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ABSTRACT   

We describe the Photometric Analysis (PA) software component and its context in the Kepler Science Operations Center 
(SOC) pipeline. The primary tasks of this module are to compute the photometric flux and photocenters (centroids) for 
over 160,000 long cadence (~thirty minute) and 512 short cadence (~one minute) stellar targets from the calibrated 
pixels in their respective apertures. We discuss the science algorithms for long and short cadence PA: cosmic ray 
cleaning; background estimation and removal; aperture photometry; and flux-weighted centroiding. We discuss the end-
to-end propagation of uncertainties for the science algorithms. Finally, we present examples of photometric apertures, 
raw flux light curves, and centroid time series from Kepler flight data. PA light curves, centroid time series, and 
barycentric timestamp corrections are exported to the Multi-mission Archive at Space Telescope [Science Institute] 
(MAST) and are made available to the general public in accordance with the NASA/Kepler data release policy.   
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1. INTRODUCTION  
The Kepler mission is designed to detect (habitable) Earth-size planets transiting Sun-like stars1. The spacecraft was 
launched on 6 March 2009 into an Earth-trailing heliocentric orbit with a period of 373 days. The pointing of the Kepler 
photometer is maintained to support imaging of the same star field continuously for the life of the mission (nominally 3.5 
years for the primary mission). The field of view of the Kepler photometer is ~110 square degrees. Incident light is 
collected by 42 charge-coupled device (CCD) detectors (94.6 million total pixels) on the focal plane assembly. There are 
two readout channels (or module outputs) per CCD, for a total of 84 on the focal plane. Short exposures are integrated 
onboard to produce one image every 29.4 minutes for over 160,000 long cadence2 (LC) targets,  and one image every 
0.98 minutes for 512 short cadence3 (SC) targets. The spacecraft is rolled by 90 degrees on a quarterly basis so that the 
solar panels are continuously directed toward the Sun. 

Science data acquired in-flight are processed in the Kepler Science Operations Center (SOC) pipeline4,5. Pixel values are 
calibrated for each cadence in the Calibration (CAL) software component6. Raw flux light curves are extracted and target 
photocenters (centroids) are computed in the Photometric Analysis (PA) component described in this paper. Data 
anomalies and systematic errors are corrected in the Presearch Data Conditioning (PDC) component7. Long cadence 
corrected flux light curves are then subjected to a search for transiting planets. The Transiting Planet Search (TPS) 
pipeline module8 returns a Threshold Crossing Event (TCE) for each target and trial transit pulse that exceeds the 
specified detection threshold. A transiting planet model is fitted to the corrected flux light curves in the Data Validation 
(DV) pipeline module9,10 for targets with TCEs. A transit signature obtained from the fitted parameters is subsequently 
removed from the corrected flux time series for each candidate planet, and a search is conducted for additional candidate 
planets. A suite of automated tests is performed when no additional candidate planets can be identified. The purpose of 
the automated tests is to facilitate identification of the true candidate planets from the large number of false positive 
transiting planet detections (astrophysical and otherwise). 

The first primary task of PA is to extract raw flux light curves from calibrated pixels in the apertures of the respective 
long and short cadence targets. Prior to computation of the photometric flux for each target, so-called Argabrightening  
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events are (optionally) mitigated, cosmic rays are (optionally) removed, and a background estimate is subtracted from the 
pixels in the target apertures. The second primary task of PA is to estimate CCD coordinates of the aperture photocenter 
(centroid) for each target and cadence from background-removed pixels associated with the respective targets. Other 
tasks of PA are to compute barycentric timestamp corrections per target and cadence based on a spacecraft trajectory 
reconstruction, and to compute metrics (brightness and encircled energy) for monitoring instrument performance and, 
potentially, to support systematic error correction in the PDC component.  

Raw flux light curves, centroid time series, and barycentric timestamp corrections are exported to the Multi-mission 
Archive at Space Telescope [Science Institute] (MAST) and are made available to the general public in accordance with 
the NASA/Kepler data release policy. Corrected flux light curves generated in PDC are also exported to the MAST. 
These account for systematic errors due to data and spacecraft anomalies, and also for excess flux in the target apertures 
due to background sources. 

