General Disclaimer

One or more of the Following Statements may affect this Document

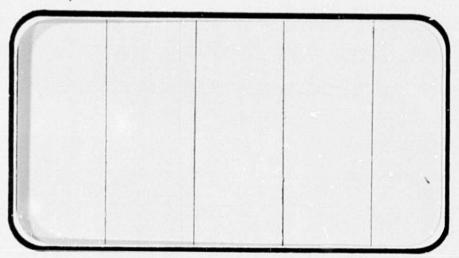
- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

(NASA-CR-147640) FLOW VISUALIZATION TESTS

OF A 0.004-SCALE SPACE SHUTTLE VEHICLE 2A


MODEL (NO. 13-OTS) IN THE MSFC 14-INCH

TRISONIC WIND TUNNEL (IS6A) (Chrysler Corp.)

37 p HC A03/MF A01

CSCL 02A G3/16

08952

SPACE SHUTTLE

AEROTHERMODYNAMIC DATA REPORT

JOHNSON SPACE CENTER HOUSTON, TEXAS

DATA MANagement services

SPACE DIVISION CHRYSLER CORPORATION

DMS-DR-2158 NASA CR-147,640

FLOW VISUALIZATION TESTS OF A 0.004-SCALE

SPACE SHUTTLE VEHICLE 2A MODEL (NO. 13-OTS)

IN THE MSFC 14-INCH TRISONIC WIND TUNNEL (IS6A)

bу

P. J. Hawthorne
Shuttle Aero Sciences
Rockwell International Space Division
Gary Streby
Northrop Services, Inc.

Prepared under NASA Contract Number NAS9-13247

bу

Data Management Services Chrysler Corporation Space Division New Orleans, La. 70189

for

Engineering Analysis Division

Johnson Space Center National Aeronautics and Space Administration Houston, Texas

WIND TUNNEL TEST SPECIFICS:

lest Number:

MSFC TWT 582

NASA Series Number: IS6A Model Number:

13-0TS

Test Dates:

October 2 through October 11, 1973

Occupancy Hours:

76

FACILITY COORDINATOR:

C. D. Andrews S & E-AERO-AAE

Marshall Space Flight Center Huntsville, Alabama 35801

Phone: (205) 453-3174

PROJECT ENGINEERS:

P. J. Hawthorne Mail Code ACO7

Rockwell International

Space Division

12214 Lakewood Blvd.

Downey, Ca. 90241

Phone: (213) 922-3785

Gary Streby Bldq. 4732

Northrop Services, Inc.

Marshall Space Flight Center Huntsville, Alabama 35801

Phone: (205) 453-1842

DATA MANAGEMENT SERVICES:

Prepared by:

Liaison--D.A. Sarver

Operations -- Maurice Moser, Jr.

Reviewed by:

G. G. McDonald

Approved:_刃.ヺ.

Data Operations

Concurrence:

N. D. Kemp, Manager

Data Management Services

Chrysler Corp. Space Division assumes responsibility only for the reproduction and distribution of this document.

FLOW VISUALIZATION TESTS OF A 0.004-SCALE

SPACE SHUTTLE VEHICLE 2A MODEL (NO. 13-OTS)

IN THE MSFC 14-INCH TRISONIC WIND TUNNEL (IS6A)

by

P. J. Hawthorne, Rockwell International Space Division Gary Streby, Northrop Services, Inc.

ABSTRACT

Documented are representative photographs of surface flow patterns, created by oil flow and shadowgraph techniques, obtained during wind tunnel tests of an 0.004-scale version of the 2A Rockwell International SSV Orbiter. The purpose of this test series was to obtain flow visualization photographs to aid in interpretation of test IS1 aero-noise data. The test was designated IS6A and conducted during October 1973 at nominal Mach numbers from 0.6 to 3.48. The Orbiter was run in proximity to the external tank and solid rocket boosters at angles of attack from -5° to +9° at 0° angle of sideslip.

TABLE OF CONTENTS

	Page
ABSTRACT	iii
INDEX OF FIGURES	2
INTRODUCTION	3
NOMENCLATURE	4
CONFIGURATIONS INVESTIGATED	5
INSTRUMENTATION	7
TEST FACILITY DESCRIPTION	8
TEST PROCEDURE	10
DISCUSSION OF RESULTS	12
REFERENCES	13
TABLES	
I. TEST CONDITIONS	14
II. DATASET/RUN NUMBER COLLATION SUMMARY	· 15
III. MODEL DIMENSIONAL DATA	17
FIGURES	27

INDEX OF FIGURES

Figure	Title	Page
1.	Axis Systems.	27
2.	General Arrangement of Integrated Vehicle Model.	28
3.	Typical Orbiter Oil Dot Pattern.	29
4.	Oil Flow Photograph of Integrated Vehicle, α = 4.4, β = 0, M = 0.95 (Typical of Side Photographs).	30
5.	Oil Flow Photograph of Orbiter Upper Surface, α = 4.84, β = 0, M = 0.85 (Typical).	31
6.	Shadowgraph of Integrated Vehicle, α = 4.66, β = 0, M = 2.99, Side View.	32
7.	Shadowgraph of Integrated Vehicle, α = 4.91, β = 0, M = 2.99, Bottom View.	33

INTRODUCTION

A definition of aerodynamic flow fields is a requisite for interpretation of aero-noise environment data. The interpretation of the aero-noise data from test series IS1 required that a reasonably accurate determination of viscous effects, interactions, separations, and shocks present in the flow field be obtained. Since analytical methods were not sufficiently accurate to describe the flow field, flow visualization tests were required.

