8 research outputs found

    Toward Ultralight High Strength Structural Materials via Collapsed Carbon Nanotube Bonding

    Get PDF
    The growing commercial availability of carbon nanotube (CNT) macro-assemblies such as sheet and yarn is making their use in structural composite components increasingly feasible. However, the mechanical properties of these materials continue to trail those of state-of-the-art carbon fiber composites due to relatively weak inter-tube load transfer. Forming covalent links between adjacent CNTs promises to mitigate this problem, but it has proven difficult in practice to introduce them chemically within densified and aligned CNT materials due to their low permeability. To avoid this limitation, this work explores the combination of pulsed electrical current, temperature, and pressure to introduce inter-CNT bonds. Reactive molecular dynamics simulations identify the most probable locations, configurations, and conditions for inter-nanotube bonds to form. This process is shown to introduce covalent linkages within the CNT material that manifest as improved macroscale mechanical properties. The magnitude of this effect increases with increasing levels of prealignment of the CNT material, promising a new synthesis pathway to ultralight structural materials with specific strengths and stiffnesses exceeding 1 and 100 GPa/(g/cu.cm), respectively

    Momentum transfer during the impact of granular matter with inclined sliding surfaces

    No full text
    © 2017 Elsevier Ltd Increasing the inclination of a rigid surface that is impacted by a collimated granular flow reduces the fraction of granular matter momentum transferred to the surface. Recent studies have shown that the momentum reduction depends upon a frictional interaction between the granular flow and the impacted surface. High coefficient of friction surfaces suffer significantly more momentum transfer than predicted by resolution of the incident momentum onto the inclined plane. This discovery has raised the possibility that inclined surfaces with very low friction coefficients might reduce the impulsive transferred by the impact of high velocity granular matter. Here the use of a lubricated sliding plate is investigated as a means for reducing interfacial friction and impulse transfer to an inclined surface. The study uses a combination of experimental testing and particle-based simulations to investigate impulse transfer to rigid aluminum surfaces inclined either perpendicular or at 53° to synthetic sand that was impulsively accelerated to a velocity of 350–500 m/s. The study shows that impact of this sand with lubricated plates attached to an inclined surface rapidly accelerates them to a velocity of about 55–70 m/s, and reduces the impulse transferred to the inclined surface below. The reduction of impulse by this approach is comparable to that achieved by changing the inclination of the surface.This research was funded by the Defense Advanced Research Projects Agency (DARPA) under grant number W91CRB-11-1-0005 (Program manager, Dr. J. Goldwasser)
    corecore