An overview of PA and the flow of data through the pipeline module are presented in §2. PA science algorithms are 
described in §3; cosmic ray cleaning is discussed in §3.1; background estimation and removal are discussed in §3.2; 
aperture photometry is discussed in §3.3; and flux-weighted centroiding is discussed in §3.4. A summary and 
conclusions are presented in §4. 

2. PHOTOMETRIC ANALYSIS OVERVIEW AND DATA FLOW 
The primary tasks of the PA pipeline module are to compute raw flux light curves and centroids of target stars from 
calibrated pixels in their respective apertures. The standard PA unit of work11,12 for both LC and SC science data 
processing is a single module output for a duration of one quarter (LC) or one month (SC). 

PA science data includes calibrated background and target pixels. Due to the large volume of calibrated pixel data, PA is 
typically executed in multiple invocations12. For LC units of work, all of the background pixel data is processed in the 
first PA invocation. Background pixels are utilized to estimate the background level to be subtracted from each target 
pixel on each cadence. Target pixels are then processed in as many subsequent invocations as required. Calibrated pixel 
data for targets with PPA_STELLAR labels are processed first in PA (although they may span multiple PA invocations). 
After all PPA_STELLAR pixels have been processed, then calibrated pixels for targets without PPA_STELLAR labels 
are processed. Targets with the PPA_STELLAR label represent gold standards for motion polynomial fitting, centroid 
seeding, and computation of PA metrics. Approximately 200 of these are pre-selected per module output. There are no 
background pixels in SC units of work, so the processing of SC science data is restricted to target pixels only. 

Data flow in the PA pipeline module is shown in Figure 1. Data generally flows from left to right and top to bottom in 
the figure. Functional blocks in the diagram will be referenced with bold type where they are discussed in the text, and 
section numbers will be included for the algorithms that are described in detail later in this paper. 

Mitigate Argabrightening Events. It has been observed in flight data that there are cadences for which the flux values 
of all background and target pixels are elevated2. These have been dubbed Argabrightening events after Vic Argabright, 
the Ball Aerospace engineer who first observed and reported them. There has been speculation about the source of the 
Argabrightening events, but the true source is unknown. If Argabrightening mitigation is enabled, then Argabrightening 
detection statistics are formulated for each cadence and a threshold is applied to identify the Argabrightening cadences. 
All background and target pixel time series are subsequently gapped for Argabrightening cadences in each of the PA 
invocations in the unit of work. Argabrightening statistics are formulated from the background pixels for LC units of 
work and from target pixels outside of the optimal apertures of the respective targets in the first invocation for SC units 
of work. 

Clean Cosmic Rays (§3.1). If cosmic ray cleaning is enabled, cosmic rays are identified and removed from the 
calibrated background (LC only) and target pixels. Cosmic ray metrics are computed separately from the background and 
target cosmic ray event lists. Background cosmic ray events and metrics are written to the pipeline Data Store after the 
background pixels have been processed in the first invocation of LC units of work. Target cosmic ray events and metrics 
are written to the Data Store after the last target invocation in all PA units of work. 



 
 

 
 

 
Figure 1: Data flow diagram for the Photometric Analysis (PA) pipeline module. Inputs are shown at the left and outputs are 
shown at the right. Inputs are obtained from the Data Store and outputs are written to the Data Store. 

 

Fit Background and Remove Background from Targets (§3.2). For LC units of work, a two-dimensional background 
polynomial is fit to the cosmic ray-cleaned background pixels on a cadence by cadence basis. The background is 
removed from cosmic ray-cleaned target pixels by evaluating the background polynomial at the coordinates of the given 
target pixels and subtracting the resulting background estimates from the target pixel values on a cadence by cadence 
basis. For SC units of work, background polynomials must be interpolated at the short cadence timestamps before they 
can be evaluated to estimate the  background. 

Aperture Photometry (§3.2). Flux time series are obtained by performing aperture photometry on the background-
removed target pixels. In Simple Aperture Photometry (SAP), pixel values are summed for all pixels in the optimal 
aperture of a given target. That is the only photometry method currently supported by PA (SOC release 6.1). 

Compute Target Centroids (§3.4). Row and column centroid time series are computed from the background-removed 
target pixels on a cadence by cadence basis. Flux-weighted centroids are computed for all PA targets. Centroids based on 
fitting a predetermined Pixel Response Function13 (PRF) to calibrated target pixel values in the respective target 
apertures may also be computed for PPA_STELLAR or other targets. PRF-based centroiding, however, will not be 
discussed further in this paper. 

