6 research outputs found

    Barozh 12: formation processes of a late Middle Paleolithic open-air site in western Armenia

    Get PDF
    © 2020 Elsevier Ltd Barozh 12 is a Middle Paleolithic (MP) open-air site located near the Mt Arteni volcanic complex at the margins of the Ararat Depression, an intermontane basin that contains the Araxes River. Sedimentology, micromorphology, geochronology, biomarker evidence, together with an assessment of artifact taphonomy permits the modelling of site formation processes and paleoenvironment at a level of detail not previously achieved in this area. Obsidian MP artifacts were recovered in high densities at Barozh 12 from four stratigraphic units deposited during marine oxygen isotope stage 3 (MIS 3) (60.2 ± 5.7–31.3 ± 3 ka). The MIS 3 sequence commences with low energy alluvial deposits that have been altered by incipient soil formation, while artifact assemblages in these strata were only minimally reworked. After a depositional hiatus, further low energy alluvial sedimentation and weak soil formation occurred, followed by higher energy colluvial (re)deposition and then deflation. Artifacts in these last stratigraphic units were more significantly reworked than those below. Analysis of plant leaf wax (n-alkane) biomarkers shows fluctuating humidity throughout the sequence. Collectively the evidence suggests that hunter-gatherers equipped with MP lithic technology repeatedly occupied this site during variable aridity regimes, demonstrating their successful adaptation to the changing environments of MIS 3

    Palaeoenvironmental and chronological context of hominin occupations of the Armenian Highlands during MIS 3:Evidence from Ararat-1 cave

    Get PDF
    Archaeological and palaeoenvironmental evidence from the Armenian Highlands and wider southern Caucasus region emphasises the significance of Marine Oxygen Isotope Stage 3 (c. 57–29 ka) as a crucial period for understanding hominin behaviours amidst environmental fluctuations. Ararat-1 cave, situated in the Ararat Depression, Republic of Armenia, presents potential for resolving emerging key debates regarding hominin land use adaptations during this interval, due to its well-preserved lithic artefacts and faunal assemblages. We present the first results of combined sedimentological, geochronological (luminescence and radiocarbon), archaeological and palaeoecological (macrofauna, microfauna and microcharcoal) study of the Ararat-1 sequence. We demonstrate sediment accumulation occurred between 52 and 35 ka and was caused by a combination of aeolian activity, cave rockfall and water action. Whilst the upper strata of the Ararat-1 sequence experienced postdepositional disturbance due to faunal and anthropogenic processes, the lower strata remain relatively undisturbed. We suggest that during a stable period within MIS 3, Ararat-1 was inhabited by Middle Palaeolithic hominins amidst a mosaic of semi-arid shrub, grassland, and temperate woodland ecosystems. These hominins utilised local and distant toolstone raw materials, indicating their ability to adapt to diverse ecological and elevation gradients. Through comparison of Ararat-1 with other sequences in the region, we highlight the spatia

    Short-term occupations at high elevation during the Middle Paleolithic at Kalavan 2 (Republic of Armenia)

    Get PDF
    The Armenian highlands encompasses rugged and environmentally diverse landscapes and is characterized by a mosaic of distinct ecological niches and large temperature gradients. Strong seasonal fluctuations in resource availability along topographic gradients likely prompted Pleistocene hominin groups to adapt by adjusting their mobility strategies. However, the role that elevated landscapes played in hunter-gatherer settlement systems during the Late Pleistocene (Middle Palaeolithic [MP]) remains poorly understood. At 1640 m above sea level, the MP site of Kalavan 2 (Armenia) is ideally positioned for testing hypotheses involving elevation-dependent seasonal mobility and subsistence strategies. Renewed excavations at Kalavan 2 exposed three main occupation horizons and ten additional low densities lithic and faunal assemblages. The results provide a new chronological, stratigraphical, and paleoenvironmental framework for hominin behaviors between ca. 60 to 45 ka. The evidence presented suggests that the stratified occupations at Kalavan 2 locale were repeated ephemerally most likely related to hunting in a high-elevation within the mountainous steppe landscape.info:eu-repo/semantics/publishedVersio

    Palaeoenvironmental and chronological context of hominin occupations of the Armenian Highlands during MIS 3: Evidence from Ararat-1 cave

    No full text
    Archaeological and palaeoenvironmental evidence from the Armenian Highlands and wider southern Caucasus region emphasises the significance of Marine Oxygen Isotope Stage 3 (c. 57–29 ka) as a crucial period for understanding hominin behaviours amidst environmental fluctuations. Ararat-1 cave, situated in the Ararat Depression, Republic of Armenia, presents potential for resolving emerging key debates regarding hominin land use adaptations during this interval, due to its well-preserved lithic artefacts and faunal assemblages. We present the first results of combined sedimentological, geochronological (luminescence and radiocarbon), archaeological and palaeoecological (macrofauna, microfauna and microcharcoal) study of the Ararat-1 sequence. We demonstrate sediment accumulation occurred between 52 and 35 ka and was caused by a combination of aeolian activity, cave rockfall and water action. Whilst the upper strata of the Ararat-1 sequence experienced post-depositional disturbance due to faunal and anthropogenic processes, the lower strata remain relatively undisturbed. We suggest that during a stable period within MIS 3, Ararat-1 was inhabited by Middle Palaeolithic hominins amidst a mosaic of semi-arid shrub, grassland, and temperate woodland ecosystems. These hominins utilised local and distant toolstone raw materials, indicating their ability to adapt to diverse ecological and elevation gradients. Through comparison of Ararat-1 with other sequences in the region, we highlight the spatial variability of MIS 3 environments and its on hominin land use adaptations. This demonstrates the importance of the Armenian Highlands for understanding regional MP settlement dynamics during a critical period of hominin dispersals and evolution
    corecore