43 research outputs found

    Impact of Protein Stability, Cellular Localization, and Abundance on Proteomic Detection of Tumor-Derived Proteins in Plasma

    Get PDF
    Tumor-derived, circulating proteins are potentially useful as biomarkers for detection of cancer, for monitoring of disease progression, regression and recurrence, and for assessment of therapeutic response. Here we interrogated how a protein's stability, cellular localization, and abundance affect its observability in blood by mass-spectrometry-based proteomics techniques. We performed proteomic profiling on tumors and plasma from two different xenograft mouse models. A statistical analysis of this data revealed protein properties indicative of the detection level in plasma. Though 20% of the proteins identified in plasma were tumor-derived, only 5% of the proteins observed in the tumor tissue were found in plasma. Both intracellular and extracellular tumor proteins were observed in plasma; however, after normalizing for tumor abundance, extracellular proteins were seven times more likely to be detected. Although proteins that were more abundant in the tumor were also more likely to be observed in plasma, the relationship was nonlinear: Doubling the spectral count increased detection rate by only 50%. Many secreted proteins, even those with relatively low spectral count, were observed in plasma, but few low abundance intracellular proteins were observed. Proteins predicted to be stable by dipeptide composition were significantly more likely to be identified in plasma than less stable proteins. The number of tryptic peptides in a protein was not significantly related to the chance of a protein being observed in plasma. Quantitative comparison of large versus small tumors revealed that the abundance of proteins in plasma as measured by spectral count was associated with the tumor size, but the relationship was not one-to-one; a 3-fold decrease in tumor size resulted in a 16-fold decrease in protein abundance in plasma. This study provides quantitative support for a tumor-derived marker prioritization strategy that favors secreted and stable proteins over all but the most abundant intracellular proteins

    Fusion of the Mycobacterium tuberculosis Antigen 85A to an Oligomerization Domain Enhances Its Immunogenicity in Both Mice and Non-Human Primates

    Get PDF
    To prevent important infectious diseases such as tuberculosis, malaria and HIV, vaccines inducing greater T cell responses are required. In this study, we investigated whether fusion of the M. tuberculosis antigen 85A to recently described adjuvant IMX313, a hybrid avian C4bp oligomerization domain, could increase T cell responses in pre-clinical vaccine model species. In mice, the fused antigen 85A showed consistent increases in CD4+ and CD8+ T cell responses after DNA and MVA vaccination. In rhesus macaques, higher IFN-γ responses were observed in animals vaccinated with MVA-Ag85A IMX313 after both primary and secondary immunizations. In both animal models, fusion to IMX313 induced a quantitative enhancement in the response without altering its quality: multifunctional cytokines were uniformly increased and differentiation into effector and memory T cell subsets was augmented rather than skewed. An extensive in vivo characterization suggests that IMX313 improves the initiation of immune responses as an increase in antigen 85A specific cells was observed as early as day 3 after vaccination. This report demonstrates that antigen multimerization using IMX313 is a simple and effective cross-species method to improve vaccine immunogenicity with potentially broad applicability

    High-Resolution Electron Microscopy of Semiconductor Heterostructures and Nanostructures

    Get PDF
    This chapter briefly describes the fundamentals of high-resolution electron microscopy techniques. In particular, the Peak Pairs approach for strain mapping with atomic column resolution, and a quantitative procedure to extract atomic column compositional information from Z-contrast high-resolution images are presented. It also reviews the structural, compositional, and strain results obtained by conventional and advanced transmission electron microscopy methods on a number of III–V semiconductor nanostructures and heterostructures