Fit Motion Polynomials. Two-dimensional motion polynomials are separately fit to the collection of row and column 
centroids of the PPA_STELLAR targets (if a sufficient number of such targets are available) as a function of target right 
ascension and declination. The motion polynomials are then evaluated at the celestial coordinates of the non-
PPA_STELLAR targets in order to seed the PRF-based centroid computation if PRF-based centroiding is enabled for 
such targets. The motion polynomials are written to the Data Store. In short cadence units of work, motion polynomials 
are obtained for centroid seeding by interpolation of long cadence motion polynomials provided to PA from the Data 
Store. The motion polynomials are computed cadence by cadence. In addition to providing seeds for centroids, motion 
polynomials are utilized elsewhere in the pipeline for focal plane geometry fitting14, systematic error correction7, attitude 
determination15, and computation of instrument performance metrics15. 

Compute Encircled Energy Metric and Compute Brightness Metric. The encircled energy metric is computed for 
each cadence from the background-removed target pixels and centroids of the PPA_STELLAR targets. This metric is a 
robust measure of the average radius required to capture a specified fraction of flux from the respective targets. The 
brightness metric is computed for each cadence from the raw flux time series for the PPA_STELLAR targets. This 



 
 

 
 

metric is a robust measure of the average ratio of observed-to-estimated flux for the given targets. The raw flux light 
curves, row and column centroids, and encircled energy and brightness metrics are all written to the Data Store. 

Uncertainties in calibrated background and target pixels are propagated by standard methods to uncertainties in the raw 
flux, centroids, metrics, and two-dimensional polynomials generated in PA. Uncertainties propagated in PA are also 
written to the Data Store. If rigorous Propagation of Uncertainties (POU) is enabled, uncertainties are propagated from 
covariance matrices for calibrated background and target pixels16. Otherwise, uncertainties in PA products are 
propagated only from uncertainties in calibrated background and target pixels under the assumption of statistical 
independence. 

Barycentric Timestamp Correction. Barycentric timestamp corrections are computed for each target and cadence 
given the celestial coordinates or the target and a reconstructed spacecraft trajectory. The offset for each mid-cadence 
timestamp is computed such that the timestamp plus the offset yields the time that the flux would have been captured at 
the solar system barycenter. The barycentric offsets allow investigators to account for modulation of the timing of 
observed transits due to the heliocentric orbit of the photometer. Barycentric corrections produced in PA also 
compensate for small time slice offsets introduced in the multiplexed readout of the focal plane array. 

3. PHOTOMETRIC ANALYSIS SCIENCE ALGORITHMS 
PA science algorithms are discussed in this section with flow charts and illustrations where appropriate. 

3.1 Cosmic ray cleaning  

Cosmic rays have been problematic for all space flight missions with cosmic ray sensitive CCD detectors. The expected 
cosmic ray flux rate for the Kepler CCD array is 5 cm-2 sec-1. Each 27 µm pixel is therefore expected to receive a direct 
hit approximately three times per day4. Energy may be deposited over a range of pixels for each hit, however, depending 
on the angle of incidence. 

In the PA pipeline module, cosmic rays are cleaned (identified and subtracted) in both background and target pixels after 
Argabrightening events have been mitigated. Cosmic ray identification in the relatively low flux background pixels is 
more effective than in target pixels where deposited energy is often a small fraction of the total flux. Most cosmic rays 
are not expected to be detected, but the desire is to detect the cosmic rays with significant charge with a low false 
detection rate. 

A flow chart describing the cosmic ray cleaning algorithm is shown in Figure 2. The cosmic ray identification process 
for PA background and target pixels is a general pixel time series outlier identification algorithm. To that end, both 
positive and negative outliers are identified. The algorithm therefore goes beyond identification of cosmic rays only, as 
these are restricted to deposits of positive charge. A parameter has been included in the module interface11,12, however, to 
define a threshold multiplier for negative events. This multiplier may be specified to be arbitrarily large; in that event, 
the algorithm is insensitive to negative flux outliers. 

