233 research outputs found

    Comparison of a Powdered, Acidified Liquid, and Non-Acidified Liquid Human Milk Fortifier on Clinical Outcomes in Premature Infants.

    Get PDF
    We previously compared infant outcomes between a powdered human milk fortifier (P-HMF) vs. acidified liquid HMF (AL-HMF). A non-acidified liquid HMF (NAL-HMF) is now commercially available. The purpose of this study is to compare growth and outcomes of premature infants receiving P-HMF, AL-HMF or NAL-HMF. An Institutional Review Board (IRB) approved retrospective chart review compared infant outcomes (born \u3c 2000 g) who received one of three HMF. Growth, enteral nutrition, laboratory and demographic data were compared. 120 infants were included (P-HMF = 46, AL-HMF = 23, NAL-HMF = 51). AL-HMF infants grew slower in g/day (median 23.66 vs. P-HMF 31.27, NAL-HMF 31.74 (p \u3c 0.05)) and in g/kg/day, median 10.59 vs. 15.37, 14.03 (p \u3c 0.0001). AL-HMF vs. NAL-HMF infants were smaller at 36 weeks gestational age (median 2046 vs. 2404 g, p \u3c 0.05). However AL-HMF infants received more daily calories (p = 0.21) and protein (p \u3c 0.0001), mean 129 cal/kg, 4.2 g protein/kg vs. P-HMF 117 cal/kg, 3.7 g protein/kg , NAL-HMF 120 cal/kg, 4.0 g protein/kg. AL-HMF infants exhibited lower carbon dioxide levels after day of life 14 and 30 (p \u3c 0.0001, p = 0.0038). Three AL-HMF infants (13%) developed necrotizing enterocolitis (NEC) vs. no infants in the remaining groups (p = 0.0056). A NAL-HMF is the most optimal choice for premature human milk-fed infants in a high acuity neonatal intensive care unit (NICU)

    BioXpress: an integrated RNA-seq-derived gene expression database for pan-cancer analysis.

    Get PDF
    BioXpress is a gene expression and cancer association database in which the expression levels are mapped to genes using RNA-seq data obtained from The Cancer Genome Atlas, International Cancer Genome Consortium, Expression Atlas and publications. The BioXpress database includes expression data from 64 cancer types, 6361 patients and 17 469 genes with 9513 of the genes displaying differential expression between tumor and normal samples. In addition to data directly retrieved from RNA-seq data repositories, manual biocuration of publications supplements the available cancer association annotations in the database. All cancer types are mapped to Disease Ontology terms to facilitate a uniform pan-cancer analysis. The BioXpress database is easily searched using HUGO Gene Nomenclature Committee gene symbol, UniProtKB/RefSeq accession or, alternatively, can be queried by cancer type with specified significance filters. This interface along with availability of pre-computed downloadable files containing differentially expressed genes in multiple cancers enables straightforward retrieval and display of a broad set of cancer-related genes

    Photometric Analysis in the Kepler Science Operations Center Pipeline

    Get PDF
    We describe the Photometric Analysis (PA) software component and its context in the Kepler Science Operations Center (SOC) pipeline. The primary tasks of this module are to compute the photometric flux and photocenters (centroids) for over 160,000 long cadence (~thirty minute) and 512 short cadence (~one minute) stellar targets from the calibrated pixels in their respective apertures. We discuss the science algorithms for long and short cadence PA: cosmic ray cleaning; background estimation and removal; aperture photometry; and flux-weighted centroiding. We discuss the end-to-end propagation of uncertainties for the science algorithms. Finally, we present examples of photometric apertures, raw flux light curves, and centroid time series from Kepler flight data. PA light curves, centroid time series, and barycentric timestamp corrections are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and are made available to the general public in accordance with the NASA/Kepler data release policy

    Overview of the Kepler Science Processing Pipeline

    Full text link
    The Kepler Mission Science Operations Center (SOC) performs several critical functions including managing the ~156,000 target stars, associated target tables, science data compression tables and parameters, as well as processing the raw photometric data downlinked from the spacecraft each month. The raw data are first calibrated at the pixel level to correct for bias, smear induced by a shutterless readout, and other detector and electronic effects. A background sky flux is estimated from ~4500 pixels on each of the 84 CCD readout channels, and simple aperture photometry is performed on an optimal aperture for each star. Ancillary engineering data and diagnostic information extracted from the science data are used to remove systematic errors in the flux time series that are correlated with these data prior to searching for signatures of transiting planets with a wavelet-based, adaptive matched filter. Stars with signatures exceeding 7.1 sigma are subjected to a suite of statistical tests including an examination of each star's centroid motion to reject false positives caused by background eclipsing binaries. Physical parameters for each planetary candidate are fitted to the transit signature, and signatures of additional transiting planets are sought in the residual light curve. The pipeline is operational, finding planetary signatures and providing robust eliminations of false positives.Comment: 8 pages, 3 figure

    Polycyclic Aromatic Hydrocarbons not declining in Arctic air despite global emission reduction

