15 research outputs found
Retrotransposition of gene transcripts leads to structural variation in mammalian genomes
BACKGROUND: Retroposed processed gene transcripts are an important source of material for new gene formation on evolutionary timescales. Most prior work on gene retrocopy discovery compared copies in reference genome assemblies to their source genes. Here, we explore gene retrocopy insertion polymorphisms (GRIPs) that are present in the germlines of individual humans, mice, and chimpanzees, and we identify novel gene retrocopy insertions in cancerous somatic tissues that are absent from patient-matched non-cancer genomes. RESULTS: Through analysis of whole-genome sequence data, we found evidence for 48 GRIPs in the genomes of one or more humans sequenced as part of the 1,000 Genomes Project and The Cancer Genome Atlas, but which were not in the human reference assembly. Similarly, we found evidence for 755 GRIPs at distinct locations in one or more of 17 inbred mouse strains but which were not in the mouse reference assembly, and 19 GRIPs across a cohort of 10 chimpanzee genomes, which were not in the chimpanzee reference genome assembly. Many of these insertions are new members of existing gene families whose source genes are highly and widely expressed, and the majority have detectable hallmarks of processed gene retrocopy formation. We estimate the rate of novel gene retrocopy insertions in humans and chimps at roughly one new gene retrocopy insertion for every 6,000 individuals. CONCLUSIONS: We find that gene retrocopy polymorphisms are a widespread phenomenon, present a multi-species analysis of these events, and provide a method for their ascertainment
Selective Constraint on Noncoding Regions of Hominid Genomes
An important challenge for human evolutionary biology is to understand the genetic basis of human–chimpanzee differences. One influential idea holds that such differences depend, to a large extent, on adaptive changes in gene expression. An important step in assessing this hypothesis involves gaining a better understanding of selective constraint on noncoding regions of hominid genomes. In noncoding sequence, functional elements are frequently small and can be separated by large nonfunctional regions. For this reason, constraint in hominid genomes is likely to be patchy. Here we use conservation in more distantly related mammals and amniotes as a way of identifying small sequence windows that are likely to be functional. We find that putatively functional noncoding elements defined in this manner are subject to significant selective constraint in hominids
Recommended from our members
A high-resolution map of human evolutionary constraint using 29 mammals.
The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering ∼4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for ∼60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease
Forces Shaping the Fastest Evolving Regions in the Human Genome
Comparative genomics allow us to search the human genome for segments that were extensively changed in the last ~5 million years since divergence from our common ancestor with chimpanzee, but are highly conserved in other species and thus are likely to be functional. We found 202 genomic elements that are highly conserved in vertebrates but show evidence of significantly accelerated substitution rates in human. These are mostly in non-coding DNA, often near genes associated with transcription and DNA binding. Resequencing confirmed that the five most accelerated elements are dramatically changed in human but not in other primates, with seven times more substitutions in human than in chimp. The accelerated elements, and in particular the top five, show a strong bias for adenine and thymine to guanine and cytosine nucleotide changes and are disproportionately located in high recombination and high guanine and cytosine content environments near telomeres, suggesting either biased gene conversion or isochore selection. In addition, there is some evidence of directional selection in the regions containing the two most accelerated regions. A combination of evolutionary forces has contributed to accelerated evolution of the fastest evolving elements in the human genome
Identification and Classification of Conserved RNA Secondary Structures in the Human Genome
The discoveries of microRNAs and riboswitches, among others, have shown functional RNAs to be biologically more important and genomically more prevalent than previously anticipated. We have developed a general comparative genomics method based on phylogenetic stochastic context-free grammars for identifying functional RNAs encoded in the human genome and used it to survey an eight-way genome-wide alignment of the human, chimpanzee, mouse, rat, dog, chicken, zebra-fish, and puffer-fish genomes for deeply conserved functional RNAs. At a loose threshold for acceptance, this search resulted in a set of 48,479 candidate RNA structures. This screen finds a large number of known functional RNAs, including 195 miRNAs, 62 histone 3′UTR stem loops, and various types of known genetic recoding elements. Among the highest-scoring new predictions are 169 new miRNA candidates, as well as new candidate selenocysteine insertion sites, RNA editing hairpins, RNAs involved in transcript auto regulation, and many folds that form singletons or small functional RNA families of completely unknown function. While the rate of false positives in the overall set is difficult to estimate and is likely to be substantial, the results nevertheless provide evidence for many new human functional RNAs and present specific predictions to facilitate their further characterization
The Human Genome Browser at UCSC
As vertebrate genome sequences near completion and research refocuses to their analysis, the issue of effective genome annotation display becomes critical. A mature web tool for rapid and reliable display of any requested portion of the genome at any scale, together with several dozen aligned annotation tracks, is provided at http://genome.ucsc.edu. This browser displays assembly contigs and gaps, mRNA and expressed sequence tag alignments, multiple gene predictions, cross-species homologies, single nucleotide polymorphisms, sequence-tagged sites, radiation hybrid data, transposon repeats, and more as a stack of coregistered tracks. Text and sequence-based searches provide quick and precise access to any region of specific interest. Secondary links from individual features lead to sequence details and supplementary off-site databases. One-half of the annotation tracks are computed at the University of California, Santa Cruz from publicly available sequence data; collaborators worldwide provide the rest. Users can stably add their own custom tracks to the browser for educational or research purposes. The conceptual and technical framework of the browser, its underlying MYSQL database, and overall use are described. The web site currently serves over 50,000 pages per day to over 3000 different users
Evaluation and treatment of decreased libido associated with painful lumbar lesions in two bulls
The effect on quality of life of vitamin D administration for advanced cancer treatment (VIDAFACT study): protocol of a randomised controlled trial
Adjustment of Iron Intake for Dietary Enhancers and Inhibitors in Population Studies: Bioavailable Iron in Rural and Urban Residing Russian Women and Children
Federated discovery and sharing of genomic data using Beacons
The Beacon Project (beacon-project.io) is a GA4GH initiative that is
developing an open specification for genetic variation discovery and
sharing. The project is demonstrating the willingness of international
organizations to work together to define standards for, and actively engage
in, genomic data sharing. In the two years since the project’s inception, over
90 Beacons have been lit by 35 organizations serving over 200 datasets.
These datasets are searchable individually or in aggregate via the Beacon
Network (beacon-network.org), a federated search engine across the
world’s public beacons. Beacons serve large, diverse, valuable collections
of genomics datasets, showing the viability of a global federated model for
genomics data discovery and sharing through a simple and securable
technical protocol. With continued adoption, Beacons will produce a large
network of searchable genomics datasets whose global representation and
accessibility will unlock potential for new genomics-derived discoveries
and applications in medicine