A two-dimensional array of all background or target pixel time series in a given PA invocation is first detrended along 
the time dimension with a low order polynomial. The detrended time series for the respective pixels are smoothed with a 
short median filter (relative to typical astrophysical events and stellar variations). The residuals (cosmic ray deltas) are 
then computed between the detrended time series and the time series obtained by median filtering each (detrended) pixel 
time series. A moving Median Absolute Deviation (MAD) is computed on the residuals for each pixel time series to 
obtain a time-varying estimate of the residual scatter, and detection statistics are formulated by computing the ratio of the 
residuals to the MAD for each pixel and cadence. Outliers are identified by applying a threshold to the absolute value of 
the detection statistics. 

Once the residual values that exceed the detection threshold have been identified, the number of outlier counts per pixel 
time series is determined. The pixels for which there are an excessive number of counts are identified and reprocessed as 
before with a longer duration median filter. The motivation for doing so is to prevent out-of-family cosmic ray 
identification based on the nature and variability of specific targets. Implicit is the assumption that cosmic rays or other 
outliers should be distributed uniformly among all background or target pixels. 

 



 
 

 
 

 
Figure 2: Flow chart for the cosmic ray cleaning algorithm. The loop in the upper path is executed twice in the 
current PA release (6.1). 

 

After the process has repeated, the detection threshold is raised for those pixels that continue to have an excessive 
number of hits (in relation to the ensemble of background or target pixels in the given invocation). The number of 
cosmic rays identified for each of these pixels is set equal to the median number across the ensemble. Once outliers have 
been identified for all pixels and cadences, temporally consecutive events are invalidated as cosmic ray detections. 
Consecutive cosmic ray hits in a single pixel time series are extremely unlikely and almost certainly indicative of false 
detections. Finally, the residuals (cosmic ray deltas) after median filtering are subtracted from the original pixel array for 
the valid remaining cosmic ray events to obtain an array of cosmic ray-cleaned pixel values. 

Cosmic ray detection statistics for a Q3 target17 pixel are shown in Figure 3 along with the pixel time series before and 
after cosmic ray cleaning. The difference between the original and corrected pixel value for each cadence with an 
identified cosmic ray is equal to the residual (or delta) after median filtering. For each cosmic ray event, the mid-cadence 
timestamp is written to the Data Store along with the row and column coordinates of the pixel and the cosmic ray delta. 
Duplicate detections are first removed from the cosmic ray events lists. These may result if a pixel falls in multiple target 
apertures. 

 



 
 

 
 

 
Figure 3: Cosmic ray detection statistics for a single pixel time series are shown in the upper panel. The target 
pixel time series before and after cleaning are shown in the lower panel. Cosmic ray events in the original pixel 
time series are circled. Flux transients following the monthly downlinks near cadences 1500 and 3000 are 
thermally induced. 

 

3.2 Background estimation and removal 

Background pixels are acquired at the long cadence rate in a grid pattern on each of the focal plane module outputs. 4464 
background pixels are defined on each channel. The purpose of the background pixels is to support the removal of 
background flux (and hence the extraction of photometrically precise light curves). The background pixel time series 
represent spatial and temporal samples of the global background level and an attempt is made to prevent them from 
being corrupted by flux from neighboring stars or from saturated targets on the same columns. Nevertheless, there are 
background pixels in the flight data that exhibit high flux levels due to nearby or saturated targets. These pixels 
necessitate the development of a robust (against outliers) method for background estimation and subtraction. 

Background estimation is performed in two steps. The process begins by fitting a two-dimensional (background) 
polynomial to the calibrated, cosmic ray-corrected background pixel values as a function of the CCD row and column 
coordinates for each cadence. This occurs on the first PA invocation in each long cadence unit of work. In all subsequent 
target invocations, the background is estimated by evaluating the background polynomial for each cadence at the CCD 
coordinates of the respective target pixels. This produces a spatially smooth estimate of the local background for each 
target without dedicating any background pixels to specific targets. In fact, the ratio of background pixels to targets is 
only on the order of 2:1 across the entire focal plane. 