    Get PDF
    Two decades of atmospheric measurements of polycyclic aromatic hydrocarbons (PAHs) were conducted at three Arctic sites, i.e., Alert, Canada; Zeppelin, Svalbard; and Pallas, Finland. PAH concentrations decrease with increasing latitude in the order of Pallas>Zeppelin>Alert. Forest fire was identified as an important contributing source. Three representative PAHs, phenanthrene (PHE), pyrene (PYR), and benzo(a)pyrene (BaP) were selected for the assessment of their long-term trends. Significant decline of these PAHs was not observed contradicting the expected decline due to PAH emission reductions. A global 3-D transport model was employed to simulate the concentrations of these three PAHs at the three sites. The model predicted that warming in the Arctic would cause the air concentrations of PHE and PYR to increase in the Arctic atmosphere, while that of BaP, which tends to be particle-bound, is less affected by temperature. The expected decline due to the reduction of global PAH emissions is offset by the increment of volatilization caused by warming. This work shows that this phenomenon may affect the environmental occurrence of other anthropogenic substances, such as, the more volatile flame retardants and pesticides

    MetaBayesDTA: codeless Bayesian meta-analysis of test accuracy, with or without a gold standard

    Get PDF
    Background: The statistical models developed for meta-analysis of diagnostic test accuracy studies require specialised knowledge to implement. This is especially true since recent guidelines, such as those in Version 2 of the Cochrane Handbook of Systematic Reviews of Diagnostic Test Accuracy, advocate more sophisticated methods than previously. This paper describes a web-based application - MetaBayesDTA - that makes many advanced analysis methods in this area more accessible. Results: We created the app using R, the Shiny package and Stan. It allows for a broad array of analyses based on the bivariate model including extensions for subgroup analysis, meta-regression and comparative test accuracy evaluation. It also conducts analyses not assuming a perfect reference standard, including allowing for the use of different reference tests. Conclusions: Due to its user-friendliness and broad array of features, MetaBayesDTA should appeal to researchers with varying levels of expertise. We anticipate that the application will encourage higher levels of uptake of more advanced methods, which ultimately should improve the quality of test accuracy reviews

    Photometer Performance Assessment in Kepler Science Data Processing

    Get PDF
    This paper describes the algorithms of the Photometer Performance Assessment (PPA) software component in the science data processing pipeline of the Kepler mission. The PPA performs two tasks: One is to analyze the health and performance of the Kepler photometer based on the long cadence science data down-linked via Ka band approximately every 30 days. The second is to determine the attitude of the Kepler spacecraft with high precision at each long cadence. The PPA component is demonstrated to work effectively with the Kepler flight data

    Data Validation in the Kepler Science Operations Center Pipeline

    Get PDF
    We present an overview of the Data Validation (DV) software component and its context within the Kepler Science Operations Center (SOC) pipeline and overall Kepler Science mission. The SOC pipeline performs a transiting planet search on the corrected light curves for over 150,000 targets across the focal plane array. We discuss the DV strategy for automated validation of Threshold Crossing Events (TCEs) generated in the transiting planet search. For each TCE, a transiting planet model is fitted to the target light curve. A multiple planet search is conducted by repeating the transiting planet search on the residual light curve after the model flux has been removed; if an additional detection occurs, a planet model is fitted to the new TCE. A suite of automated tests are performed after all planet candidates have been identified. We describe a centroid motion test to determine the significance of the motion of the target photocenter during transit and to estimate the coordinates of the transit source within the photometric aperture; a series of eclipsing binary discrimination tests on the parameters of the planet model fits to all transits and the sequences of odd and even transits; and a statistical bootstrap to assess the likelihood that the TCE would have been generated purely by chance given the target light curve with all transits removed. Keywords: photometry, data validation, Kepler, Earth-size planet

    Discovery and Rossiter-McLaughlin Effect of Exoplanet Kepler-8b

    Get PDF
    We report the discovery and the Rossiter-McLaughlin effect of Kepler-8b, a transiting planet identified by the NASA Kepler Mission. Kepler photometry and Keck-HIRES radial velocities yield the radius and mass of the planet around this F8IV subgiant host star. The planet has a radius RP = 1.419 RJ and a mass, MP = 0.60 MJ, yielding a density of 0.26 g cm^-3, among the lowest density planets known. The orbital period is P = 3.523 days and orbital semima jor axis is 0.0483+0.0006/-0.0012 AU. The star has a large rotational v sin i of 10.5 +/- 0.7 km s^-1 and is relatively faint (V = 13.89 mag), both properties deleterious to precise Doppler measurements. The velocities are indeed noisy, with scatter of 30 m s^-1, but exhibit a period and phase consistent with the planet implied by the photometry. We securely detect the Rossiter-McLaughlin effect, confirming the planet's existence and establishing its orbit as prograde. We measure an inclination between the projected planetary orbital axis and the projected stellar rotation axis of lambda = -26.9 +/- 4.6 deg, indicating a moderate inclination of the planetary orbit. Rossiter-McLaughlin measurements of a large sample of transiting planets from Kepler will provide a statistically robust measure of the true distribution of spin-orbit orientations for hot jupiters in general.Comment: 26 pages, 8 figures, 2 tables; In preparation for submission to the Astrophysical Journa
    • …
    corecore