when compared to one another according to age, height, and weight. Since the only way to develop true physical fitness is through exercise, and by taking a critical look at the physical education program in Ollie Storm Elementary School, the program should be set up to suit and accomodate each individual. The problem has significance for the program of expansion of opportunities for improving the physical fitness of students at Ollie Storm Elementary School. Southers and others have stated: With the public conscience demanding of the health of the child and the school medical development of a simple economic but accurate means of assuring the child\u27s state of well being of a physical fitness is in order.5 The problem was a comparative study of physical fitness as measured by the American Association for Health, Physical Education and Recreation Youth Fitness Test. The problem of this thesis is to compare the physical fitness skills of the fifth, sixth grade boy students of Ollie Storm Elementary School, according to their age, height, and weight in performing these physical skills and to motivate the pupils toward a higher level of physical fitness. The following limitations were imposed upon the stud: (1) twenty boys from the fifth grade and twenty boys from the sixth grade, (2) the boys from each class will be selected according to age, height, and weight, (3) the study was limited to those who were physically fit in the past activities and those who enjoyed participation. 5S. P. Southers and others, A Comparison of Devices Used in Judging the Physical Fitness of School Children. American Journal of Public Health, Vol. XXIX, No. 5 (May, 1939), p. 434

    A Novel 3D printed leg design for a Biped Robot

    Get PDF
    This paper proposes a novel leg design for a humanoid robot that can be 3D printed. More explicitly, the efforts of this paper are to bring some of the more complex leg designs seen in large scale bipedal robot into the realm of smaller bipeds while still allowing for it to be easily reproducible or modified. In order to accomplish this 3D printing technology was utilized, as well as an iterative design process. An ankle and knee powered by linear actuators were first constructed to test the conceptual design of the leg. This was followed by a complete leg design with improved ankle and knee, along with the rest of the leg

    The age structure of stellar populations in the solar vicinity. Clues of a two-phase formation history of the Milky Way disk

    Full text link
    We analyze high quality abundances data of solar neighborhood stars and show that there are two distinct regimes of [alpha/Fe] versus age which we identify as the epochs of the thick and thin disk formation. A tight correlation between metallicity and [alpha/Fe] versus age is clearly identifiable on thick disk stars, implying that this population formed from a well mixed ISM, over a time scale of 4-5 Gyr. Thick disk stars vertical velocity dispersion correlate with age, with the youngest objects having as small scale heights as those of thin disk stars. A natural consequence of these two results is that a vertical metallicity gradient is expected in this population. We suggest that the thick disk set the initial conditions for the formation of the inner thin disk. This provides also an explanation of the apparent coincidence between the step in metallicity at 7-10 kpc in the thin disk and the confinment of the thick disk at about R<10 kpc. We suggest that the outer thin disk developped outside the influence of the thick disk, but also that the high alpha-enrichment of the outer regions may originate from a primordial pollution by the gas expelled from the thick disk. Local metal-poor thin disk stars, whose properties are best explained by an origin in the outer disk, are shown to be as old as the youngest thick disk (9-10 Gyr), implying that the outer thin disk started to form while the thick disk formation was still on-going in the inner Galaxy. We point out that, given the tight age-abundance relations in the thick disk, an inside-out process would give rise to a radial gradient in abundances in this population which is not observed. Finally, we argue that the data discussed here leave little room for radial migration, either to have contaminated the solar vicinity, or, to have redistributed stars in significant proportion across the solar annulus.Comment: Accepted in A&A, Revised version with new figures and extended discussio

    Composting paper and grass clippings with anaerobically treated palm oil mill effluent

    Get PDF
    Purpose The purpose of this study is to investigate the composting performance of anaerobically treated palm oil mill effluent (AnPOME) mixed with paper and grass clippings. Methods Composting was conducted using a laboratory scale system for 40 days. Several parameters were determined: temperature, mass reduction, pH, electrical conductivity, colour, zeta potential, phytotoxicity and final compost nutrients. Results The moisture content and compost mass were reduced by 24 and 18 %, respectively. Both final compost pH value and electrical conductivity were found to increase in value. Colour (measured as PtCo) was not suitable as a maturity indicator. The negative zeta potential values decreased from −12.25 to −21.80 mV. The phytotoxicity of the compost mixture was found to decrease in value during the process and the final nutrient value of the compost indicates its suitability as a soil conditioner. Conclusions From this study, we conclude that the addition of paper and grass clippings can be a potential substrate to be composted with anaerobically treated palm oil mill effluent (AnPOME). The final compost produced is suitable for soil conditioner

    A new look at the kinematics of the bulge from an N-body model

    Full text link
    (Abridged) By using an N-body simulation of a bulge that was formed via a bar instability mechanism, we analyse the imprints of the initial (i.e. before bar formation) location of stars on the bulge kinematics, in particular on the heliocentric radial velocity distribution of bulge stars. Four different latitudes were considered: b=4b=-4^\circ, 6-6^\circ, 8-8^\circ, and 10-10^\circ, along the bulge minor axis as well as outside it, at l=±5l=\pm5^\circ and l=±10l=\pm10^\circ. The bulge X-shaped structure comprises stars that formed in the disk at different locations. Stars formed in the outer disk, beyond the end of the bar, which are part of the boxy peanut-bulge structure may show peaks in the velocity distributions at positive and negative heliocentric radial velocities with high absolute values that can be larger than 100 km\rm km s1\rm s^{-1}, depending on the observed direction. In some cases the structure of the velocity field is more complex and several peaks are observed. Stars formed in the inner disk, the most numerous, contribute predominantly to the X-shaped structure and present different kinematic characteristics. Our results may enable us to interpret the cold high-velocity peak observed in the APOGEE commissioning data, as well as the excess of high-velocity stars in the near and far arms of the X-shaped structure at ll=00^\circ and bb=6-6^\circ. When compared with real data, the kinematic picture becomes more complex due to the possible presence in the observed samples of classical bulge and/or thick disk stars. Overall, our results point to the existence of complex patterns and structures in the bulge velocity fields, which are generated by the bar. This suggests that caution should be used when interpreting the bulge kinematics: the presence of substructures, peaks and clumps in the velocity fields is not necessarily a sign of past accretion events.Comment: 21 pages, 18 figures. Accepted for publication in A&
    corecore