26 research outputs found

    O014 Movement coordination of the pelvis in a virtual game environment

    Get PDF
    Movement training specifically targeted at rotation of the pelvis may help to improve/overcome the primary component of pelvic retraction in patients with cerebral palsy (CP). Healthy subjects when placed in a novel virtual environment provided evidence for a pre-established pattern of coordination, suggesting that well-practiced core control cannot be improved over a short period of time through movement of the pelvis

    Leaving hip rotation out of a conventional 3D gait model improves discrimination of pathological gait in cerebral palsy: A novel neural network analysis

    Get PDF
    Background: Complex clinical gait analysis results can be expressed as single number gait deviations by applying multivariate processing methods. The original Movement Deviation Profile (MDP) quantifies the deviation of abnormal gait using the most trusted nine dynamic joint angles of lower limbs. Research question: Which subset of joint angles maximises the ability of the MDP to separate abnormal gait from normality? What is the effect of using the best subset in a large group of patients, and in individuals? Methods: A self-organising neural network was trained using normal gait data from 166 controls, and then the MDP of 1923 patients with cerebral palsy (3846 legs) was calculated. The same procedure was repeated with 511 combinations of the nine joint angles. The standardised distances of abnormal gait from normality were then calculated as log-transformed Z-scores to select the best combination. A mixed design ANOVA was used to assess how removing the least discriminating angle improved the separation of patients from controls. The effect of using the optimal subset of angles was also quantified for each individual leg by comparing the change in MDP to the independent FAQ levels of patients. Results: Removal of hip rotation significantly (p<0.0005) increased the separation of the patient group from normality (ΔZ-score 0.24) and also at FAQ levels 7-10 (ΔZ-score 0.38, 0.27, 0.22, 0.14). The MDP of individual patients changed in a wider range of -4.65 to 1.12 Z-scores and their change matched their independent FAQ scores, with less functional patients moving further from, and more functional patients moving closer to normality. Significance: In existing gait databases we recommend excluding hip rotation from data used to calculate the MDP. Alternatively, the calculation of hip rotation can be improved by post-hoc correction, but the ultimate solution is to use more accurate and reliable models of hip rotation. © 201

    Age related deviation of gait from normality in alkaptonuria.

    Get PDF
    Alkaptonuria is a rare metabolic disease leading to systemic changes including early and severe arthropathy which affects mobility. Due to unknown reasons, the onset of degenerative changes is delayed to around 30 years of age when both objective and subjective symptoms develop. In order to complement describing the structural changes in alkaptonuria with measures of movement function, clinical gait analysis was added to the list of assessments in 2013. The aim of this study was to describe the deviation of gait from normality as a function of age in patients with alkaptonuria. Three-dimensional movement of reflective markers attached to joints were captured during walking in 39 patients and 10 controls. Subsequent to processing the data to emphasise the shape of marker trajectories, the mean Movement Deviation Profile was generated for all participants. This single number measure gives the deviation of a patient’s gait from a distributed definition of gait normality. Results showed that gait deviation roughly follows a sigmoid profile with minimal increase of gait deviations in a younger patient group and an abrupt large increase around the second half of the 4th decade of life. Larger variations of gait deviations were found in the older group than in the younger group suggesting a complex interaction of multiple factors which determine gait function after symptoms manifest. Continued gait analysis of adults with AKU, extended to younger adults and children with AKU, is expected to complete understanding of both the natural history of alkaptonuria and how interventions can affect movement function

    Dynamic Neuromuscular Control of the Lower Limbs in Response to Unexpected Single-Planar versus Multi-Planar Support Perturbations in Young, Active Adults.

