12 research outputs found

    Solid-state NMR studies of the secondary structure of a mutant prion protein fragment of 55 residues that induces neurodegeneration

    Get PDF
    The secondary structure of a 55-residue fragment of the mouse prion protein, MoPrP(89–143), was studied in randomly aggregated (dried from water) and fibrillar (precipitated from water/acetonitrile) forms by (13)C solid-state NMR. Recent studies have shown that the fibrillar form of the P101L mutant of MoPrP(89–143) is capable of inducing prion disease in transgenic mice, whereas unaggregated or randomly aggregated samples do not provoke disease. Through analysis of (13)C chemical shifts, we have determined that both wild-type and mutant sequence MoPrP(89–143) form a mixture of β-sheet and α-helical conformations in the randomly aggregated state although the β-sheet content in MoPrP(89–143, P101L) is significantly higher than in the wild-type peptide. In a fibrillar state, MoPrP(89–143, P101L) is completely converted into β-sheet, suggesting that the formation of a specific β-sheet structure may be required for the peptide to induce disease. Studies of an analogous peptide from Syrian hamster PrP verify that sequence alterations in residues 101–117 affect the conformation of aggregated forms of the peptides

    Mutant PrP(Sc) Conformers Induced by a Synthetic Peptide and Several Prion Strains

    No full text
    Gerstmann-Sträussler-Scheinker (GSS) disease is a dominantly inherited, human prion disease caused by a mutation in the prion protein (PrP) gene. One mutation causing GSS is P102L, denoted P101L in mouse PrP (MoPrP). In a line of transgenic mice denoted Tg2866, the P101L mutation in MoPrP produced neurodegeneration when expressed at high levels. MoPrP(Sc)(P101L) was detected both by the conformation-dependent immunoassay and after protease digestion at 4°C. Transmission of prions from the brains of Tg2866 mice to those of Tg196 mice expressing low levels of MoPrP(P101L) was accompanied by accumulation of protease-resistant MoPrP(Sc)(P101L) that had previously escaped detection due to its low concentration. This conformer exhibited characteristics similar to those found in brain tissue from GSS patients. Earlier, we demonstrated that a synthetic peptide harboring the P101L mutation and folded into a β-rich conformation initiates GSS in Tg196 mice (29). Here we report that this peptide-induced disease can be serially passaged in Tg196 mice and that the PrP conformers accompanying disease progression are conformationally indistinguishable from MoPrP(Sc)(P101L) found in Tg2866 mice developing spontaneous prion disease. In contrast to GSS prions, the 301V, RML, and 139A prion strains produced large amounts of protease-resistant PrP(Sc) in the brains of Tg196 mice. Our results argue that MoPrP(Sc)(P101L) may exist in at least several different conformations, each of which is biologically active. Such conformations occurred spontaneously in Tg2866 mice expressing high levels of MoPrP(C)(P101L) as well as in Tg196 mice expressing low levels of MoPrP(C)(P101L) that were inoculated with brain extracts from ill Tg2866 mice, with a synthetic peptide with the P101L mutation and folded into a β-rich structure, or with prions recovered from sheep with scrapie or cattle with bovine spongiform encephalopathy

    Diversity-Oriented Stapling Yields Intrinsically Cell-Penetrant Inducers of Autophagy

    No full text
    Autophagy is an essential pathway by which cellular and foreign material are degraded and recycled in eukaryotic cells. Induction of autophagy is a promising approach for treating diverse human diseases, including neurodegenerative disorders and infectious diseases. Here, we report the use of a diversity-oriented stapling approach to produce autophagy-inducing peptides that are intrinsically cell-penetrant. These peptides induce autophagy at micromolar concentrations in vitro, have aggregate-clearing activity in a cellular model of Huntington’s disease, and induce autophagy in vivo. Unexpectedly, the solution structure of the most potent stapled peptide, DD5-o, revealed an α-helical conformation in methanol, stabilized by an unusual (<i>i</i>,<i>i</i>+3) staple which cross-links two d-amino acids. We also developed a novel assay for cell penetration that reports exclusively on cytosolic access and used it to quantitatively compare the cell penetration of DD5-o and other autophagy-inducing peptides. These new, cell-penetrant autophagy inducers and their molecular details are critical advances in the effort to understand and control autophagy. More broadly, diversity-oriented stapling may provide a promising alternative to polycationic sequences as a means for rendering peptides more cell-penetrant
    corecore