3,043 research outputs found
How to Track Protists in Three Dimensions
We present an apparatus optimized for tracking swimming microorganisms in the
size range 10-1000 microns, in three dimensions (3D), far from surfaces, and
with negligible background convective fluid motion. CCD cameras attached to two
long working distance microscopes synchronously image the sample from two
perpendicular directions, with narrowband dark-field or bright-field
illumination chosen to avoid triggering a phototactic response. The images from
the two cameras can be combined to yield 3D tracks of the organism. Using
additional, highly directional broad-spectrum illumination with millisecond
timing control the phototactic trajectories in 3D of organisms ranging from
Chlamydomonas to Volvox can be studied in detail. Surface-mediated hydrodynamic
interactions can also be investigated without convective interference. Minimal
modifications to the apparatus allow for studies of chemotaxis and other taxes.Comment: 8 pages, 7 figure
Bosonic effective action for interacting fermions
We compare different versions of a bosonic description for systems of
interacting fermions, with particular emphasis on the free energy functional.
The bosonic effective action makes the issue of symmetries particularly
transparent and we present for the Hubbard model an exact mapping between
repulsive and attractive interactions. A systematic expansion for the bosonic
effective action starts with a solution to the lowest order Schwinger-Dyson or
gap equation. We propose a two particle irreducible formulation of an exact
functional renormalization group equation for computations beyond leading
order. On this basis we suggest a renormalized gap equation. This approach is
compared with functional renormalization in a partially bosonized setting.Comment: new sections on exact mapping between attractive and repulsive
Hubbard model and relation between two-particle-irreducible formalism, 32
pages,1 figure,LaTe
Distances between two chromosomes in interphase nuclei as determined with digitized image analysis
Chromosome aberration detection with hybridized DNA probes: digital image analysis and slit scan flow cytometry
Liquid 4He near the superfluid transition in the presence of a heat current and gravity
The effects of a heat current and gravity in liquid 4He near the superfluid
transition are investigated for temperatures above and below T_lambda. We
present a renormalization-group calculation based on model F for the Green's
function in a self-consistent approximation which in quantum many-particle
theory is known as the Hartree approximation. The approach can handle a zero
average order parameter above and below T_lambda and includes effects of
vortices. We calculate the thermal conductivity and the specific heat for all
temperatures T and heat currents Q in the critical regime. Furthermore, we
calculate the temperature profile. Below T_lambda we find a second correlation
length which describes the dephasing of the order parameter field due to
vortices. We find dissipation and mutual friction of the superfluid-normal
fluid counterflow and calculate the Gorter-Mellink coefficient A. We compare
our theoretical results with recent experiments.Comment: 26 pages, 9 figure
Diurnal variations of ambient particulate wood burning emissions and their contribution to the concentration of Polycyclic Aromatic Hydrocarbons (PAHs) in Seiffen, Germany
Residential wood burning is becoming an increasingly important cause of air quality problems since it has become a popular source of alternative energy to fossil fuel. In order to characterize the contribution of residential wood burning to local particle pollution, a field campaign was organized at the village of Seiffen (Saxony, Germany). During this campaign, an Aerosol Mass Spectrometer (AMS) was deployed in parallel to a PM<sub>1</sub> high volume filter sampler. The AMS mass spectra were analyzed using Positive Matrix Factorization (PMF) to obtain detailed information about the organic aerosol (OA). Biomass-burning organic aerosol (BBOA), Hydrocarbon-like organic aerosol (HOA), and Oxygenated Organic Aerosol (OOA) were identified and represented 20%, 17% and 62% of total OA, respectively. Additionally, Polycyclic Aromatic Hydrocarbons (PAH) were measured by the AMS with an average concentration of 10 ng m<sup>−3</sup> and short term events of extremely high PAH concentration (up to 500 ng m<sup>−3</sup>) compared to the mean PAH value were observed during the whole measurement period. A comparison with the results from PM<sub>1</sub> filter samples showed that the BBOA factor and the AMS PAH are good indicators of the total concentration of the different monosaccharide anhydrides and PAH measured on the filter samples. Based on its low correlation with CO and the low car traffic, the HOA factor was considered to be related to residential heating using liquid fuel. An influence of the time of the week (week vs. weekend) on the diurnal profiles of the different OA components was observed. The weekdays were characterized by two maxima; a first one early in the morning and a stronger one in the evening. During the weekend days, the different OA components principally reached only one maximum in the afternoon. Finally, the PAH emitted directly from residential wood combustion was estimated to represent 1.5% of the total mass of the BBOA factor and around 62% of the total PAH concentration measured at Seiffen. This result highlights the important contribution of residential wood combustion to air quality and PAH emissions at the sampling place, which might have a significant impact on human health. Moreover, it also emphasizes the need for a better time resolution of the chemical characterization of toxic particulate compounds in order to provide more information on variations of the different sources through the days as well as to better estimate the real human exposure
Australian Sphingidae – DNA Barcodes Challenge Current Species Boundaries and Distributions
© 2014 Rougerie et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article
Shape and structure of N=Z 64Ge; Electromagnetic transition rates from the application of the Recoil Distance Method to knock-out reaction
Transition rate measurements are reported for the first and the second 2+
states in N=Z 64Ge. The experimental results are in excellent agreement with
large-scale Shell Model calculations applying the recently developed GXPF1A
interactions. Theoretical analysis suggests that 64Ge is a collective
gamma-soft anharmonic vibrator. The measurement was done using the Recoil
Distance Method (RDM) and a unique combination of state-of-the-art instruments
at the National Superconducting Cyclotron Laboratory (NSCL). States of interest
were populated via an intermediate-energy single-neutron knock-out reaction.
RDM studies of knock-out and fragmentation reaction products hold the promise
of reaching far from stability and providing lifetime information for excited
states in a wide range of nuclei
Isospin Dependence in the Odd-Even Staggering of Nuclear Binding Energies
The FRS-ESR facility at GSI provides unique conditions for precision
measurements of large areas on the nuclear mass surface in a single experiment.
Values for masses of 604 neutron-deficient nuclides (30<=Z<=92) were obtained
with a typical uncertainty of 30 microunits. The masses of 114 nuclides were
determined for the first time. The odd-even staggering (OES) of nuclear masses
was systematically investigated for isotopic chains between the proton shell
closures at Z=50 and Z=82. The results were compared with predictions of modern
nuclear models. The comparison revealed that the measured trend of OES is not
reproduced by the theories fitted to masses only. The spectral pairing gaps
extracted from models adjusted to both masses, and density related observables
of nuclei agree better with the experimental data.Comment: Physics Review Letters 95 (2005) 042501
http://link.aps.org/abstract/PRL/v95/e04250
Production cross sections of neutron rich isotopes from a 82Se beam
Production cross sections for neutron-rich nuclei from the fragmentation of a
82Se beam at 139 MeV/u were measured. The longitudinal momentum distributions
of 122 neutron-rich isotopes of elements were determined by
varying the target thickness. Production cross sections with beryllium and
tungsten targets were determined for a large number of nuclei including several
isotopes first observed in this work. These are the most neutron-rich nuclides
of the elements (64Ti, 67V, 69Cr, 72Mn). One event was
registered consistent with 70Cr, and another one with 75Fe. A one-body Qg
systematics is used to describe the production cross sections based on thermal
evaporation from excited prefragments. The current results confirm those of our
previous experiment with a 76Ge beam: enhanced production cross sections for
neutron-rich fragments near Z=20.Comment: Talk given at the 11th International Conference on Nucleus-Nucleus
Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear
in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS
- …