Once the background is estimated for each target pixel and cadence, the background is removed by subtracting the 
estimated value from the calibrated, cosmic ray-corrected target pixel value. Uncertainties in the background-removed 
target pixels are propagated from uncertainties in the background and target pixels by standard methods. The covariance 
matrix for the background polynomial is determined from uncertainties in the background pixels for each long cadence. 
The background polynomial covariance matrix is then propagated through the background polynomial evaluation and 
background subtraction from the calibrated target pixels. Uncertainties may be propagated in an approximate (but 
computationally inexpensive) fashion, or in a fully rigorous treatment (that utilizes, as a starting point, full covariance 
matrices16 for the background pixels and target pixels in each stellar aperture) depending on the state of a PA module 
parameter. 



 
 

 
 

Background removal for short cadence targets is complicated by the fact that there are no short cadence background 
pixels. In short cadence units of work, the long cadence background polynomials are provided as input to PA on the first 
target invocation. The background polynomials are then interpolated in time at the midpoints of the short cadence 
intervals (and saved for use in subsequent invocations). The background estimation and removal process then proceeds 
with the interpolated background polynomials as before. It should be noted that changes in the background that occur on 
time scales shorter than the long cadence rate cannot be captured in the short cadence background estimation process. 

The order for the two-dimensional polynomial that is fit to the background pixels for each long cadence is determined by 
default in the pipeline with the Akaike Information Criterion18 (AIC). This criterion includes a penalty that increases 
with fit order and seeks to optimize the trade-off between fit order and goodness of fit. In PA, the order that is used for 
the background fit for all cadences is determined by the order (up to a specified maximum) that minimizes average AIC 
over all cadences in the unit of work. For a background fit of order K, the number of background polynomial coefficients 
for each cadence is (K+1) * (K + 2) / 2. 

For the set of calibrated, cosmic ray-corrected background pixels B, let pB and σΒ designate the pixel values and 
uncertainties for any given cadence such that pB,n and σΒ,n  represent the value and uncertainty of the nth background 
pixel. Furthermore, let the (one-based) CCD row and column coordinates of the background pixels be designated by iB 
and jB respectively. The background polynomial xBP is then determined for order KB by minimizing the weighted χ2 
defined in equations (1) and (2) for the given cadence: 
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where the background polynomial coefficient index is given by 
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For the set of pixels P in a specified target aperture, the background level may then be estimated for the given cadence 
from the background polynomial xBP and subtracted from the calibrated, cosmic ray-corrected target pixels pT to obtain 
the background-removed target pixel values pS as follows: 
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where the CCD row and column coordinates of the target pixels are designated iT and jT respectively, and the background 
estimate for the nth target pixel in P is given by 
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The background polynomial coefficient index m is defined as in equation (2). 

The weighted least squares problem defined in equation (1) is solved in an iterative, robust manner in order to 
deemphasize any outlier background pixel values that would otherwise perturb the two-dimensional fit. The problem 
may still be posed for each cadence as Ax = b. The least squares solution is the familiar x = Tb, where T = (A’A)-1A’. If 
the rigorous propagation of uncertainties is enabled in PA, the covariance matrix CBP for the background polynomial xBP 
is determined from the covariance matrix CB of the background pixels16 and the background polynomial transformation 
matrix TBP for the given cadence by 

 'BPBBPBP TCTC =  (5) 

Uncertainties in the background polynomial coefficients are then propagated to the background-removed pixels in the 
target aperture for the given cadence by 
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where CT is the covariance matrix for the cosmic ray-corrected target pixels16, and the linear transformation to evaluate 
the background polynomial in the target aperture (4) is given by 
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3.3 Aperture photometry 

It is not possible to save and later downlink all of the pixel values acquired on the focal plane array. The storage and 
bandwidth required to support that are excessive. Rather, an aperture is defined for each target that specifies the pixels 
necessary to support pixel-level calibrations, light curve extraction, and computation of the target photocenter. Only 
pixels in the specified target apertures (plus the background and collateral6 pixels for black level and smear corrections in 
CAL) are written to the Solid State Recorder aboard the spacecraft and downlinked for pipeline processing. Great care is 
taken in generation of the aperture definitions19 to ensure that all of the pixels required to support the Kepler science 
mission are captured. Pipeline software may be enhanced over time, but the science pixels may only be acquired once. 

