2,401 research outputs found

    Efficient analysis and representation of geophysical processes using localized spherical basis functions

    Full text link
    While many geological and geophysical processes such as the melting of icecaps, the magnetic expression of bodies emplaced in the Earth's crust, or the surface displacement remaining after large earthquakes are spatially localized, many of these naturally admit spectral representations, or they may need to be extracted from data collected globally, e.g. by satellites that circumnavigate the Earth. Wavelets are often used to study such nonstationary processes. On the sphere, however, many of the known constructions are somewhat limited. And in particular, the notion of `dilation' is hard to reconcile with the concept of a geological region with fixed boundaries being responsible for generating the signals to be analyzed. Here, we build on our previous work on localized spherical analysis using an approach that is firmly rooted in spherical harmonics. We construct, by quadratic optimization, a set of bandlimited functions that have the majority of their energy concentrated in an arbitrary subdomain of the unit sphere. The `spherical Slepian basis' that results provides a convenient way for the analysis and representation of geophysical signals, as we show by example. We highlight the connections to sparsity by showing that many geophysical processes are sparse in the Slepian basis.Comment: To appear in the Proceedings of the SPIE, as part of the Wavelets XIII conference in San Diego, August 200

    Flow Visualization Tests of a 0.004-scale Space Shuttle Vehicle 2A Model (no. 13-OTS) in the MSFC 14-inch Trisonic Wind Tunnel (IS6A)

    Get PDF
    Documented are representative photographs of surface flow patterns, created by oil flow and shadowgraph techniques, obtained during wind tunnel tests of an 0.004-scale version of the 2A SSV orbiter. The purpose of this test series was to obtain flow visualization photographs to aid in interpretation of test IS1 aero-noise data. The test was conducted at nominal Mach numbers from 0.6 to 3.48. The orbiter was run in proximity to the external tank and solid rocket boosters at angles of attack from -5 deg to +9 deg at 0 deg angle of sideslip

    The spin-half Heisenberg antiferromagnet on two Archimedian lattices: From the bounce lattice to the maple-leaf lattice and beyond

    Full text link
    We investigate the ground state of the two-dimensional Heisenberg antiferromagnet on two Archimedean lattices, namely, the maple-leaf and bounce lattices as well as a generalized JJ-J′J' model interpolating between both systems by varying J′/JJ'/J from J′/J=0J'/J=0 (bounce limit) to J′/J=1J'/J=1 (maple-leaf limit) and beyond. We use the coupled cluster method to high orders of approximation and also exact diagonalization of finite-sized lattices to discuss the ground-state magnetic long-range order based on data for the ground-state energy, the magnetic order parameter, the spin-spin correlation functions as well as the pitch angle between neighboring spins. Our results indicate that the "pure" bounce (J′/J=0J'/J=0) and maple-leaf (J′/J=1J'/J=1) Heisenberg antiferromagnets are magnetically ordered, however, with a sublattice magnetization drastically reduced by frustration and quantum fluctuations. We found that magnetic long-range order is present in a wide parameter range 0≤J′/J≲Jc′/J0 \le J'/J \lesssim J'_c/J and that the magnetic order parameter varies only weakly with J′/JJ'/J. At Jc′≈1.45JJ'_c \approx 1.45 J a direct first-order transition to a quantum orthogonal-dimer singlet ground state without magnetic long-range order takes place. The orthogonal-dimer state is the exact ground state in this large-J′J' regime, and so our model has similarities to the Shastry-Sutherland model. Finally, we use the exact diagonalization to investigate the magnetization curve. We a find a 1/3 magnetization plateau for J′/J≳1.07J'/J \gtrsim 1.07 and another one at 2/3 of saturation emerging only at large J′/J≳3J'/J \gtrsim 3.Comment: 9 pages, 10 figure

    Low zinc status and absorption exist in infants with jejunostomies or ileostomies which persists after intestinal repair.

    Get PDF
    There is very little data regarding trace mineral nutrition in infants with small intestinal ostomies. Here we evaluated 14 infants with jejunal or ileal ostomies to measure their zinc absorption and retention and biochemical zinc and copper status. Zinc absorption was measured using a dual-tracer stable isotope technique at two different time points when possible. The first study was conducted when the subject was receiving maximal tolerated feeds enterally while the ostomy remained in place. A second study was performed as soon as feasible after full feeds were achieved after intestinal repair. We found biochemical evidence of deficiencies of both zinc and copper in infants with small intestinal ostomies at both time points. Fractional zinc absorption with an ostomy in place was 10.9% ± 5.3%. After reanastamosis, fractional zinc absorption was 9.4% ± 5.7%. Net zinc balance was negative prior to reanastamosis. In conclusion, our data demonstrate that infants with a jejunostomy or ileostomy are at high risk for zinc and copper deficiency before and after intestinal reanastamosis. Additional supplementation, especially of zinc, should be considered during this time period

