8 research outputs found

    The ENIGMA Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke

    Get PDF
    The goal of the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Stroke Recovery working group is to understand brain and behavior relationships using well‐powered meta‐ and mega‐analytic approaches. ENIGMA Stroke Recovery has data from over 2,100 stroke patients collected across 39 research studies and 10 countries around the world, comprising the largest multisite retrospective stroke data collaboration to date. This article outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols and methods to manage multisite stroke brain magnetic resonance imaging, behavioral and demographics data. Specifically, the processes for scalable data intake and preprocessing, multisite data harmonization, and large‐scale stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research are discussed. Finally, future directions and limitations, as well as recommendations for improved data harmonization through prospective data collection and data management, are provided

    Post-disaster social recovery: disaster governance lessons learnt from Tropical Cyclone Yasi

    Get PDF
    Post-disaster social recovery remains the least understood of the disaster phases despite increased risks of extreme events leading to disasters due to climate change. This paper contributes to advance this knowledge by focusing on the disaster recovery process of the Australian coastal town of Cardwell which was affected by category 4/5 Tropical Cyclone Yasi in 2011. Drawing on empirical data collected through semi-structured interviews with Cardwell residents post-Yasi, it examines issues related to social recovery in the first year of the disaster and 2 years later. Key findings discuss the role played by community members, volunteers and state actors in Cardwell’s post-disaster social recovery, especially with respect to how current disaster risk management trends based on self-reliance and shared responsibility unfolded in the recovery phase. Lessons learnt concerning disaster recovery governance are then extracted to inform policy implementation for disaster risk management to support social recovery and enhance disaster resilience in the light of climate change

    B cell-intrinsic requirement for WNK1 kinase in antibody responses in mice

    No full text
    Migration and adhesion play critical roles in B cells, regulating recirculation between lymphoid organs, migration within lymphoid tissue, and interaction with CD4+ T cells. However, there is limited knowledge of how B cells integrate chemokine receptor and integrin signaling with B cell activation to generate efficient humoral responses. Here, we show that the WNK1 kinase, a regulator of migration and adhesion, is essential in B cells for T-dependent and -independent antibody responses. We demonstrate that WNK1 transduces signals from the BCR, CXCR5, and CD40, and using intravital imaging, we show that WNK1 regulates migration of naive and activated B cells, and their interactions with T cells. Unexpectedly, we show that WNK1 is required for BCR- and CD40-induced proliferation, acting through the OXSR1 and STK39 kinases, and for efficient B cell-T cell collaboration in vivo. Thus, WNK1 is critical for humoral immune responses, by regulating B cell migration, adhesion, and T cell-dependent activation

    A high-throughput panel for identifying clinically relevant mutation profiles in melanoma

    No full text
    Success with molecular-based targeted drugs in the treatment of cancer has ignited extensive research efforts within the field of personalized therapeutics. However, successful application of such therapies is dependent on the presence or absence of mutations within the patient's tumor that can confer clinical efficacy or drug resistance. Building on these findings, we developed a high-throughput mutation panel for the identification of frequently occurring and clinically relevant mutations in melanoma. An extensive literature search and interrogation of the Catalogue of Somatic Mutations in Cancer database identified more than 1,000 melanoma mutations. Applying a filtering strategy to focus on mutations amenable to the development of targeted drugs, we initially screened 120 known mutations in 271 samples using the Sequenom MassARRAY system. A total of 252 mutations were detected in 17 genes, the highest frequency occurred in BRAF (n = 154, 57%), NRAS (n = 55, 20%), CDK4 (n = 8, 3%), PTK2B (n = 7, 2.5%), and ERBB4 (n = 5, 2%). Based on this initial discovery screen, a total of 46 assays interrogating 39 mutations in 20 genes were designed to develop a melanoma-specific panel. These assays were distributed in multiplexes over 8 wells using strict assay design parameters optimized for sensitive mutation detection. The final melanoma-specific mutation panel is a cost effective, sensitive, high-throughput approach for identifying mutations of clinical relevance to molecular-based therapeutics for the treatment of melanoma. When used in a clinical research setting, the panel may rapidly and accurately identify potentially effective treatment strategies using novel or existing molecularly targeted drug

    The ENIGMA Stroke Recovery Working Group: Big data neuroimaging to study brain-behavior relationships after stroke

    No full text
    The goal of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Stroke Recovery working group is to understand brain and behavior relationships using well-powered meta- and mega-analytic approaches. ENIGMA Stroke Recovery has data from over 1,800 stroke patients collected across 32 research sites and 10 countries around the world, comprising the largest multi-site retrospective stroke data collaboration to date. This paper outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols and methods to manage multi-site stroke brain magnetic resonance imaging (MRI), behavioral and demographics data. Specifically, the processes for scalable data intake and pre-processing, multi-site data harmonization, and large-scale stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research are discussed. Finally, future directions and limitations, as well as recommendations for improved data harmonization through prospective data collection and data management, are provided
    corecore