    Get PDF
    PURPOSE: An anterior cruciate ligament (ACL) injury involves a multi-planar injury mechanism. Nevertheless, unexpected multi-planar perturbations have not been used to screen athletes in the context of ACL injury prevention yet could reveal those more at risk. The objective of this study was to compare neuromuscular responses to multi-planar (MPP) and single-planar perturbations (SPP) during a stepping-down task. These results might serve as a basis for future implementation of external perturbations in ACL injury screening programs. METHODS: Thirteen young adults performed a single leg stepping-down task in eight conditions (four MPP and four SPP with a specified amplitude and velocity). The amplitudes of vastus lateralis (VL), vastus medialis (VM), hamstrings lateralis (HL), hamstrings medialis (HM) EMG activity, medio-lateral and anterior-posterior centre of mass (COM) displacements, the peak knee flexion and abduction angles were compared between conditions using an one-way ANOVA. Number of stepping responses were monitored during all conditions. RESULTS: Significantly greater muscle activity levels were found in response to the more challenging MPP and SPP compared to the less challenging conditions (p < 0.05). No differences in neuromuscular activity were found between the MPP conditions and their equivalents in the SPP. Eighteen stepping responses were monitored in the SPP versus nine in the MPP indicating that the overall neuromuscular control was even more challenged during the SPP which was supported by greater COM displacements in the SPP. CONCLUSION: The more intense MPP and SPP evoked different neuromuscular responses resulting in greater muscle activity levels compared to small perturbations. Based on the results of COM displacements and based on the amount of stepping responses, dynamic neuromuscular control of the knee joint appeared less challenged during the MPP. Therefore, future work should investigate extensively if other neuromuscular differences (i.e. co-activation patterns and kinetics) exist between MPP and SPP. In addition, future work should examine the influence on the neuromuscular control of the magnitude of the perturbations and the magnitude of stepping height and stepping distance

    Local biases drive, but do not determine, the perception of illusory trajectories

    Get PDF
    When a dot moves horizontally across a set of tilted lines of alternating orientations, the dot appears to be moving up and down along its trajectory. This perceptual phenomenon, known as the slalom illusion, reveals a mismatch between the veridical motion signals and the subjective percept of the motion trajectory, which has not been comprehensively explained. In the present study, we investigated the empirical boundaries of the slalom illusion using psychophysical methods. The phenomenon was found to occur both under conditions of smooth pursuit eye movements and constant fixation, and to be consistently amplified by intermittently occluding the dot trajectory. When the motion direction of the dot was not constant, however, the stimulus display did not elicit the expected illusory percept. These findings confirm that a local bias towards perpendicularity at the intersection points between the dot trajectory and the tilted lines cause the illusion, but also highlight that higher-level cortical processes are involved in interpreting and amplifying the biased local motion signals into a global illusion of trajectory perception

    Local biases drive, but do not determine, the perception of illusory trajectories

    Get PDF
    When a dot moves horizontally across a set of tilted lines of alternating orientations, the dot appears to be moving up and down along its trajectory. This perceptual phenomenon, known as the slalom illusion, reveals a mismatch between the veridical motion signals and the subjective percept of the motion trajectory, which has not been comprehensively explained. In the present study, we investigated the empirical boundaries of the slalom illusion using psychophysical methods. The phenomenon was found to occur both under conditions of smooth pursuit eye movements and constant fixation, and to be consistently amplified by intermittently occluding the dot trajectory. When the motion direction of the dot was not constant, however, the stimulus display did not elicit the expected illusory percept. These findings confirm that a local bias towards perpendicularity at the intersection points between the dot trajectory and the tilted lines cause the illusion, but also highlight that higher-level cortical processes are involved in interpreting and amplifying the biased local motion signals into a global illusion of trajectory perception

    Characterization of pressure drop through Schwarz-Diamond triply periodic minimal surface porous media

    No full text
    Additive manufacturing (3D printing) is enabling novel porous structures such as triply periodic minimal surfaces (TPMS) that may help improve the efficiency of various applications in chemical engineering. In this work, a range of Schwarz-Diamond TPMS structures were examined experimentally in terms of printability and pressure drop. X-ray computed tomography scans were used to show that the shape of the structures was accurately printed, however a systematic reduction in porosity was observed compared with each designed structure. The pressure drop through the printed structures was measured for Reynolds numbers between 1 and 1000. Pressure drop reduced with increasing porosity and hydraulic diameter but there was no effect of printer type or column diameter on the measured pressure drop. These measurements were used to propose a new pressure drop correlation that can be used to predict the pressure drop for Schwarz-Diamond TPMS structures over a range of porosities and hydraulic diameters
    corecore