9 research outputs found

    Effect of Alkali-Silica Reaction on Confined Reinforced Concrete

    Get PDF
    Alkali-silica reaction (ASR), which was recently discovered in nuclear power plant structures commonly without shear reinforcement, has previously been shown to induce anisotropic expansion in confined concrete. A large-scale testing program on alkali silica reaction (ASR)-affected concrete structural members without shear reinforcement representative of structural members found in nuclear power plants is presented. Three large concrete specimens with ASR and varying levels of confinement were monitored in accelerated testing conditions.Strong anisotropic expansion and oriented ASR-induced cracking resulting from the confinement effect caused by the reinforcement layout and additional structural boundary conditions were observed. Surface cracking is not indicative of internal ASR-induced damage/expansion.The fracture properties (strength, stiffness, and specific fracture energy) of ASR-induced anisotropically-damaged concrete specimens were quantified by varying both the damage level and relative direction of the ASR-induced cracking orientation against the loading direction corresponding to the fracture propagation. The effect of different orientations (0, 45, and 90 degrees relative to the notch of the specimen) of expected ASR-induced cracks on the fracture properties was investigated using a wedge-splitting test (WST). Specimens without ASR expansion generally showed the highest fracture properties; however, the specific fracture energy was highest for ASR-affected specimens in which the expected orientation of ASR-induced cracks was perpendicular to the WST specimen notch. Specimens in which the ASR-induced cracks were parallel to the notch exhibited the lowest strength and fracture energy.A new model was developed for predicting the expansion of concrete structures affected by alkali-silica reaction. The model includes a novel combination of existing models as a alkali-silica reaction advancement model, a novel casting direction anisotropic expansion model, a novel stress-dependent anisotropic expansion model, and a novel material property evolution model dependent on the degree of ASR expansion. The calibrated model was validated in predicting the ASR-expansion of the large-scale reinforced concrete specimens with confinement of this study. The results of this study highlight the need for additional research to be conducted to investigate a possible size effect for very-large concrete specimens affected by ASR and the need for additional research on multi-axially loaded concrete specimens with ASR

    Damage Mechanism Evaluation of Large-Scale Concrete Structures Affected by Alkali-Silica Reaction Using Pattern Recognition

    Get PDF
    Alkali-silica reaction has caused damage to concrete structures, endangering structural serviceability and integrity. This is of concern in sensitive structures such as nuclear power plants. In this study, acoustic emission (AE) was employed as a structural health monitoring strategy in large-scale, reinforced concrete specimens affected by alkali-silica reaction with differing boundary conditions resembling the common conditions found in nuclear containments. An agglomerative hierarchical algorithm was utilized to classify the AE data based on energy-frequency based features. The AE signals were transferred into the frequency domain and the energies in several frequency bands were calculated and normalized to the total energy of signals. Principle component analysis was used to reduce feature redundancy. Then the selected principal components were considered as features in an input of the pattern recognition algorithm. The sensor located in the center of the confined specimen registered the largest portion of AE energy release, while in the unconfined specimen the energy is distributed more uniformly. This confirms the results of the volumetric strain, which shows that the expansion in the confined specimen is oriented along the thickness of the specimen

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Isotope ratios of H, C, and O in CO2 and H2O of the Martian atmosphere

    Get PDF
    Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and O-18/O-16 in water and C-13/C-12, O-18/O-16, O-17/O-16, and (CO)-C-13-O-18/(CO)-C-12-O-16 in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established similar to 4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health

    Flaviviruses: Yellow Fever, Japanese B, West Nile, and Others

    No full text

    Literaturverzeichnis

    No full text
    corecore