    Potential of novel Mycobacterium tuberculosis infection phase-dependent antigens in the diagnosis of TB disease in a high burden setting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Confirming tuberculosis (TB) disease in suspects in resource limited settings is challenging and calls for the development of more suitable diagnostic tools. Different <it>Mycobacterium tuberculosis (M.tb) </it>infection phase-dependent antigens may be differentially recognized in infected and diseased individuals and therefore useful as diagnostic tools for differentiating between <it>M.tb </it>infection states. In this study, we assessed the diagnostic potential of 118 different <it>M.tb </it>infection phase-dependent antigens in TB patients and household contacts (HHCs) in a high-burden setting.</p> <p>Methods</p> <p>Antigens were evaluated using the 7-day whole blood culture technique in 23 pulmonary TB patients and in 19 to 21 HHCs (total n = 101), who were recruited from a high-TB incidence community in Cape Town, South Africa. Interferon-gamma (IFN-γ) levels in culture supernatants were determined by ELISA.</p> <p>Results</p> <p>Eight classical TB vaccine candidate antigens, 51 DosR regulon encoded antigens, 23 TB reactivation antigens, 5 TB resuscitation promoting factors (rpfs), 6 starvation and 24 other stress response-associated TB antigens were evaluated in the study. The most promising antigens for ascertaining active TB were the rpfs (Rv0867c, Rv2389c, Rv2450c, Rv1009 and Rv1884c), with Areas under the receiver operating characteristics curves (AUCs) between 0.72 and 0.80. A combination of <it>M.tb </it>specific ESAT-6/CFP-10 fusion protein, Rv2624c and Rv0867c accurately predicted 73% of the TB patients and 80% of the non-TB cases after cross validation.</p> <p>Conclusions</p> <p>IFN-γ responses to TB rpfs show promise as TB diagnostic candidates and should be evaluated further for discrimination between <it>M.tb </it>infection states.</p

    State of the art of immunoassay methods for B-type natriuretic peptides: An update

    Get PDF
    The aim of this review article is to give an update on the state of the art of the immunoassay methods for the measurement of B-type natriuretic peptide (BNP) and its related peptides. Using chromatographic procedures, several studies reported an increasing number of circulating peptides related to BNP in human plasma of patients with heart failure. These peptides may have reduced or even no biological activity. Furthermore, other studies have suggested that, using immunoassays that are considered specific for BNP, the precursor of the peptide hormone, proBNP, constitutes a major portion of the peptide measured in plasma of patients with heart failure. Because BNP immunoassay methods show large (up to 50%) systematic differences in values, the use of identical decision values for all immunoassay methods, as suggested by the most recent international guidelines, seems unreasonable. Since proBNP significantly cross-reacts with all commercial immunoassay methods considered specific for BNP, manufacturers should test and clearly declare the degree of cross-reactivity of glycosylated and non-glycosylated proBNP in their BNP immunoassay methods. Clinicians should take into account that there are large systematic differences between methods when they compare results from different laboratories that use different BNP immunoassays. On the other hand, clinical laboratories should take part in external quality assessment (EQA) programs to evaluate the bias of their method in comparison to other BNP methods. Finally, the authors believe that the development of more specific methods for the active peptide, BNP1–32, should reduce the systematic differences between methods and result in better harmonization of results

    Identification of subunit-subunit interactions in bacteriophage P22 procapsids by chemical cross-linking and mass spectrometry

    No full text
    Viral capsids are dynamic structures which self-assemble and undergo a series of structural transformations to form infectious viruses. The dsDNA bacteriophage P22 is used as a model system to study the assembly and maturation of icosahedral dsDNA viruses. The P22 procapsid, which is the viral capsid precursor, is assembled from coat protein with the aid of scaffolding protein. Upon DNA packaging, the capsid lattice expands and becomes a stable virion. Chemical cross-linking analyzed by mass spectrometry was used to identify residue specific inter- and intra-subunit interactions in the P22 procapsids. All the intersubunit cross-links occurred between residues clustered in a loop region (residues 157-207) which was previously identified by mass spectrometry based on hydrogen/deuterium exchange and biochemical experiments. DSP and BS3 which have similar distance constraints (12 A and 11.4 A, respectively) cross-linked the same residues between two subunits in the procapsids (K183-K183), whereas DST, a shorter cross-linker, cross-linked lysine 175 in one subunit to lysine 183 in another subunit. The replacement of threonine with a cysteine at residue 182 immediately adjacent to the K183 cross-linking site resulted in slow spontaneous disulfide bond formation in the procapsids without perturbing capsid integrity, thus suggesting flexibility within the loop region and close proximity between neighboring loop regions. To build a detailed structure model, we have predicted the secondary structure elements of the P22 coat protein, and attempted to thread the prediction onto identified helical elements of cryoEM 3D reconstruction. In this model, the loop regions where chemical cross-linkings occurred correspond to the extra density (ED) regions which protrude upward from the outside of the capsids and face one another around the symmetry axes.close323