To meet this need, test series IS6A was conducted. To adequately describe the field, both oil flow visualization photographs and shadow-graphs were obtained for correlation with the IS1 data and to approximate the extent of the nonsteady pressure fields.

A complete set of shadowgraph and color oil flow photographic data is in the possession of this person:

Mr. Clayton L. Stevens Mail Code AB97 Rockwell International Space Division 12214 Lakewood Blvd. Downey, Ca. 90241 Phone: (213) 922-4677

NOMENCLATURE

Symbol .	Mnemonic	<u>Description</u>
α	ALPHA	angle of attack of model measured from the orbiter fuselage reference plane; degrees, positive nose up
β	ВЕТА	angle of sideslip measured from orbiter centerline; degrees, positive nose left
М	MACH .	freestream Mach number

CONFIGURATIONS INVESTIGATED

Model 13-OTS was a 0.004-scale version of the Rockwell International Space Shuttle integrated vehicle which was designed primarily for force testing. The orbiter (designated 13-0) was constructed of aluminum, stainless steel, and Stycast. Except for elevons, the lower mid-body and wing were constructed of aluminum while the OMS pods were of Stycast, a proprietary catalytic setting resin. The remainder of the orbiter was stainless steel. The model represented configuration 2A with the nose modified to reflect configuration 3. This model was fabricated by Lockheed Missile and Space Company at Huntsville, Alabama.

The external tank (ET), designated MSFC model 451, was fabricated of stainless steel. The front attach lug from the ET to solid rocket booster (SRB) was simulated on the left side only. The orbiter to ET struts were simulated with .C44 inch diameter wire. The ET longitudinal plumbing lines, cable trays, and detail protuberances were unsimulated.

The SRB (S7) was fabricated of stainless steel by modifying the old S_3 booster. During testing, however, MSFC engineers referred to the S_7 booster as the S_3 (see figures 4 and 5). Detail protuberances are unsimulated. The 259" nozzle shroud and an aft ET ring are provided.

Model dimensional data and nomenclature are presented in Table III. The configuration tested was B_{27} C_5 W_{87} E_{18} M_3 V_7 R_5 F_4 T_9 S_7 , referred to in the data photographs as T_9 O_{13} S_3 . The component nomenclature O_{13} in figures 4 and 5 is an MSFC designation for the Rockwell International 13-0 force model.

CONFIGURATIONS INVESTIGATED (Concluded)

As part of the model installation, a careful inspection was made and all cracks, screw heads, and other surface discontinuities were filled with "body filler" and sanded before the several thin coats of neutral grey lacquer were applied. Particular care was taken to insure a good surface, and this finish was inspected and repaired at the conclusion of the day's running to provide a fresh quality surface for the next day.

Model was installed using a dual sting arrangement with the orbiter on one sting and the integral ET and SRBs on a three-pronged second sting. Each sting was separately removable so that photographs of either the orbiter or ET/SRB combination could be easily made.

Artificial boundary layer transition (#100 grit in 1/8" wide strips) was used during runs 204, 205, 206, 207, 208, and 209. No significant difference in oil flow patterns was noted. This was as expected since the paint beads were of considerably larger (on the order of 10 times) size than the grit and probably initiated transition.

Used was the following nomenclature:

$$0_{13}$$
 orbiter, B_{27} C_5 W_{87} E_{18} M_3 V_7 R_5 F_4

Tg ET, Tg

S7 SRB, S7

INSTRUMENTATION

Tunnel parameter information was garnered utilizing a total temperature and total pressure sensors in the settling chamber. When the transonic section was utilized, the static pressure was measured by a transducer located in the bottom of the test section beneath the perforated walls. The static pressure for supersonic test conditions was calculated based on the mach number.

A 4" \times 5" Calumet view camera with a 160mm f5.6 Schneider lens was used with a 10-second exposure on Ektacolor film. One 3200°K photoflood provided the required illumination.

The camera was mounted in a keyed swing-away frame by the side of the tunnel at the rear of the test section. This arrangement allowed the camera to be away from the test section door and window so that the shadowgraphs could be taken during the blow. After the run, the tunnel was opened and the camera was swung into position to take the photographs of the oil flow without disturbing the model. The keyed arrangement allowed the camera to be returned to the same place each time. Since the model position did not change, no adjustment of the camera setup was required from run to run.

