440 research outputs found

    Neutrino nucleus cross sections for low energy neutrinos at SNS facilities

    Full text link
    We calculate the neutrino nucleus cross sections for charged lepton production relevant for the experiments proposed with the stopped muon neutrinos using neutron spallation source facility. The calculations are done in local density approximation taking into account Pauli blocking, Fermi motion effects and renormalization of weak transition strengths in the nuclear medium. The effect of Coulomb distortion of the lepton produced in charge current reactions is taken into account by using the Fermi function as well as in a model where an effective momentum has been used for the lepton moving in the local Coulomb field of the final nucleus. The numerical results for the neutrino nucleus total cross sections averaged over Michel spectrum are presented for various nuclei.Comment: 16pages, 9figures, Submitted to Nucl. Phys.

    Simple incentives and group dependence for successful payments for ecosystem services programs: evidence from an experimental game in rural Lao PDR

    Get PDF
    In this paper, we use a new game-based tool to evaluate the immediate and longer-term behavioral change potential of three different payment for environmental services (PES) delivery mechanisms: direct payments for individual performance, direct payments for group performance and insurance. Results from four rural shifting-cultivation dependent communities in Lao PDR suggest that easily understood group-oriented incentives yield the greatest immediate resource-use reduction and experience less free-riding. Group-based incentives may succeed because they motivate participants to communicate about strategies and coordinate their actions and are perceived as fair. No incentive had a lasting effect after it ceased, but neither did any crowd out the participants’ baseline behavior. Temporary reductions in resource dependence may provide a buffer for development of new livelihoods and longer-term change. Games like the one developed here can help policymakers appropriately target environmental incentive programs to local contexts and teach program participants how incentive schemes work

    Hamiltonian Light-Front Field Theory: Recent Progress and Tantalizing Prospects

    Full text link
    Fundamental theories, such as Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD) promise great predictive power addressing phenomena over vast scales from the microscopic to cosmic scales. However, new non-perturbative tools are required for physics to span from one scale to the next. I outline recent theoretical and computational progress to build these bridges and provide illustrative results for Hamiltonian Light Front Field Theory. One key area is our development of basis function approaches that cast the theory as a Hamiltonian matrix problem while preserving a maximal set of symmetries. Regulating the theory with an external field that can be removed to obtain the continuum limit offers additional possibilities as seen in an application to the anomalous magnetic moment of the electron. Recent progress capitalizes on algorithm and computer developments for setting up and solving very large sparse matrix eigenvalue problems. Matrices with dimensions of 20 billion basis states are now solved on leadership-class computers for their low-lying eigenstates and eigenfunctions.Comment: 8 pages with 2 figure

    Shell-model calculations of neutrino scattering from 12C

    Get PDF
    Neutrino reaction cross-sections, (νμ,μ)(\nu_\mu,\mu^-), (νe,e)(\nu_e,e^-), μ\mu-capture and photoabsorption rates on 12^{12}C are computed within a large-basis shell-model framework, which included excitations up to 4ω4\hbar\omega. When ground-state correlations are included with an open pp-shell the predictions of the calculations are in reasonable agreement with most of the experimental results for these reactions. Woods-Saxon radial wave functions are used, with their asymptotic forms matched to the experimental separation energies for bound states, and matched to a binding energy of 0.01 MeV for unbound states. For comparison purposes, some results are given for harmonic oscillator radial functions. Closest agreement between theory and experiment is achieved with unrestricted shell-model configurations and Woods-Saxon radial functions. We obtain for the neutrino-absorption inclusive cross sections: σˉ=13.8×1040\bar{\sigma} = 13.8 \times 10^{-40} cm2^2 for the (νμ,μ)(\nu_{\mu},\mu^{-}) decay-in-flight flux in agreement with the LSND datum of (12.4±1.8)×1040(12.4 \pm 1.8) \times 10^{-40} cm2^2; and σˉ=12.5×1042\bar{\sigma} = 12.5 \times 10^{-42} cm2^2 for the (νe,e)(\nu_{e},e^{-}) decay-at-rest flux, less than the experimental result of (14.4±1.2)×1042(14.4 \pm 1.2) \times 10^{-42} cm2^2.Comment: 19 pages. ReVTeX. No figure

    Theoretical study of lepton events in the atmospheric neutrino experiments at SuperK

    Full text link
    Super-Kamiokande has reported the results for the lepton events in the atmospheric neutrino experiment. These results have been presented for a 22.5kT water fiducial mass on an exposure of 1489 days, and the events are divided into sub-GeV, multi-GeV and PC events. We present a study of nuclear medium effects in the sub-GeV energy region of atmospheric neutrino events for the quasielastic scattering, incoherent and coherent pion production processes, as they give the most dominant contribution to the lepton events in this energy region. We have used the atmospheric neutrino flux given by Honda et al. These calculations have been done in the local density approximation. We take into account the effect of Pauli blocking, Fermi motion, Coulomb effect, renormalization of weak transition strengths in the nuclear medium in the case of the quasielastic reactions. The inelastic reactions leading to production of leptons along with pions is calculated in a Δ\Delta - dominance model by taking into account the renormalization of Δ\Delta properties in the nuclear medium and the final state interaction effects of the outgoing pions with the residual nucleus. We present the results for the lepton events obtained in our model with and without nuclear medium effects, and compare them with the Monte Carlo predictions used in the simulation and the experimentally observed events reported by the Super-Kamiokande collaboration.Comment: 23 pages, 13 figure