Within each target aperture, the subset of pixels required for photometric extraction of light curves is referred to as the 
optimal aperture. The size of the optimal aperture for any given target depends on a number of factors, including target 
magnitude, PRF, noise level, and local crowding. The apertures and associated optimal apertures are redefined for each 
observing season as the targets move from one CCD to another with each quarterly roll of the photometer. Images 
illustrating the mean flux level for pixels (after background subtraction) in two sample target apertures are shown in 
Figure 4. The pixels in the optimal aperture for each target are marked with white circles. The Kepler magnitude is 13 for 
the (PPA_STELLAR) target on the left, and 10 for the saturated target on the right. Charge bleeds along the column 
where the flux concentration is highest for the saturated target. The optimal aperture is stretched vertically to permit flux 
to be captured in one saturated column or another as the target moves due to Differential Velocity Aberration (DVA). 

 
Figure 4: Mean flux levels for pixels in two target apertures. The PPA_STELLAR target on the left is 13th 
magnitude. The saturated target on the right is 10th magnitude. Pixels in the optimal aperture for each target are 
indicated with white circles. The colormap range for the saturated target is nearly ten times larger than that of the 
PPA_STELLAR target. 

 

The optimal aperture does not necessarily contain all of the stellar flux for a given target. The flux fraction in the aperture 
refers to the ratio of target flux contained in the optimal aperture to the total flux of the target. Likewise, not all flux in 
the optimal aperture is due to the primary target. The crowding metric refers to the fraction of flux in the optimal 



 
 

 
 

aperture that is due to the target. The flux fractions and crowding metrics are computed for each target table when the 
apertures are defined19 and are provided to the pipeline modules that require them. Excess flux due to crowding in the 
optimal apertures is removed7 when the light curves are corrected in PDC. 

Light curves are computed in the current release (6.1) of PA by a method referred to as Simple Aperture Photometry 
(SAP). It is possible that additional photometric methods will be supported in future releases. Once the calibrated target 
pixels have had cosmic rays corrected and background removed, the raw flux is obtained per target and cadence by the 
(unweighted) summation of pixels in the associated optimal aperture. For the set of target pixels O in the optimal 
aperture of a specified target, the raw flux fR is computed by SAP from the background removed pixels pS in the target 
aperture for a given cadence by 
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where the nth element of the row vector tSAP is equal to one if the nth pixel is in the optimal aperture O, or zero otherwise. 

It should be noted that if a data gap exists for any pixel and cadence in the optimal aperture of a given target, then a data 
gap is set for the raw flux value (and associated uncertainty) for that target and cadence. Discontinuities cannot be 
artificially introduced into the light curves by extracting the raw flux from only a subset of the pixels in the optimal 
aperture. As this is written, it has not been observed in-flight that data availability is pixel dependent. Rather, it has 
always been true that either all or none of the pixels are valid for a given cadence. 

Some representative light curves for long cadence targets are shown in Figure 5. Raw flux is plotted versus cadence 
number for all cadences in the unit of work (Q3 for module output 7.3). A quiet target is shown in the upper panel, a 
variable target in the middle panel, and an eclipsing binary is shown at the bottom. Multiple cadence data gaps are due to 
loss of fine point and monthly downlinks. Single cadence gaps due to momentum desaturations and mitigated 
Argabrightening events are also present (but not visible) in the light curves. 

 
Figure 5: Raw flux light curves for representative targets computed by SAP in Q3 for module output 7.3. A typical 
quiet PPA_STELLAR target is shown in the upper panel, a variable target in the middle panel, and an eclipsing 
binary in the lower panel. The data gaps are due to a loss of fine point anomaly and two monthly data downlinks. 
Single cadence gaps are also present but not visible in the light curves. 



 
 

 
 

 

If the rigorous propagation of uncertainties is enabled, the variance vF for the raw flux value computed by SAP in 
equation (8) is determined from the covariance matrix CS (6) for all pixels in the target aperture on the given cadence by 

 'SAPSSAPF tCtv =  (9) 

 

3.4 Centroiding 

There is substantial motion of the target positions on the focal plane in the flight science data. The dominant source of 
long term target motion is DVA, which causes the targets to trace small but significant elliptical paths across the 
respective CCD detectors over the period of the heliocentric orbit of the photometer. There is also target movement due 
to pointing jitter, pointing drift, focus changes (that appear to result from temperature changes in the photometer), and 
commanded attitude adjustments to compensate for pointing drift. 