TEST FACILITY DESCRIPTION

The Marshall Space Flight Center 14" x 14" Trisonic Wind Tunnel is an intermittent blowdown tunnel which operates by high pressure air flowing from storage to either vacuum or atmospheric conditions. A Mach number range from .2 to 5.85 is covered by utilizing two interchangeable test sections. The transonic section permits testing at Mach 0.20 through 2.50, and the supersonic section permits testing at Mach 2.74 through 5.85. Mach numbers between .2 and .9 are obtained by using a controllable diffuser. The range from .95 to 1.3 is achieved through the use of plenum suction and perforated walls. Mach numbers of 1.44, 1.93, and 2.50 are produced by interchangeable sets of fixed contour nozzle blocks; the M = 2.50 blocks are not particularly satisfactory. Above Mach 2.50 a set of fixed contour nozzle blocks are tilted and translated automatically to produce any desired Mach number, calibration is in .25 Mach increments.

Air is supplied to a 6000 cubic foot storage tank at approximately -40°F dew point and 500 psi. The compressor is a three-stage reciprocating anit driven by a 1500 hp motor.

The tunnel flow is established and controlled with a servo actuated gate valve. The controlled air flows through the valve diffuser into the stilling chamber and heat exchanger where the air temperature can be controlled from ambient to approximately 180°F. The air then passes through the test section which contains the nozzle blocks and test region.

Downstream of the test section is a hydraulically controlled pitch sector that provides a total angle of attack range of 20° ($\pm 10^{\circ}$). Sting

TEST FACILITY DESCRIPTION (Concluded)

offsets are available for obtaining various maximum angles of attack up to 90° .

TEST PROCEDURE

The integrated vehicle was tested through a range of nominal Mach numbers from 0.6 to 3.48. The test conditions are detailed in the run schedule and in the tabulated tunnel parameter data (Table I).

The collection of oil flow data photographs was performed as follows:

The model was visually inspected for deterioration of the prepainted surface prior to each run. A pattern of dots of artist's oil pigments and linseed oil was supplied to the model with hypodermic syringes in 8 longitudinal rows on the ET and SRB and in a modified longitudinal pattern on the orbiter (see figure 3). Paint application was made to the ET/SRB assembly and to the orbiter separately; then the two were assembled and placed on the tunnel sector.

Each of the three components, orbiter, ET, and SRB, was prepared with a different primary color pigment, alternating rows with white. The colors used were medium green and white on the SRBs, medium red and white on the ET, and medium blue and white on the orbiter. The particular blue used, prussian blue, was found to be a very strong tinting color, and to avoid it completely washing out the rows of white pigment, it was thinned four parts white to one of blue before it was applied.

The viscosity of the oil paint was tailored to the variation in free stream density with Mach number, a lower viscosity being required as Mach increased. Satisfactory flowing was obtained with the following mixtures:

TEST PROCEDURE (Concluded)

Pigment <u>(Parts)</u>	Linseed Oil (Parts)	Mach No.
1	1	0.6 to 1.2
1	1.5 to 2.0	1.4 to 2.0
1	2.5 to 3.5	2.5 to 3.5

The tunnel was closed, the run made, and shadowgraphs taken. The tunnel was operated for approximately five seconds after stable flow conditions were attained.

The tunnel was then opened, the ET/SRB removed, and photographs of the orbiter top side and bottom made. Subsequently the ET/SRB was replaced and the orbiter removed and photographs of the top and side made.

Model was washed with mineral spirits after each run.

During the transonic portion of the test, two runs were made at each test condition. The first was made with the porous walls in place to obtain the best possible flow conditions, and it was with these walls that the oil flows were obtained. The second was made to obtain shadow-graphs. During shadowgraph runs the glass instead of porous walls were used. In the higher Mach regime where shock reflection was not a problem, the glass walls were used for all runs to allow both oil flows and shadow-graphs to be obtained at the same time.

DISCUSSION OF RESULTS

A listing of runs and data obtained is shown in Table II.

Figures 3 and 4 present a representative set of oil flow photographs. The originals are $8 \frac{1}{2}$ x 11" color prints.

Figures 5 and 6 present typical shadowgraphs obtained in this test series.

It should be noted that the artist's paint formed a layer of significant thickness on the 0.004 scale-model and therefore degraded the accuracy of the model contours. The paint thickness is estimated as varying from zero at the nose to 0.020 inch (0.5 mm) near the aft end of the model and in areas of vortex flow. Accordingly, care should be exercised in the use of oil flow photographs or shadowgraphs made during the presence of paint on the model.

Examination of the data photographs indicates a trend to flow angularity between the external tank (ET) and the lower surface of the orbiter; in some cases this deflection from the free stream exceeds 10° (run 4/1, bottom of orbiter). This anomaly can be traced to the omission of a simulated front SRB attach strut on the right hand side of the external tank, the model having been intentionally built to this configuration. The model of test ISI was not assymetric; therefore, care should be exercised in interpreting the data photographs.