    Making automation pay - cost & throughput trade-offs in the manufacture of large composite components

    Get PDF
    The automation of complex manufacturing operations can provide significant savings over manual processes, and there remains much scope for increasing automation in the production of large scale structural composites. However the relationships between driving variables are complex, and the achievable throughput rate and corresponding cost for a given design are often not apparent. The deposition rate, number of machines required and unit production rates needed are interrelated and consequently the optimum unit cost is difficult to predict. A detailed study of the costs involved for a series of composite wing cover panels with different manufacturing requirements was undertaken. Panels were sized to account for manufacturing requirements and structural load requirements allowing both manual and automated lay-up procedures to influence design. It was discovered that the introduction of automated tape lay-up can significantly reduce material unit cost, and improve material utilisation, however higher production rates are needed to see this benefit

    Blink rate as a measure of stress and attention in the domestic horse (Equus caballus)

    Get PDF
    Measuring animal stress is fundamentally important for assessing animal emotional state and welfare. Conventional methods of quantifying stress (cortisol levels, heart rate/heart rate variability) require specialist equipment and are not instantly available. Spontaneous blink rate (SBR) has previously been used to measure stress responses in humans and may provide a non-invasive method for measuring stress in other animal species. Here we investigated the use of SBR as a measure of stress in the domestic horse. SBR was measured before and during a low-stress event (sham clipping) and compared with heart rate variability and salivary cortisol. For the entire sample, there was a reduction in SBR (startle response) during the first minute of clipping. For horses reactive to clipping, the initial reduction in SBR was followed by an increase above baseline whereas the SBR of the non-reactive horses quickly returned to baseline. For the entire sample, SBR correlated with heart rate variability and salivary cortisol. We have demonstrated that SBR is a valid fast alternative measure of stress in horses, but the initial 'startle' response must be considered when using this parameter as a measure of animal stress

    Bioquality Hotspots in the Tropical African Flora.

    Get PDF
    Identifying areas of high biodiversity is an established way to prioritize areas for conservation [1-3], but global approaches have been criticized for failing to render global biodiversity value at a scale suitable for local management [4-6]. We assembled 3.1 million species distribution records for 40,401 vascular plant species of tropical Africa from sources including plot data, herbarium databases, checklists, and the Global Biodiversity Information Facility (GBIF) and cleaned the records for geographic accuracy and taxonomic consistency. We summarized the global ranges of tropical African plant species into four weighted categories of global rarity called Stars. We applied the Star weights to summaries of species distribution data at fine resolutions to map the bioquality (range-restricted global endemism) of areas [7]. We generated confidence intervals around bioquality scores to account for the remaining uncertainty in the species inventory. We confirm the broad significance of the Horn of Africa, Guinean forests, coastal forests of East Africa, and Afromontane regions for plant biodiversity but also reveal the variation in bioquality within these broad regions and others, particularly at local scales. Our framework offers practitioners a quantitative, scalable, and replicable approach for measuring the irreplaceability of particular local areas for global biodiversity conservation and comparing those areas within their global and regional context

    A single locus with a large effect on virulence in Nectria haematococca MPI

    Get PDF
    Analysis of the pathogenicity of 800 progeny from a HI-path (Blue) x LO-path (Cream) cross showed that the quantitative genetic control of pathogenicity in Nectria haematococca MPI on hypocotyls of Cucurbita maxima was determined by 6-12 ‘effective factor’ or quantitative trait loci (QTL). In addition there was evidence for a virulence/colony colour gene(s) with an effect that was superimposed on the pathogenicity phenotype

    Inquiry and the transmission of knowledge

    Get PDF
    No abstract available

    The open future, bivalence and assertion

    Get PDF
    It is highly intuitive that the future is open and the past is closed—whereas it is unsettled whether there will be a fourth world war, it is settled that there was a first. Recently, it has become increasingly popular to claim that the intuitive openness of the future implies that contingent statements about the future, such as ‘there will be a sea battle tomorrow,’ are non-bivalent (neither true nor false). In this paper, we argue that the non-bivalence of future contingents is at odds with our pre-theoretic intuitions about the openness of the future. These are revealed by our pragmatic judgments concerning the correctness and incorrectness of assertions of future contingents. We argue that the pragmatic data together with a plausible account of assertion shows that in many cases we take future contingents to be true (or to be false), though we take the future to be open in relevant respects. It follows that appeals to intuition to support the non-bivalence of future contingents is untenable. Intuition favours bivalence
    • …
    corecore