Flux levels vary with target motion at even the sub-pixel level. Systematic effects that result in target motion therefore 
produce correlated signatures in the associated light curves. Precise computation of the target locations on each cadence 
is critical for correcting systematic errors later in the pipeline. It is also required for precise a posteriori definition of 
optimal target apertures, for precision reconstruction of spacecraft attitude, and for monitoring instrument performance. 
The photocenter of each target in its aperture is referred to as the target centroid. It should also be noted that analysis of 
centroid motion9 is a critical tool for distinguishing between legitimate transits due to orbiting planets and apparent 
transits due to background eclipsing binaries. 

Two centroiding methods are employed in PA. Flux-weighted centroids are computed for every target and cadence and 
are currently exported to the MAST. These centroids are computationally inexpensive and essentially determine the 
photometric center of mass in the target aperture. PRF-based centroids may additionally be computed for some or all 
targets in the pipeline. This method will not be described here. Flux-weighted centroids are computed in an aperture that 
includes the optimal aperture plus a single halo ring for each target. PRF-based centroids are computed in an aperture 
that includes all of the available pixels for each target. In both cases, uncertainties are propagated to the computed 
centroid row and column coordinates based on the Jacobian for each centroid computation. 

It should be noted that every centroid computed in PA is validated against the bounding box of the associated centroid 
aperture, and each is gapped in the event that it does not fall within the bounding box for any reason. Gaps are also set 
for PRF-based centroids that cannot be successfully computed for any target and cadence due to failure of the iterative 
fitting algorithm. 

Let the subset of pixels in the aperture of a given target that are utilized for computation of the flux-weighted centroids 
on each cadence be denoted by W. If the row and column centroid coordinates are denoted by r and c respectively, then 
the flux-weighted centroid is computed for any given cadence by 
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As in equation (4), the CCD row and column coordinates of the pixels in the target aperture are designated iT and jT 
respectively. 

Flux-weighted centroid row and column time series for a long cadence PPA_STELLAR target on module output 7.3 in 
Q3 are shown in Figure 6. The centroid row time series is shown in the upper panel and the centroid column time series 
in the lower panel. The dominant factor driving long term centroid drift is DVA. Transients in the respective centroid 
time series at the beginning of the quarter and following the monthly downlinks to Earth (near cadences 1500 and 3000) 
are due to focus changes which result from thermal changes in the photometer. It is interesting to note that the transients 
are more pronounced in the centroids than they are in the light curve for this target shown in the upper panel of Figure 5. 

 



 
 

 
 

 
Figure 6: Flux-weighted centroid row and column time series for the PPA_STELLAR target also shown in the left 
panel of Figure 4 and the upper panel of Figure 5. The data gaps are due to a loss of fine point anomaly and 
monthly data downlinks. Transients are due to focus changes that result from thermal changes in the photometer. 

 

If the rigorous propagation of uncertainties treatment is enabled by the pipeline operator, the variances vR and vC for the 
respective row and column centroids on the given cadence are computed by 

 ,'FWRSFWRR tCtv =    'FWCSFWCC tCtv =  (11) 

The covariance matrix CS of the background-removed pixels in the target aperture was defined in equation (6). The 
Jacobian transformations tFWR and tFWC are row vectors where the nth elements of the respective transformations are given 
by 
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if the nth pixel is in the flux-weighted centroid aperture W, or zero otherwise. 

4. SUMMARY AND CONCLUSIONS 
The primary tasks of the Photometric Analysis module of the Kepler SOC pipeline are to compute the photometric flux 
and photocenters (centroids) for all long and short cadence targets from the calibrated pixels in their respective apertures. 
We first presented an overview of the PA module. We have then shown how cosmic rays are cleaned from the calibrated 
background and target pixel data. We have discussed the process for estimation and removal of background levels from 
the pixels in the apertures of the respective science targets. We have described the extraction of raw flux light curves by 
SAP from the background-removed pixels in the optimal apertures of the science targets. We have shown how flux-
weighted centroids are computed per target and cadence. We have also described how uncertainties are propagated to the 
various PA products from covariance matrices for the calibrated background pixels and the calibrated pixels in the 



 
 

 
 

respective target apertures. Raw flux light curves, centroid time series, and barycentric timestamp corrections produced 
by PA are exported to the MAST and made available to the general public in accordance with the NASA/Kepler data 
release policy. 
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