REFERENCES

- 1. Herrera, B. J. "Pretest Information for Flow Vizualization Test (IS-6) of the 0.004-Scale Space Shuttle Integrated Vehicle Model in the MSFC TWT," Rockwell International Report SD73-SH-0258, October 1, 1973.
- 2, Herrera, B. J. "Pretest Information for Tests of the 0.040-Scale Space Shuttle Vehicle Aerodynamic Noise Model 11-0TS in the Ames Research Center Unitary Plan Wind Tunnels," Rockwell International Report SD73-SH-0136, May 11, 1973.
- J. P. Reding ET Al. "Unsteady Aerodynamic Analysis of the Space Shuttle Vehicle," Lockheed Missile and Space Company Report D352320, August 73.

0.6 0.7 0.8 0.85	5.0 x 10 ⁶ 5.6 x 10 ⁶	4.35	1
0.7	5 6 106	4.00	100
	5.6 X IU	5.40	100
0.85	6.0 x 10 ^b	6.45	100
0.00	6.1×10^{6}	6.92	100
0.9	6.2 x 10 ⁶	7.36	100
0.95	6.4 x 10 ^b	7.74	100
1.0	6.5 x 10 ⁶	8.14	100
1.10	6.6 x 10 ^b	9.29	100
1.20	6.7 x 10 ⁶	10.68	100
1.46	6.5 x 10 ⁶	9.47	100
1.96	7.0 x 10 ⁶	10.20	100
2.99	4.0 x 10 ⁶	5.19	100
3.27	12.6 x 10 ⁶	13.6	100
3.48	11.2 x 10 ⁶	11.0	100
BALANCE UTILIZED:	Kone CAPACITY:	ACCURACY:	COEFFICIENT TOLERANCE:
SF			
AF			
РМ			
RM YM			

TABLE II.

0

								TE	ST	RUN	NUM	BER	s							П	75 76	1	> 0 × 0
	VARIABLE 1	3.27 5.49	58 59					515	600												67 79		IDVAR (2) N
		1.96 2.99	10	527						513	~										9 19		IDVAR (1)
DATE	ALTERNATE INDEPENDENT	-	5 9 5 9 5			215	100			0 0 38 5	10,38/										55	1111111	
ON SUMMARY	1 OR	75 11.0 11.10		7/1 8/1	7/5	213 214	207			110	1/1	012	12/1		S						49	and the same	
SET/RUN NUMBER COLLATION SUMMARY	MACH NUMBERS	350.10.	-			-	305 205 40							13	13/1	0 4-	14/1		2,7		43		25
L'RUN NUMB		8	200	4		210	023											9	1/51	91	31 37	1	COEFFICIENTS PASTOG YOU'S
DATA SET	1D.	B SIR170.6	O SFF " S	S		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	NO	OFF									7			1 1	25	. leader	Oil flow Phato
7	SCHD.		0					-:3	9L-1	1.26	1.26	1.40	bF:1	1.50	1.50	09.1	99:	71:1	1.72	1.82	19	and and	0 = 011 S = Sh
SSA		CONFIGURATION	T, 0,357																	-	13	A I	
TEST: I	DATA SET	IDENTIFIER	K18001	32	3	4	5.	9	12	90	4	0		12	13	14	15	0	17	81	, ,	attender.	CHECULES

ORIGINAL PAGE IS

- 15

TABLE II. - Concluded.

		a							EST	RU	NN	MÉ	RS							75 76	· NDV
		2 4 8						3 17	10			50	YO	250	67.5	705	2			1	
	BLE	7.	-					51	000			5		N.	S						DVAR (2)
	VARIABL	99 3		-	+	+	+	10				NON		S	500	S	7			67	49
	906 996	2	1					0 11			-	04	5		2 2	2	9 8000				100
	INDEPENDENT	1.94						0 20				2 5		27	V	465					IDVAR
DATE		1.46						300				IO		13.51	w	co	S			- 19	1 1
<u>ا</u>	TERNATE	.20						0		+	51	A A	5	- 5	S	S	10	+ +	4	41	11
	LTER	0	-	-	-	+		35	35%	DE STREET	TR PODGE	36	B 97406		OR RESIDENCE		oa		•	5.5	1
SET/RUN NUMBER COLLATION SUMMARY	I OR AL	10						0 8		00	22/5	24	341.	Soc	3/5	2 901	2 PT	1/bL			1
SUMA		0						9.50			8		5	2	925	105.5	70.5	3 1/8L		2	4
LION	MACH NUMBERS	0.95				T					15 21	10	_		w	E 107 0000	100	O.		11	1 '
LLAI	MACH				-	-		0 29		1	5 29	0		84	P 804015000		1	12		1 8	2 E
S C0		6.0						04			27/5	20		858	945	1035	765	797			P.COEFFICIENTS PHOTOGRAPH
MBE		6.85						25			25/5	26	25.5	S		100	755	72/2		37	1 2 3
N		8.0	1/91					23			23/1	-	24.9	83.8	596	50	74 8				COEFFICIENT
L/RU		0.7 0.8		<u>-</u>	3/11			170	-			22	22/1	Name and Address of the Owner, where	278	200	735				1810
A SE		0.0				0.0		6			2/61	20	v.	PARTICION	28 S	_	250			11	ゴカ
DATA		SINIT 0.6	OFF						,	NO	바이							-			
		8	0								Ě		-	0		0	0	,		75	1
٦	8	5	1.82	2.06	2.06	2.32	2:32	D.				-5		0	N	-5	σ	0			1 57
	Z													ROLLEO GOLLEO						2 .	1 11
	CONFIGURATION		7											R.O.							19:
	FIGU		M																	13	1
1	CON		0	T				1						1			1		-		1
	+ 0	+	1	2		-	2	4	10											2	
	DATA SET		RIBO 19	02.	71	22	23	77	25	26	27	28	67	30	3	32	33	34			G OR B
	DAT	N I	818	1	-	+	-+	-+	-	-					-			4			1 3