    Surface chemical analysis of poly(epsilon-caprolactone)-perfluoropolyether-poly(epsilon-caprolactone) triblock copolymers by X-ray photoelectron spectroscopy

    No full text
    The air-side surface composition of a series of poly(e-caprolactone)-perfluoropolyether-poly(epsilon-caprolactone) triblock copolymers with different compositions and block lengths have been studied by angle-dependent X-ray photoelectron spectroscopy (XPS). The weight percentage of the perfluoropolyether (PFPE) and polycaprolactone (PCL) blocks, and ethylene oxide linker (RH) has been calculated in different ways: from C1s, O1s and F1s photoemission peaks and by line fitting of the C1s and O1s envelopes. The atomic sensitivity factors and the parameters used to fit the peak envelopes have been experimentally determined using some reference materials. A critical discussion of the different methods used in the surface characterization and the degradation of PFPE segments, induced by irradiation beam, have been also reported. A large excess of PFPE with respect to the bulk composition was observed in all samples, and the angular dependence of the XPS signal demonstrated that the content of the fluorinated block segment increased by decreasing the sampling depth. The PFPE surface concentration was also decreased by increasing the PCL/PFPE ratio, but the surfaces of the samples were still dominated by PFPE segments for copolymers with a bulk PFPE composition lower than 10%. Moreover, copolymers with similar PCL/PFPE bulk ratios but with different PFPE block lengths, showed similar PFPE surface composition when the number-average molecular weight (M.) was 2000 and 3200 g mol(-1), while that observed for copolymers containing PFPE block with M. 900 g mol(-1) was lower

    Inflammatory and myeloid-associated gene expression before and one day after infant vaccination with MVA85A correlates with induction of a T cell response.

    Get PDF
    BACKGROUND: Tuberculosis (TB) remains a global health problem, with vaccination likely to be a necessary part of a successful control strategy. Results of the first Phase 2b efficacy trial of a candidate vaccine, MVA85A, evaluated in BCG-vaccinated infants were published last year. Although no improvement in efficacy above BCG alone was seen, cryopreserved samples from this trial provide an opportunity to study the immune response to vaccination in this population. METHODS: We investigated blood samples taken before vaccination (baseline) and one and 28 days post-vaccination with MVA85A or placebo (Candin). The IFN-γ ELISpot assay was performed at baseline and on day 28 to quantify the adaptive response to Ag85A peptides. Gene expression analysis was performed at all three timepoints to identify early gene signatures predictive of the magnitude of the subsequent adaptive T cell response using the significance analysis of microarrays (SAM) statistical package and gene set enrichment analysis. RESULTS: One day post-MVA85A, there is an induction of inflammatory pathways compared to placebo samples. Modules associated with myeloid cells and inflammation pre- and one day post-MVA85A correlate with a higher IFN-γ ELISpot response post-vaccination. By contrast, previous work done in UK adults shows early inflammation in this population is not associated with a strong T cell response but that induction of regulatory pathways inversely correlates with the magnitude of the T cell response. This may be indicative of important mechanistic differences in how T cell responses develop in these two populations following vaccination with MVA85A. CONCLUSION: The results suggest the capacity of MVA85A to induce a strong innate response is key to the initiation of an adaptive immune response in South African infants but induction of regulatory pathways may be more important in UK adults. Understanding differences in immune response to vaccination between populations is likely to be an important aspect of developing successful vaccines and vaccination strategies. TRIAL REGISTRATION: ClinicalTrials.gov number NCT00953927
    corecore