    Microscopic theories of neutrino-^{12}C reactions

    Get PDF
    In view of the recent experiments on neutrino oscillations performed by the LSND and KARMEN collaborations as well as of future experiments, we present new theoretical results of the flux averaged 12C(νe,e)12N^{12}C(\nu_e,e^-)^{12}N and 12C(νμ,μ)12N^{12}C(\nu_{\mu},{\mu}^-)^{12}N cross sections. The approaches used are charge-exchange RPA, charge-exchange RPA among quasi-particles (QRPA) and the Shell Model. With a large-scale shell model calculation the exclusive cross sections are in nice agreement with the experimental values for both reactions. The inclusive cross section for νμ\nu_{\mu} coming from the decay-in-flight of π+\pi^+ is 15.2×1040cm215.2 \times 10^{-40} cm^2 to be compared to the experimental value of 12.4±0.3±1.8×1040cm212.4 \pm 0.3 \pm 1.8 \times 10^{-40} cm^2, while the one due to νe\nu_{e} coming from the decay-at-rest of μ+\mu^+ is 16.4×1042cm216.4 \times 10^{-42} cm^2 which agrees within experimental error bars with the measured values. The shell model prediction for the decay-in-flight neutrino cross section is reduced compared to the RPA one. This is mainly due to the different kind of correlations taken into account in the calculation of the spin modes and partially due to the shell-model configuration basis which is not large enough, as we show using arguments based on sum-rules.Comment: 17 pages, latex, 5 figure

    Measuring and understanding adherence in a home-based exercise intervention during chemotherapy for early breast cancer

    Get PDF
    Purpose: Ensuring and measuring adherence to prescribed exercise regimens are fundamental challenges in intervention studies to promote exercise in adults with cancer. This study reports exercise adherence in women who were asked to walk 150 min/week throughout chemotherapy treatment for early breast cancer. Participants were asked to wear a FitbitTM throughout their waking hours, and Fitbit steps were uploaded directly into study computers. Methods: Descriptive statistics are reported, and both unadjusted and multivariable linear regression models were used to assess associations between participant characteristics, breast cancer diagnosis, treatment, chemotherapy toxicities, and patient-reported symptoms with average Fitbit steps/week. Results: Of 127 women consented to the study, 100 had analyzable Fitbit data (79%); mean age was 48 and 31% were non-white. Mean walking steps were 3956 per day. Nineteen percent were fully adherent with the target of 6686 steps/day and an additional 24% were moderately adherent. In unadjusted analysis, baseline variables associated with fewer Fitbit steps were: non-white race (p = 0.012), high school education or less (p = 0.0005), higher body mass index (p = 0.0024), and never/almost never drinking alcohol (p = 0.0048). Physical activity variables associated with greater Fitbit steps were: pre-chemotherapy history of vigorous physical activity (p = 0.0091) and higher self-reported walking minutes/week (p < 0.001), and higher outcome expectations from exercise (p = 0.014). Higher baseline anxiety (p = 0.03) and higher number of chemotherapy-related symptoms rates “severe/very severe” (p = 0.012) were associated with fewer steps. In multivariable analysis, white race was associated with 12,146 greater Fitbit steps per week (p = 0.004), as was self-reported walking minutes prior to start of chemotherapy (p < 0.0001). Conclusions: Inexpensive commercial-grade activity trackers, with data uploaded directly into research computers, enable objective monitoring of home-based exercise interventions in adults diagnosed with cancer. Analysis of the association of walking steps with participant characteristics at baseline and toxicities during chemotherapy can identify reasons for low/non-adherence with prescribed exercise regimens

    Search for tau -> e gamma decay at Belle

    Get PDF
    We have searched for the lepton-flavor-violating decay tau -> e gamma using a data sample of 86.7/fb collected with the Belle detector at the KEKB asymmetric e^+ e^- collider. No evidence for a signal is obtained, and we set an upper limit for the branching fraction Br(tau -> e gamma) < 3.9 x 10^-7 at the 90% C.L.Comment: 11 pages, 10 figures, ReVTeX4, eps

    D* Production in Deep Inelastic Scattering at HERA

    Get PDF
    This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel D+(D0Kπ+)π+D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ (+ c.c.) has been used in the study. The e+pe^+p cross section for inclusive D^{*\pm} production with 5<Q2<100GeV25<Q^2<100 GeV^2 and y<0.7y<0.7 is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {1.3<pT(D±)<9.01.3<p_T(D^{*\pm})<9.0 GeV and η(D±)<1.5| \eta(D^{*\pm}) |<1.5}. Differential cross sections as functions of p_T(D^{*\pm}), η(D±),W\eta(D^{*\pm}), W and Q2Q^2 are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and η\eta(D^{*\pm}), the charm contribution F2ccˉ(x,Q2)F_2^{c\bar{c}}(x,Q^2) to the proton structure function is determined for Bjorken xx between 2 \cdot 104^{-4} and 5 \cdot 103^{-3}.Comment: 17 pages including 4 figure
    corecore