TABLE III. - MODEL DIMENSIONAL DATA

MODEL COMPONENT: BODY 827	,	
GENERAL DESCRIPTION: Fuselage, 2A Config per Rockwell lines VL 70 000089B Nose 1		
to VI. 70 000139 forebody contour.		
Scale Model = .004		
DRAWING NUMBER VL 70 0000891	B, 92, 93, 94A	
DIMENSION:	FULL SCALE	MODEL SCALE
Length	1290.3	5.1612
Max Width-in. @ $X_0 = 1528.3$	265.0	1_060
Max Depthin. @ X = 1480.52	248.0	0.992
Fineness Ratio	5.012	5.012
Area		
Max Cross-Sectional	456.4	1.826
Planform ·	<u> </u>	
Wetted		
Base		•

ORIGINAL PAGE IS OF POOR QUALITY

,

MODEL COMPONENT: CANOPY - 05	;	
•	ŕ.	
GENERAL DESCRIPTION: 24 Configuration p	er Lines VL70-00	0092
	<u> </u>	
Scale Model = .004		
DRAWING NUMBER V1.70-000092) 	
DIMENSION:	FULL SCALE	MODEL SCALE
Length (Sta Fwd Bulkhcad)	391.0	1.564
Max Width (T.F. Bulkhead)	560.0	2.240
Mox Depth (WFZ] = 421.922 to $Z_0 = 500$)	· Para formation all construction company page (***
Fineness Ratio		<u></u>
Area		
Max Cross-Sectional		
Planform '		
Wetled		
Base		

ORIGINAL PAGE IS

MODEL COMPONENT: ELEYON E-18 GENERAL DESCRIPTION: 2A Configuration per W-87 Rockwell Lines VL70-000093 data for (1) of (2) sides Scale Model = DRAWING NUMBER: VI.70-000093 DIMENSIONS: FULL-SCALE MODEL SCALE _ FT2 Area 205.52 0.003 Span (equivalent) - IN. 353.34 1.413 Inb'd equivalent chord 114.78 0.459 Outb'd equivalent chord 55.00 0.220 Ratio movable surface chord/ total surface chord At Inb'd equiv. chord .208 .208 At Outb'd equiv. chord .400 .400 Sweep Back Angles, degrees Leading Edge 0.00 0.00 Tailing Edge -10.24-10.24 Hingeline 0.00 0.00 Area Moment (Normal to hinge line) - FT3 1548.07 .0001 Product of Area Moment

()

()

TABLE III. - Continued.

MODEL COMPONENT:	F4 BODY FLAP	11	
	•	į.	
GENERAL DESCRIPTION:	2A Configuration pe	er Rockwell Lines	VL70-00094A
			
Scale Model = .004			
DRAWING NUMBER	VL70-000094/	1	
DIMENSION:		FULL SCALE	MODEL SCALE
Length .		84.70	0.339
Max Width		265.00	1.060
Max Depth		-	
Fineness Ratio			
Area - FT2			
Max Cross-Sect	ional		
Planform	•	142.64	0.571
Wetted			<u> </u>
Base		38.65	0.006

MODEL COMPONENT: OMS POD - M3		
	į.	
GENERAL DESCRIPTION: <u>2A Lightheight</u> VL70-000094A	Configuration per Ro	ockwell Lines
£	· · · · · · · · · · · · · · · · · · ·	
Scale Model = .004		
DRAWING NUMBER . VL70-0	00091 ₄ A	•.
DIMENSION:	FULL SCALE	MODEL SCALE
Length .	346.0	1.384
Max Width $X_0 = 1450.0$	108.0	0.432
Max Depth $X_0 = 1500.0$	113.0	0.452
Fineness Ratio		
Āreo	7	
Max Cross-Sectional		
Planform :	•	
Wetted	4*3	
Base	•	
g of oms pod	1447.44 - 1144.44 - 1444.4	

