We analyze high quality abundances data of solar neighborhood stars and show
that there are two distinct regimes of [alpha/Fe] versus age which we identify
as the epochs of the thick and thin disk formation. A tight correlation between
metallicity and [alpha/Fe] versus age is clearly identifiable on thick disk
stars, implying that this population formed from a well mixed ISM, over a time
scale of 4-5 Gyr. Thick disk stars vertical velocity dispersion correlate with
age, with the youngest objects having as small scale heights as those of thin
disk stars. A natural consequence of these two results is that a vertical
metallicity gradient is expected in this population. We suggest that the thick
disk set the initial conditions for the formation of the inner thin disk. This
provides also an explanation of the apparent coincidence between the step in
metallicity at 7-10 kpc in the thin disk and the confinment of the thick disk
at about R<10 kpc. We suggest that the outer thin disk developped outside the
influence of the thick disk, but also that the high alpha-enrichment of the
outer regions may originate from a primordial pollution by the gas expelled
from the thick disk. Local metal-poor thin disk stars, whose properties are
best explained by an origin in the outer disk, are shown to be as old as the
youngest thick disk (9-10 Gyr), implying that the outer thin disk started to
form while the thick disk formation was still on-going in the inner Galaxy. We
point out that, given the tight age-abundance relations in the thick disk, an
inside-out process would give rise to a radial gradient in abundances in this
population which is not observed. Finally, we argue that the data discussed
here leave little room for radial migration, either to have contaminated the
solar vicinity, or, to have redistributed stars in significant proportion
across the solar annulus.Comment: Accepted in A&A, Revised version with new figures and extended
discussio