© OF OMS POD WP = 463.9 INFS; WP 400 + 63.9 = 463.9 BP = 80.0 INFS LENGTH 1214.0 to 1560.0 = 346.0 INFS

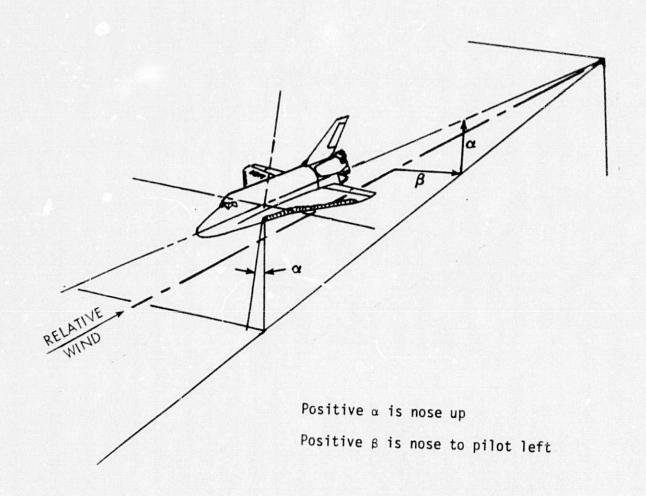
TABLE III. - Continued.

MODEL COMPONENT: RUDDER - R5		
GENERAL DESCRIPTION: 2A, 3 and 3A Configurat VL70-000095	ion per Rockwell	Lines

Model Scale = .004		····
DRAWING NUMBER: VL70-00095		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
. Area - FT2	106.38	_0:017
Span (equivalent) - IN.	201.0	0.8014
Inb'd equivalent chord	91.585	0.366
Outb'd equivalent chord	50.833	0.203
Ratio movable surface chord/ total surface chord	•	
At Inb'd equiv. chord	0.400	0.400
At Outb'd equiv. chord	0.400	0.400
Sweep Back Angles, degrees	•	•
Leading Edge	<u> </u>	34.83
Tailing Edge	26.25	26.25
Hingeline	34.83	34.83
Area Moment (Normal to hinge line) - FT ³ Product of Area and Mean Chord	526.13	0.00003

TABLE III. - Continued.

MODEL COMPONENT: BOOSTER SOLID ROCKET N	10TOR - \$7	
GENERAL DESCRIPTION: Light weight Orbiter forward 71 inches full scale	configuration (S ₆) shifted
Model Scale = .004		
	(mod.) (mod.)	
DIMENSION:	FULL SCALE	MODEL SCALE
Length (Includes Nozzle) - IN.	1741.0	6.964
Max Width (Tank Dia) - IN.	142.3	0.5962
Max Depth (Aft Shroud) - IN.	259.0	1.036
Fineness Ratio	6.722	_6.722
Area – FT ²		
Max Cross-Sectional	365.87	1.503
Planform		
Wetted		
Base		
WP of BSRM Centerline (Z_T) - 1.4.	400	1.6
FS of BSRM Nose (X_T) - IN.	672.0	2.683


MODEL COMPONENT: EXTERNAL TANK - T9		
CENERAL DESCRIPTION DA CI-AGIA MARIA	1 •	
GENERAL DESCRIPTION: 2A Configuration		
NOTE: T9 identical to T8 W/O retro pkg.,	nose w/30"R F.S.	
Model Sale - OOH		
DRAWING NUMBER		
DIMENSION:	FULL SCALE	MODEL SCALE
Length - IN.	1858	7.432
Max Width (Dia) - IN.	324.0	1.296
Max Depth		
Fineness Ratio L/D	5.73457	5.73457
Areo - FT ²		
Max Cross-Sectional	572.56	0.00916
Planform ·		
Wetted		
Base		•

ORIGINALI PAGE IS
OF POOR QUALITY

TABLE III. - Continued.

MODEL COMPONENT: VERTICAL - V.		
GENERAL DESCRIPTION: Centerline vertical tail.	double-vedge sirfo	1 vith
rounded leading edge.		
NOTE: Same as Yo, but with manipulator housing	g_removed	
MODEL SCALE: .004		
DRAWING NUMBER: VL70-00/139		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
TOTAL DATA		
Area (Theo) Ft ² Planform Span (Theo) In Aspect Ratio Rate of Taper Taper Ratio Sweep Back Angles, degrees Leading Edge Trailing Edge 0.25 Element Line Chords: Root (Theo) WP Tip (Theo) WP MAC Fus. Sta. of .25 MAC W. P. of .25 MAC	425.02 315.72 -1.675 -0.507 -0.404 45.000 -26.249 -41.130 -268.50 -105.47 -1.99.81 -1.463.50 -6.35.522 -0.00	0.007 1.263 1.675 0.507 0.404 45.000 26.249 41.130 1.074 0.434 0.799 5.954 2.542 0.000
Airfoil Section Leading Wedge Angle Deg Trailing Wedge Angle Deg Leading Edge Radius Yoid Area Blanketed Area	10.000 14.920 2.0 13.17 0.00	10.000 14.920 2.0 0.0002 0.00

MODEL COMPONENT: WING-W 87 New Lightweight Orbit	,ar	
GENERAL DESCRIPTION: Orbiter Configuration ger Li	nes V1.70-000093	
(NOTE: Dihedral angle is defined at the	lower surface o	f the wins at the
75.33% element line projected in	ito a plane perpe	ndicular to the
FRL) Scale Model = .004		
TEST NO.	DWG. NO. VL70-000093	
DIMENSIONS:	FULL-SCALE	MODEL SCALE
TOTAL DATA Area (Theo.) Ft ²		
Area (Theo.) Ft ² Planform	2690.00	0.043
Span (Theo In.	936.68	3.747
Aspect Ratio	2.265	2.265
Rate of Taper	1.177	1.,1'77
Taper Ratio Dihedral Angle, degrees	0.200	0.200
Incidence Angle, degrees	3.500 3.000	3.500 3.000
Aerodynamic Twist, degrees	+3.000	±3,000
Sweep Back Angles, degrees		-
Leading Edge	45.000	45,000
Trailing Edge	-1.0.24	-10.2h
0.25 Element Line Chords:	35.209	35.209
Root (Theo) B.P.O.O.	689.24	2.757
Tip, (Theo) B.P. 468.341	137.85	0.551
MAC	474.81	1.889
Fus. Sta. of .25 MAC	1136.89	4.548
W.P. of .25 MAC B.L. of .25 MAC	<u> 299-20</u>	$\frac{1.197}{0.700}$
TUDO OF DATE	182.13	0.728
EXPOSED DATA Area (Theo) Ft ²	1752.29	0.028
Span, (Theo) In. BP108 to 468.341	720.68	2.883
Aspect Ratio	2.058	2.058
Taper Ratio	0.2451	0.2451
Chords		0.000
Root BP108	562.40	2.250
Tip 1.00 <u>b</u>	137.85	-0.551
MAC	393.03	1.572
Fus. Sta. of .25 MAC	1185.31	4.741
W.P. of .25 MAC B.L. of .25 MAC	300.20 251.76	1.201 0.575
Airfoil Section (Rockwell Mod NASA)	272.10	
VVVV CA	0.30	0.30
Root $\frac{b}{2} = .425$	0.10	0.10
Tip $\frac{2}{2}$ = 1.00	0.12	0.12
Data for (1) of (2) Sides		
Leading Edge Cuff a		
Planform Area Ft ²	120.33	0.0019
Leading Edge Intersects Fus M. L. @ Sta	560.0	5.540
Leading Edge Intersects Wing @ Sta	1035.0	4.4

ORIGINAL PAGE IS OF POOR QUALITY

Figure 1. - Axis Systems.

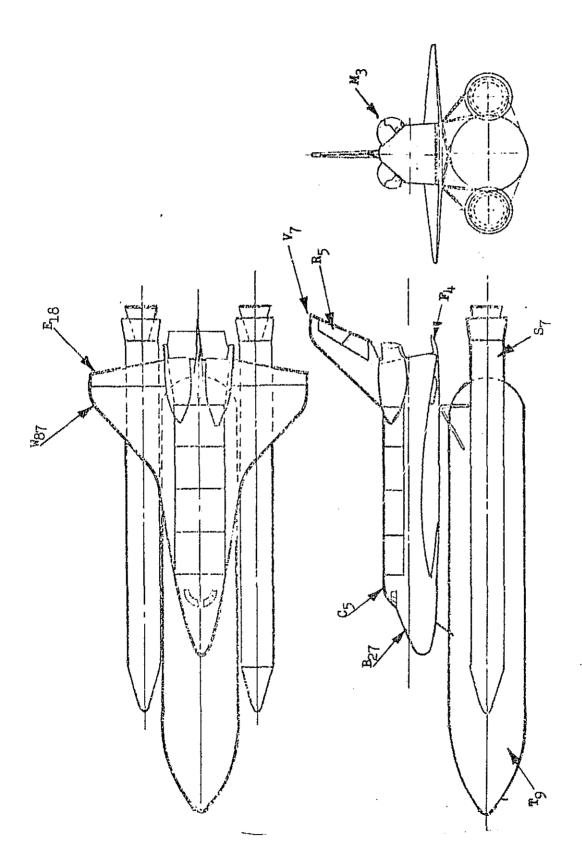


Figure 2. - General Arrangement of Integrated Vehicle Model

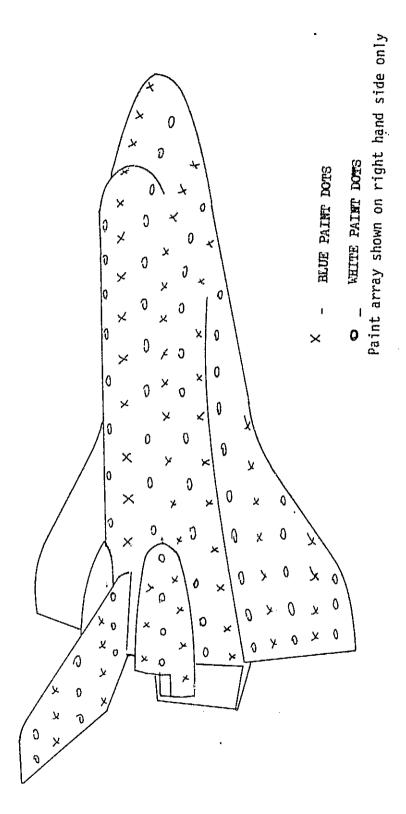
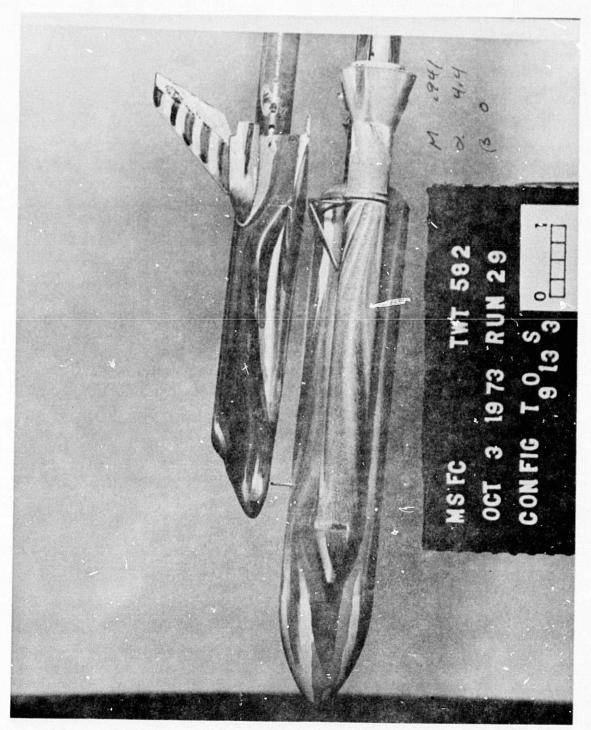
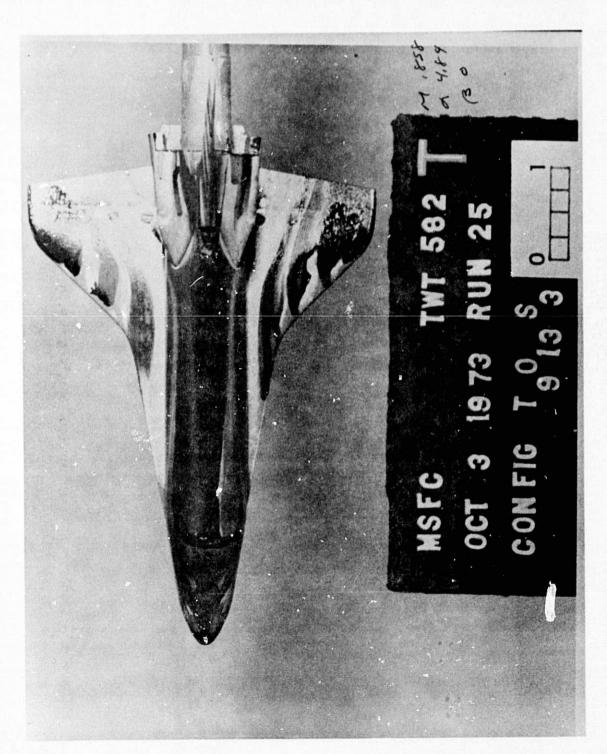
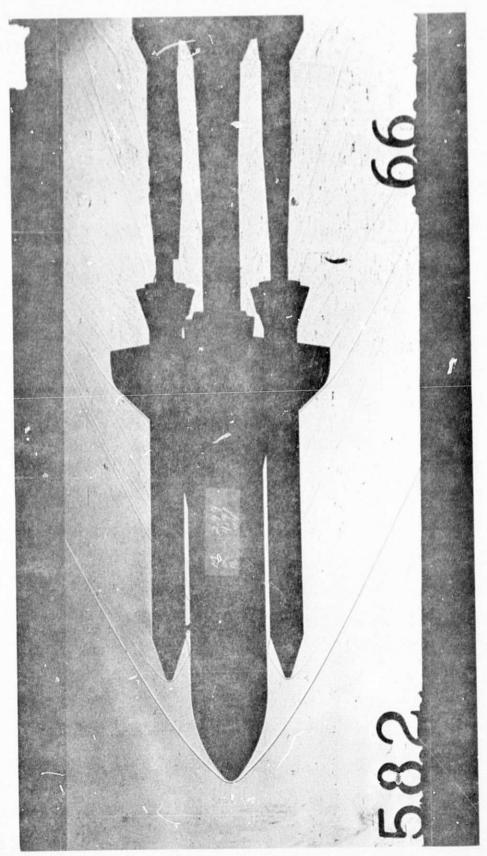


Figure 3. - Typical Orbiter Oil Dot Pattern.

-278-146_30


Figure 4. Oil Flow Photograph of Integrated Vehicle, α = 4.4, β = 0, M = 0.95 (Typical of Side Photographs).

M = 0.85 (Typical), 0, 11 - Oil Flow Photograph of Orbiter Upper Surface, α = 4.84. Figure 5.

Figure 6. - Shadowgraph of Integrated Vehicle, α = 4.66, β = 0, M = 2.99, Side View.

M = 2.99, Bottom View. 0 92 - Shadowgraph of Integrated Vehicle, α = 4.91,

ORIGINAL PAGE IS OF POOR QUALITY